Loading [MathJax]/extensions/tex2jax.js

3

7
5

文字

分享

3
7
5

終結疫情、治癒癌症,從魯蛇到英雄! 拯救世界的 mRNA 療法和它的母親——《科學月刊》

科學月刊_96
・2021/05/10 ・4623字 ・閱讀時間約 9 分鐘 ・SR值 586 ・九年級

  • 蔣維倫 / 泛科學 PanSci 專欄作家、故事專欄作家、udn 鳴人堂專欄作家、前國衛院衛生福利政策研究學者。喜歡虎斑、橘子、白底虎斑和三花貓。

1990 年,科學家首次將 mRNA 注入小鼠肌肉中,發現肌肉細胞成功地將 mRNA 轉錄為有功能的蛋白質;但由於人體的免疫機制,外來 RNA 很快地被排除,更可能引起劇烈的發炎反應。卡林柯(Katalin Karikó)的研究團隊發現,特定核苷酸修飾能降低免疫細胞的活化程度,若人工合成的 mRNA 上帶有足量的核苷酸修飾,就能讓細胞不排斥外來 mRNA,細胞便會乖乖地照著 mRNA,做出我們心中的蛋白質。

去(2020)年末,當 2019 冠狀病毒疾病(COVID-19)流行近週年時,由輝瑞(Pfizer)、莫德納(Moderna)研發出的 mRNA 疫苗橫空出世,其保護力令人驚艷。然而,mRNA 疫苗的緣起,要從 30 幾年前,一名女科學家的故事開始講起……。

圖/pixabay

過於脆弱的 mRNA,被科研拋棄的孤兒

試想,若能控制蛋白質,我們就能治癒很多疾病,如教白血球認識腫瘤抗原,便能殺滅腫瘤細胞、治癒癌症,像是黑色素瘤;又或是讓身體自行產生正常蛋白質,就可以取代缺陷蛋白、治癒遺傳疾病,例如 B 型血友病。

但人體是個討厭外來物的組織,若是直接注射蛋白質到體內,可能會引起發炎反應。而在藥廠裡,想要完美模仿細胞,生產、純化複雜且分子量巨大的蛋白質,卻又過於昂貴、困難,這該怎麼辦呢?嗯,我們可以試試教細胞自己做蛋白質啊!

細胞就像中央廚房,遵守著 DNA 主廚的指令,主廚(DNA)寫出食譜(mRNA),再由細胞廚房依食譜烹調出料理(蛋白質),由也就是「DNA→mRNA→蛋白質」的流程,此流程稱為中心法則(central dogma)。舉例來說,COVID-19 疫苗的原理是讓人體內出現病毒蛋白,因此科學家可採取兩種方式,分別是:

-----廣告,請繼續往下閱讀-----
  • 讓人工 DNA 進入細胞,例如腺病毒(Adenoviridae)載體技術(牛津疫苗等)。
  • 讓人工 mRNA 進入細胞,例如 mRNA 疫苗(輝瑞疫苗等)。

mRNA 療法最初的曙光出現在 1990 年,當時科學家首次將全裸、無任何保護的 mRNA 注入小鼠肌肉中。他們並發現,小鼠的肌肉細胞能成功將 mRNA 轉譯(translation)為有功能的蛋白質,並持續了生產 18 個小時。然而,科學家也很快認清事實:mRNA 療法雖然理論上可行,但實際實行上卻有著巨大的阻礙。如同前面提到的「人體是個厭惡外來物的組織」,它討厭外來的蛋白質──也討厭外來的 mRNA。

由於人體不希望細菌或病毒侵入體內,所以身體具備多種優秀的系統,能夠隨時隨地排除外來的 RNA。像是在細胞外有豐富的核糖核酸酶(RNAse)可以分解 RNA;更糟的是,細胞的類鐸受體(Toll-like receptors, TLRs)系統,能偵測可疑的 RNA,辨認出這個可疑的 RNA 屬於外來基因,因此判定細胞正被病毒感染,於是便關閉這些 RNA 的轉譯作用,更會引起劇烈的發炎反應。人體天然的防禦系統,對 mRNA 療法而言,不僅導致轉譯效益低下,更可能對病人的健康造成傷害。

