3

6
3

文字

分享

3
6
3

終結疫情、治癒癌症,從魯蛇到英雄! 拯救世界的 mRNA 療法和它的母親——《科學月刊》

科學月刊_96
・2021/05/10 ・4623字 ・閱讀時間約 9 分鐘 ・SR值 586 ・九年級
  • 蔣維倫 / 泛科學 PanSci 專欄作家、故事專欄作家、udn 鳴人堂專欄作家、前國衛院衛生福利政策研究學者。喜歡虎斑、橘子、白底虎斑和三花貓。

1990 年,科學家首次將 mRNA 注入小鼠肌肉中,發現肌肉細胞成功地將 mRNA 轉錄為有功能的蛋白質;但由於人體的免疫機制,外來 RNA 很快地被排除,更可能引起劇烈的發炎反應。卡林柯(Katalin Karikó)的研究團隊發現,特定核苷酸修飾能降低免疫細胞的活化程度,若人工合成的 mRNA 上帶有足量的核苷酸修飾,就能讓細胞不排斥外來 mRNA,細胞便會乖乖地照著 mRNA,做出我們心中的蛋白質。

去(2020)年末,當 2019 冠狀病毒疾病(COVID-19)流行近週年時,由輝瑞(Pfizer)、莫德納(Moderna)研發出的 mRNA 疫苗橫空出世,其保護力令人驚艷。然而,mRNA 疫苗的緣起,要從 30 幾年前,一名女科學家的故事開始講起……。

圖/pixabay

過於脆弱的 mRNA,被科研拋棄的孤兒

試想,若能控制蛋白質,我們就能治癒很多疾病,如教白血球認識腫瘤抗原,便能殺滅腫瘤細胞、治癒癌症,像是黑色素瘤;又或是讓身體自行產生正常蛋白質,就可以取代缺陷蛋白、治癒遺傳疾病,例如 B 型血友病。

但人體是個討厭外來物的組織,若是直接注射蛋白質到體內,可能會引起發炎反應。而在藥廠裡,想要完美模仿細胞,生產、純化複雜且分子量巨大的蛋白質,卻又過於昂貴、困難,這該怎麼辦呢?嗯,我們可以試試教細胞自己做蛋白質啊!

細胞就像中央廚房,遵守著 DNA 主廚的指令,主廚(DNA)寫出食譜(mRNA),再由細胞廚房依食譜烹調出料理(蛋白質),由也就是「DNA→mRNA→蛋白質」的流程,此流程稱為中心法則(central dogma)。舉例來說,COVID-19 疫苗的原理是讓人體內出現病毒蛋白,因此科學家可採取兩種方式,分別是:

  • 讓人工 DNA 進入細胞,例如腺病毒(Adenoviridae)載體技術(牛津疫苗等)。
  • 讓人工 mRNA 進入細胞,例如 mRNA 疫苗(輝瑞疫苗等)。

mRNA 療法最初的曙光出現在 1990 年,當時科學家首次將全裸、無任何保護的 mRNA 注入小鼠肌肉中。他們並發現,小鼠的肌肉細胞能成功將 mRNA 轉譯(translation)為有功能的蛋白質,並持續了生產 18 個小時。然而,科學家也很快認清事實:mRNA 療法雖然理論上可行,但實際實行上卻有著巨大的阻礙。如同前面提到的「人體是個厭惡外來物的組織」,它討厭外來的蛋白質──也討厭外來的 mRNA。

由於人體不希望細菌或病毒侵入體內,所以身體具備多種優秀的系統,能夠隨時隨地排除外來的 RNA。像是在細胞外有豐富的核糖核酸酶(RNAse)可以分解 RNA;更糟的是,細胞的類鐸受體(Toll-like receptors, TLRs)系統,能偵測可疑的 RNA,辨認出這個可疑的 RNA 屬於外來基因,因此判定細胞正被病毒感染,於是便關閉這些 RNA 的轉譯作用,更會引起劇烈的發炎反應。人體天然的防禦系統,對 mRNA 療法而言,不僅導致轉譯效益低下,更可能對病人的健康造成傷害。

幾近完美的人體免疫系統,讓 mRNA 療法被打入冷宮、沉寂多年,直到一名女科學家出現。

由於人體不希望細菌或病毒侵入體內,所以身體具備多種優秀的系統,能夠隨時隨地排除外來的 RNA。圖/Giphy

降職、罹癌,依舊沒有放棄的女科學家—卡林柯

1985 年,當時 30 歲的匈牙利科學家卡林柯(Katalin Karikó),帶著丈夫與 2 歲的女兒,以及縫著 1200 元美金的泰迪熊,飛往美國展開研究職涯。卡林柯深信 mRNA 療法的可行性,持續地申請 mRNA 療法計畫的研究經費。然而當時學界普遍認為 RNA 過於脆弱,且它誘發的發炎反應過於強烈,不可能會有希望,因此她的計畫一再地被高層否決。在缺乏資金和研究成果的情況下,卡林柯在 1995 年被大學降職,同時間她被診斷出罹患癌症;而丈夫也因為簽證的關係必須滯留海外,只能和她相隔千里。在健康、職場、家庭遭遇到的三重打擊,考驗著卡林柯對 mRNA 療法的信心。

匈牙利科學家卡林柯(Katalin Karikó)。圖/Wikipedia

她回憶起當時的想法:「我想,也許我還不夠聰明、不夠好。我試著這麼告訴自己:每件事都已經到位了,我只需要做出更出色的實驗就可以了!」而在三年後,因為共用一台影印機,卡林柯認識了研究 HIV 疫苗的同事魏斯曼(Drew Weissman),兩人一同埋頭研究著 mRNA 療法。直到 2005 年,研究終於露出重大突破──他們找到不會引起發炎反應的 RNA 了!

不會引起發炎反應的關鍵結構?

科學家很早就發現,核苷酸(DNA 或 RNA)會活化免疫系統,引起發炎反應,但令人困惑的是,動物細胞裡也有豐富的核苷酸,為什麼不會活化免疫細胞呢?以 DNA 來說,直到上個世紀末,人類才發現原來 DNA 的序列和微結構,會觸發特定的細胞訊號,例如 DNA 的 CpG 序列裡,較少的甲基化(methylation)修飾,會活化免疫細胞的第九型類鐸受體〔註一〕,研究者推測這可能是因為細胞認為此特徵符合原核生物的 DNA,因此會啟動發炎反應、排除入侵者。根據此概念,團隊展開了精彩的思辨和實驗設計,他們假設:「既然 DNA 如此,那麼 RNA 的免疫反應,會不會也受核苷酸的亞型(A、U、G、C 以外的核苷酸)與微結構影響呢?」

他們回顧文獻時,發現在科學家已知的 RNA 裡,核苷酸的亞型與被修飾(如甲基化)的比例,似乎隨著生物演化而逐漸不同。以核醣體 RNA(rRNA)為例,哺乳動物 rRNA 裡的偽尿苷(pseudouridine, Ψ)比例是細