幾近完美的人體免疫系統,讓 mRNA 療法被打入冷宮、沉寂多年,直到一名女科學家出現。

由於人體不希望細菌或病毒侵入體內,所以身體具備多種優秀的系統,能夠隨時隨地排除外來的 RNA。圖/Giphy

降職、罹癌,依舊沒有放棄的女科學家—卡林柯

1985 年,當時 30 歲的匈牙利科學家卡林柯(Katalin Karikó),帶著丈夫與 2 歲的女兒,以及縫著 1200 元美金的泰迪熊,飛往美國展開研究職涯。卡林柯深信 mRNA 療法的可行性,持續地申請 mRNA 療法計畫的研究經費。然而當時學界普遍認為 RNA 過於脆弱,且它誘發的發炎反應過於強烈,不可能會有希望,因此她的計畫一再地被高層否決。在缺乏資金和研究成果的情況下,卡林柯在 1995 年被大學降職,同時間她被診斷出罹患癌症;而丈夫也因為簽證的關係必須滯留海外,只能和她相隔千里。在健康、職場、家庭遭遇到的三重打擊,考驗著卡林柯對 mRNA 療法的信心。

-----廣告,請繼續往下閱讀-----
匈牙利科學家卡林柯(Katalin Karikó)。圖/Wikipedia

她回憶起當時的想法:「我想,也許我還不夠聰明、不夠好。我試著這麼告訴自己:每件事都已經到位了,我只需要做出更出色的實驗就可以了!」而在三年後,因為共用一台影印機,卡林柯認識了研究 HIV 疫苗的同事魏斯曼(Drew Weissman),兩人一同埋頭研究著 mRNA 療法。直到 2005 年,研究終於露出重大突破──他們找到不會引起發炎反應的 RNA 了!

不會引起發炎反應的關鍵結構?

科學家很早就發現,核苷酸(DNA 或 RNA)會活化免疫系統,引起發炎反應,但令人困惑的是,動物細胞裡也有豐富的核苷酸,為什麼不會活化免疫細胞呢?以 DNA 來說,直到上個世紀末,人類才發現原來 DNA 的序列和微結構,會觸發特定的細胞訊號,例如 DNA 的 CpG 序列裡,較少的甲基化(methylation)修飾,會活化免疫細胞的第九型類鐸受體〔註一〕,研究者推測這可能是因為細胞認為此特徵符合原核生物的 DNA,因此會啟動發炎反應、排除入侵者。根據此概念,團隊展開了精彩的思辨和實驗設計,他們假設:「既然 DNA 如此,那麼 RNA 的免疫反應,會不會也受核苷酸的亞型(A、U、G、C 以外的核苷酸)與微結構影響呢?」

他們回顧文獻時,發現在科學家已知的 RNA 裡,核苷酸的亞型與被修飾(如甲基化)的比例,似乎隨著生物演化而逐漸不同。以核醣體 RNA(rRNA)為例,哺乳動物 rRNA 裡的偽尿苷(pseudouridine, Ψ)比例是細菌 rRNA 的 10 倍;而轉移 RNA(tRNA,負責攜帶胺基酸、辨認 mRNA 的零件)在哺乳細胞有高達 25% 的核苷酸被修飾,比例遠高於原核生物;相較於毫無修飾的細菌 mRNA,哺乳動物mRNA 的 5’ 端帽(5′ cap)修飾,則有形形色色的核苷酸亞型,像是 m5C(5-methylcytidine)與 m6A(N6-methyladenosine)等。細菌和動物 RNA 微結構的差異,也讓卡林柯團隊能試圖釐清 RNA 亞型和免疫反應之間的關係〔註二〕。

向細胞學習,天然的免疫逃避

科學家分離出細胞內不同的 RNA,分別為 rRNA、mRNA、tRNA、粒線體 RNA等,餵給免疫細胞如樹突細胞(dendritic cell),並觀察不同的 RNA 是否會引起不同程度的發炎反應。結果發現,哺乳細胞的 rRNA、mRNA 會誘發些微的發炎相關因子(TNF-α);粒線體 RNA 會引起劇烈的發炎反應〔註三〕;而核苷酸修飾比例最高的 tRNA,則幾乎不會活化免疫細胞。

-----廣告,請繼續往下閱讀-----

為了確認何種核苷酸的修飾,能避免活化免疫細胞,科學家合成了多種 RNA,其中的核苷酸分別由偽尿苷、m5C、m6A 等取代,再將眾多人工 RNA 和人體的樹突細胞混合。結果顯示,特定的核苷酸修飾,如偽尿苷等,能降低免疫細胞的活化程度。也就是說,若要打造出不會引起人體發炎反應的 mRNA 療法,關鍵就在於讓人工合成的 mRNA,有足量的修飾核苷酸,讓細胞受器誤以為這是「自己人」,然後細胞就會乖乖地照著 mRNA、做出我們心中的蛋白質了!

隨後,卡林柯團隊將帶有核苷酸修飾的螢光蛋白 mRNA,注入小鼠靜脈。他發現,若注射的是有核苷酸修飾的人工 mRNA,小鼠體內的發炎因子都遠低於無修飾的組別;更重要的是,在動物脾臟裡檢測出高量的螢光蛋白及更穩定存在的 mRNA。動物實驗的結果同樣顯示,核苷酸修飾 mRNA 技術,能有效降低發炎反應、大幅提高轉譯效率和穩定性的優勢。

此刻開始,卡林柯真的做到了她當年心中所想的「更出色的實驗」!即使在人生低潮時,她也沒有放棄的 mRNA 療法,逐步向治療癌症、罕病的目標挑戰。而他們做出的研究結果更在數十年後,一躍成為拯救世界、終止 COVID-19 疫情的 mRNA 疫苗。

而他們做出的研究結果更在數十年後,一躍成為拯救世界、終止 COVID-19 疫情的 mRNA 疫苗。圖/Giphy

從實驗可行到正規醫療手段

卡林柯與魏斯曼的研究,幫 mRNA 療法開啟了綠燈,也吸引了更多科學家,持續地最佳化 mRNA 療法,如:

-----廣告,請繼續往下閱讀-----
  • 提升轉譯效率

最佳化 mRNA 的 5’ 端帽(5′ cap)、5’-和 3’-非轉譯區(untranslated region, UTR)、多聚腺苷酸尾(poly-A tail)等部位,並增強 mRNA 在細胞內的穩定性和轉譯效率。像是在 5’ 端帽模仿真核生物的 m7GpppN〔註四〕結構,或開發新的微結構;在特定療法設定最佳的多聚腺苷酸尾鹼基長度等。這些技巧讓 mRNA 在細胞內能存活更長的時間,產出更大量的蛋白質,使得在臨床現場中,需要的 mRNA 量更少,大幅地增加了未來 mRNA 療法成為正規醫療的可行性。

  • 最佳化載體

儘管病毒載體,例如慢病毒(lentivirus)也能投遞 mRNA,但白血球對病毒外殼的免疫反應,仍令人卻步。而早期的投遞技術通常使用正電脂質吸附與保護 mRNA,但它的肝臟毒性使它逐漸被棄用。目前研究單位逐漸轉向改用 pH 敏感性脂質,在中性的生理環境下可保持電中性、降低毒性;當 pH 敏感性脂質被細胞吞噬,進入溶體(lysosome)後,會因 pH 值降低而重新帶電,進而逃脫溶體。

圖/Giphy

而在 COVID-19 疫苗開發中,從 mRNA 療法延伸出的 mRNA 疫苗更展現了其他技術無可取代的優異性:

  • 開發/改良速度

和腺病毒載體類型疫苗,如牛津疫苗比較起來,mRNA 疫苗無須進行細胞培養和純化病毒,整體更快速、安全;而和蛋白質類型疫苗,如 Novavax、高端疫苗比較,mRNA 疫苗能直接讓細胞產出病毒棘蛋白,不需要煩惱蛋白質在剪接(splicing)、摺疊(folding)、醣化(glycation)等轉譯後的修飾,生產上更加迅速。從病毒基因序列公布的那天算起,莫德納僅花了 25 天就完成了疫苗。而面對各地的變異株病毒,輝瑞疫苗表示僅需 6 週,就能完成針對變異株病毒改版的新劑型。mRNA 療法的驚人開發速度展露無疑。

-----廣告,請繼續往下閱讀-----
  • 安全性

mRNA 在人體內分解速度快,安全性高,由於未採用 DNA,能減輕民眾對於疫苗是否會插入人體基因的疑慮。

  • 接近自然感染

和蛋白質類型疫苗比較,mRNA 疫苗更接近病毒自然感染細胞的過程,讓細胞表面布滿病毒棘蛋白,能有效刺激細胞免疫(cellular immunity)反應。

從卡林柯飛往美國那天開始,她已經在 mRNA 療法領域耕耘數十年。誰也沒想到,她當初的堅持與科學界的棄兒,至今已成了拯救世界、終結大規模傳染病的關鍵技術,未來更可能戰勝癌症、克服罕病。現在不少人都認為她的卓越表現,應得到諾貝爾獎的肯定。你認為呢?

圖/Giphy

〔註一〕被免疫系統判定疑似細菌 DNA 的 CpG 序列,由於它可以引起發炎反應,所以反倒在疫苗領域被作為佐劑使用。如國產高端疫苗,其佐劑就是使用 CpG 序列。

-----廣告,請繼續往下閱讀-----

〔註二〕有趣的是,許多病毒(如流感、腺病毒、單純皰疹等)的 RNA 也有大量的修飾。這此現象暗示這些病毒和人類共存極久,可能從我們的細胞偷學了這招,以更好地模仿宿主特徵,騙過我們的免疫系統。

〔註三〕粒線體是古代細菌殘留在我們體內的痕跡。

〔註四〕在真核生物 mRNA 鏈第 1 個鹼基的前方,尚有個以 3 個磷酸聯結的鹼基(G),被稱為 5’ 端帽。若缺乏此修飾,mRNA 在細胞內會快速被降解。

延伸閱讀

  1. Katalin Karikó et al., Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA, Immunity, Vol. 23(2): 165–175, 2005.
  2. Ugur Sahin et al., mRNA-based therapeutics — developing a new class of drugs, Nature Reviews Drug Discovery, Vol. 13: 759–780, 2014.
  3. Katalin Karikó et al., Incorporation of Pseudouridine Into mRNA Yields Superior Nonimmunogenic Vector With Increased Translational Capacity and Biological Stability, Molecular Therapy, Vol. 16(11): 1833-1840, 2008.

〈本文選自《科學月刊》2021 年 5 月號〉

-----廣告,請繼續往下閱讀-----

科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 3
科學月刊_96
249 篇文章 ・ 3751 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
沒有症狀也不能大意!30 歲後女性都該注意的子宮頸癌預警指南
careonline_96
・2025/06/18 ・2608字 ・閱讀時間約 5 分鐘

圖 / 照護線上

「即使完全沒症狀,也一定要接受子宮頸癌篩檢!」隨著羅氏診斷女性健檢週活動開跑,林口長庚婦產部教授張廷彰醫師如此表示。根據衛生福利部國民健康署 111 年癌症登記報告,子宮頸癌長期位居女性癌症死因前十名,儘管政府長年推動篩檢政策,仍有約 20% 至 30% 的患者在確診時已屬中晚期(二期以上)[1]。近年政府積極推動 HPV 疫苗,但許多 30 歲以上女性仍屬「疫苗空窗世代」,未能在黃金施打年齡接種疫苗,此類族群更應建立定期檢查習慣。

「早期發現對子宮頸癌非常重要!」張廷彰強調,若能及時接受標準治療,一期子宮頸癌的五年存活率可超過 90%,如果進展至中晚期子宮頸癌,便可能會需要接受大範圍手術,再搭配放射治療或全身性治療,對工作及生活造成影響,存活率也比較差。

預防子宮頸癌
圖 / 照護線上

遠離子宮頸癌威脅,三道防線守護健康

子宮頸癌的發生多與人類乳突病毒(Human Papillomavirus, HPV)的感染有關,主要經由性接觸傳染,或透過接觸帶有病毒的物品造成間接感染。張廷彰指出,多數人感染後沒有明顯症狀,甚至可能自行痊癒,但有部分人感染高風險HPV後,因體質因素無法清除病毒,造成高風險HPV持續感染,持續的定義為達半年以上,進而演變為子宮頸癌前病變或癌症。

由於HPV感染與初期病變通常無明顯症狀,許多女性容易忽略定期篩檢的重要性,若等到出現異常出血等明顯警訊時,多已進展為子宮頸癌,往往已錯過早期治療的最佳時機。因此,張廷彰強調女性應透過「三道健康防線」及早防治:第一,建立安全性行為觀念;第二,接種HPV疫苗;第三,定期接受子宮頸癌篩檢,包括抹片與高危HPV DNA檢測,才能有效攔截疾病於早期,守住自身健康防線。

-----廣告,請繼續往下閱讀-----
子宮頸抹片搭配HPV DNA檢測篩檢更完善
圖 / 照護線上

子宮頸抹片搭配HPV DNA檢測 助精準掌握健康風險

目前子宮頸癌的篩檢方式主要有兩種:子宮頸抹片檢查與高風險HPV DNA檢測。抹片檢查是透過顯微鏡觀察子宮頸細胞型態,檢視是否有可疑性的癌細胞存在;而高危HPV DNA檢測則是利用基因技術分析是否有感染高風險型HPV,能在病變尚未發生前就偵測出潛在風險,讓防線更提前。

張廷彰醫師建議女性可搭配兩種篩檢方式使用,以提升篩檢準確度。若HPV DNA檢測結果為陰性,代表近期感染風險較低,可每五年再進行一次篩檢,不僅能減少不必要的頻繁檢查,也能更早掌握健康風險、規劃後續追蹤。

此外,目前政府亦有相關補助政策,鼓勵女性善加利用公費資源以守護健康:

  • 25至29歲婦女:每三年一次免費子宮頸抹片檢查
  • 30歲以上婦女:每年一次免費子宮頸抹片檢查
  • 當年度年齡為35歲、45歲、65歲女性可接受一次免費HPV DNA檢測

透過這些篩檢工具與政策支持,女性可更有效掌握自身健康,及早防範子宮頸癌風險。

-----廣告,請繼續往下閱讀-----
子宮頸癌高風險族群要注意
圖 / 照護線上

9 大子宮頸癌高風險族群要注意!醫:定期檢查遠離威脅

除了公費補助對象為,高風險族群應每年做一次子宮頸抹片檢查,也建議搭配高危人類乳突病毒 HPV DNA 檢測。高風險族群包括未曾接種過HPV疫苗、較早發生性行為、有多重性伴侶、HIV 感染、接受器官移植、使用免疫抑制劑、有家族病史、反覆陰道感染、抽菸或飲酒者等。即使沒有症狀,也應該定期接受子宮頸癌篩檢,才能及早處理。

張廷彰醫師表示,自 2025 年起國民健康署擴大補助子宮頸癌篩檢,符合公費篩檢條件的女性朋友務必好好把握,若未符合資格也可自費進行篩檢,守住健康防線,也呼籲民眾「挺身而出守護健康」,主動提醒身邊女性來一場健康篩檢約會!

筆記重點整理

  • 早期發現對子宮頸癌非常重要,若能及時接受標準治療,一期子宮頸癌的五年存活率可超過 90%,如果進展至中晚期子宮頸癌,可能會需要接受大範圍手術,再搭配放射治療或全身性治療,對工作及生活造成影響,存活率也比較差。
  • 子宮頸癌的發生大多與人類乳突病毒(HPV)感染有關,HPV 第 16、18 型屬於高危險人類乳突病毒,可能導致子宮頸癌前病變、子宮頸癌以及男女外生殖器癌;低危險人類乳突病毒則可能會引起生殖器疣(菜花)。
  • 預防子宮頸癌有三道關鍵防線,包括安全性行為、接種人類乳突病毒 HPV 疫苗、定期接受子宮頸癌篩檢。過去,子宮頸癌篩檢主要仰賴子宮頸抹片檢查近年來許多國家已開始採用 HPV DNA 檢測,因為HPV DNA 檢測能更準確預測未來罹患癌症的風險。
  • 自 2025 年起衛生福利部國民健康署擴大子宮頸癌篩檢,除了子宮頸抹片檢查,還納入 HPV DNA 檢測。在子宮頸抹片檢查部分,25 歲至 29 歲婦女,每 3 年 1 次子宮頸抹片檢查;30 歲以上婦女,每年 1 次子宮頸抹片檢查。當年度為 35 歲、45 歲、65 歲的女性,可接受 1 次人類乳突病毒 HPV DNA 檢測。
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

1

20
0

文字

分享

1
20
0
不抽菸也會得肺癌?PM2.5 如何「叫醒」沉睡的癌細胞?
PanSci_96
・2024/06/25 ・4403字 ・閱讀時間約 9 分鐘

不好意思,你很可能會得這種癌症。其實,我也是。

它就是台灣十大癌症榜首,肺癌。

現在,根據 2023 年 11 月衛福部發布的最新統計數字,肺癌一年的新增病人數已經超越大腸直腸癌,成為台灣每年癌症發生人數之最,堪稱臺灣人的「國民病」。

可怕的是,肺癌在癌症之中有三個之最:死亡率最高、發現時已經是晚期的比例最高、醫藥費也最高。現在再加上發生人數最高,堪稱從癌症四冠王。

-----廣告,請繼續往下閱讀-----

你說肺癌是抽菸的人的事?錯!台灣抽菸人口比例在全球排名 30,比日本、韓國、中國和多數歐洲國家都還低!顯然抽菸並不是肺癌的唯一主因!那難道是二手菸?還是空污惹的禍?還是台灣人的基因天生脆弱?我們到底要怎麼做才能遠離肺癌?

臺灣人的肺癌特別在哪?癌症和基因有關嗎?

根據衛福部國健署的說法,肺癌人數的增加,其實與 2022 年 7 月開始推動肺癌篩檢的政策有關。

隨著篩檢量的上升,近年內肺癌的確診人數預期還會再往上。

原來是因為篩檢量啊,那就不用擔心了。但換個角度想,這才是肺癌最可怕的地方,它可能已經存在在很多人身體裡,而我們卻沒能發現它。肺癌早期幾乎沒有症狀,高達 50% 的患者發現時已經是第 4 期。屆時不只肺部遍布腫瘤,癌細胞可能還轉移到大腦、骨頭等器官,讓治療變得加倍困難。

-----廣告,請繼續往下閱讀-----

對付肺癌,最關鍵點是愈早發現愈好。按照國健署統計,如果第 1 期就發現,5 年存活率可達九成以上,第 2 期發現降為六成,第 3 期存活率大約三成,一旦到第 4 期,僅僅剩下一成。

當然,最好的方法,就是做好預防,打從一開始就不讓癌細胞誕生。

那麼我們就要先了解問題到底是出在環境,還是你、我身體中的基因? 過去關於肺癌的遺傳研究,多半以歐美國家為主,套用到我們身上總有些牛頭不對馬嘴。幸好,我這裡一份以臺灣人為主角的大規模研究報告,將為我們揭露答案。

這份研究是由中央研究院團隊主導,結合臺灣大學、臺北醫學大學、臺中榮總等單位的研究,還登上生物領域頂尖期刊《Cell》2020 年 7 月的封面故事。非常具有權威性,不能不看。

-----廣告,請繼續往下閱讀-----

同時,這也是全球第一次完整剖析東亞地區肺癌的成因。他們的主題很明確:「為什麼不吸菸也會得肺癌?」

在西方,肺癌病人裡面只有 20% 左右的人不吸菸。但是在臺灣,卻有超過一半的肺癌病人都不抽菸,顯示有其他致癌要素潛伏在基因裡作怪。另外,臺灣肺癌病人的男女比例和西方人也大不同,臺灣女性通常更容易罹患肺癌。 為了瞭解肺癌,研究團隊取得肺癌病人的腫瘤和正常組織,解讀 DNA 序列和蛋白質表現量,最後鑑定出 5 種和西方人明顯不同的變異特徵。

其中最受關注的,是一種 APOBEC 變異,因為它有可能是臺灣女性為什麼容易罹患肺癌的關鍵。

這種變異特徵屬於內生性的,也就是人體機制自然產生的 bug。

-----廣告,請繼續往下閱讀-----

APOBEC 不是指單一基因,它是細胞內負責編輯 mRNA 的一組酵素,包含 11 個成員。主要功用是把胞嘧啶核苷酸(C)轉變尿嘧啶核苷酸(U)。簡單來說,APOBEC 原本是細胞正常活動的一環。但因為它有改寫核酸序列的能力,在 DNA 修復過程同時活躍時,就很有可能出事。這就像是一個創意豐富的阿嬤,看到破損的古畫,就在沒和別人討論的情況下上去東湊西補,用自己的方式重新修復了這件藝術。一個與原本不同的突變細胞可能就這樣產生了。

APOBEC 變異在臺灣女性病人身上特別明顯,舉例來說,60 歲以下沒有吸菸的女性患者,就有高達四分之三有這種變異特徵。研究團隊認為,APOBEC 出錯造成的基因變異可能是導致女性肺癌的關鍵。 除了內生性變異,另外一個容易導致肺癌發生的,就是周遭環境中的致癌物。

致癌物有哪些?

研究團隊總結出 5 種肺癌危險物質:烷化劑、輻射線、亞硝胺(Nitrosamine)、多環芳香烴(PAHs),還有硝基多環芳香烴(Nitro-PAHs)。

其中,亞硝胺類化合物主要來自食品添加物和防腐劑,多環芳香烴大多來自抽菸和二手菸,硝基多環芳香烴則是透過汽機車廢氣和 PM2.5 等毒害肺部。

-----廣告,請繼續往下閱讀-----
圖/unsplash

他們進一步分析,大略來說,女性在不同年紀,致癌因素也有差異。60 歲以下的女性肺癌病人,APOBEC 特徵的影響比較明顯;70 歲以上的女性患者,和環境致癌物的相關度比較高。 既然找到致癌原因,我們該如何著手預防呢?你知道肺癌,其實有疫苗可打!?

空氣污染和肺癌有關嗎?有沒有癌症疫苗?

想預防肺癌,有 2 種對策,一種是「打疫苗」,一種是「抗發炎」。

是的,你沒聽錯,英國牛津大學、跟佛朗西斯.克里克研究所,還有倫敦大學學院在 2024 年 3 月下旬公布,他們正在研發一款預防性的肺癌疫苗,就叫 LungVax。它所使用的技術,和過往牛津大學協同阿斯特捷利康藥廠製造 COVID-19 AZ 疫苗時的方法相似。

他們已經募到一筆 170 萬英鎊的經費,預計未來兩年資金陸續全數到位,第一批打算先試生產 3000 劑。不過,關於這款肺癌疫苗,目前透露的消息還不多,我們挺健康會持續追蹤這方面研究的進展。

-----廣告,請繼續往下閱讀-----

在疫苗出來之前,我們還有第二個對策:抗發炎。發炎和肺癌有什麼關係呢?這就要先回到一個問題:為什麼空污會提高得肺癌的機率呢?

一個很直觀又有力的推測是,空污會導致肺部細胞 DNA 突變,因此而催生出腫瘤。

圖/unsplash

但是修但幾勒,科學要嚴謹,不能只看結果。科學史上發生過很多次表象和真實截然不同的事件,空污和肺癌會不會也是這樣?

2023 年 4 月《Nature》的一篇封面故事,明確地說:Yes!肺癌真的和我們想的不一樣。

-----廣告,請繼續往下閱讀-----

其實早在 1947 年,就有以色列生化學家貝倫布魯姆(Isaac Berenblum)質疑主流觀點,他提出的新假設是:除了 DNA 突變以外,癌細胞還需要其他條件才能坐大。用白話說,就是肺癌是個會兩段變身的遊戲副本頭目,正常細胞先發生變異,接著再由某個條件「扣下扳機」,突變細胞才會壯大成腫瘤。

也就是説,只要攔住任一個階段,就有機會能防範肺癌。假如這論點正確,全球肺癌防治的方向將會直角轉彎。

《Nature》的研究支持這個假說,扭轉了過去 70 多年來的看法。在這項里程碑研究中,臺灣也是要角。

時間回到 2020 年,《Nature Genetics》上發表了一份針對 20 種致癌物質的研究報告,包括鈷、三氯丙烷和異丙苯等,但注意,這研究指出這些致癌物大多沒有增加實驗鼠的 DNA 變異量。

這個現象實在太違反直覺,過了 3 年,疑團還是懸而未決。直到《Nature》的跨國研究出爐,才解開部分謎底。

英國倫敦佛朗西斯.克利克研究所主導 2023 年的一項研究,他們鎖定對象為肺腺癌。肺腺癌是典型「不吸菸的肺癌」,台灣每 4 個肺癌病人就有 3 人是肺腺癌,尤其是女性肺腺癌患者有高達九成不抽菸。 為了抽絲剝繭探明空污和肺癌的關係,研究團隊聚焦在肺腺癌患者常發生的表皮生長因子受體基因變異,縮寫 EGFR。他們收集英國、加拿大、韓國和臺灣四國大約 3 萬 3 千名帶有 EGFR 突變的病人資料,進行深入分析,並且發現 PM2.5 和肺腺癌發生率有顯著關聯。研究團隊進一步用小鼠做試驗,把小鼠分成吸入和未吸入 PM2.5 兩組,結果發現吸入組更容易長出惡性腫瘤。

圖/pexels

到目前為止都還不算太意外,然而,團隊切下肺部細胞、分析 DNA 以後發現,DNA 的突變量居然沒有明顯增加!但是有另一件事發生了:堆積在肺的 PM2.5 顆粒會吸引免疫細胞從身體各處聚集過來,並分泌一種叫做 IL-1β 的發炎因子,導致肺組織發炎。

這下子有趣了,根據克利克研究所團隊的檢驗結果,估計每 60 萬個肺部細胞有 1 個帶有 EGFR 突變,這些細胞在發炎環境裡會快馬加鞭生長。相反的,當他們給小鼠注射抑制 IL-1β 的抗體,肺癌發病率就跟著下降。 《Nature》一篇評論引述美國加州大學舊金山分校分子腫瘤學專家波曼(Allan Balmain)的看法。他總結說,空污致癌的主要機制,可能不是因為空污誘發了新突變,而是持續發炎會刺激原本已帶有突變的細胞生長。換句話說,本來在熟睡的壞細胞會被發炎反應「叫醒」。

這會給肺癌防治帶來巨大衝擊,這樣一來,問題就從「用公衛或醫療方法防止 DNA 變異」變成了「如何抑制發炎」。

人體的細胞每天不斷分裂,用新細胞替換老舊細胞。但是這就像工廠生產線,良率無法百分百,組裝幾十萬產品難免會做出幾件瑕疵品,也就是帶有基因突變的細胞。換句話說,從自然界角度來看,DNA 變異是一種自發現象,醫療手段實際上幾乎不可能阻止。

但是,降低發炎卻是有可能做到的,例如注射抑制 IL-1β 因子的抗體。不過,就公共衛生來說,要給幾千萬人施打抗發炎因子藥物根本不切實際,因為太花錢,而且也可能造成其他的副作用。 波曼在《Nature》評論裡建議,透過簡易可行的飲食方式來降低體內發炎,或許有機會減少某些癌症的風險。這也就是說,科學家應該重新回來審視,怎樣把每天的生活點滴點石成金變成防癌手段。

圖/unsplash

這也等於預告了肺癌的下一階段研究方向,除了內科、外科醫療科技持續精進,尋求預防惡性疾病的最佳飲食要素,也成為聚焦重點。

也想問問你,關於肺癌,你最看好的下一個突破是什麼呢?

  1. 希望有篩檢技術 2.0,不但百發百中,如果連X光都不必照,只要抽血就能順便驗出有沒有癌細胞,那該多好。
  2. 當然是癌症疫苗,最好是能一勞永逸。
  3. 科學證實有效的抗發炎防癌食物組合,我一定立刻加入菜單,不過還是希望味道要好吃啦。

留言告訴我們你的想法吧,如果你覺得這集的內容特別實用,記得分享給你的親朋好友!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1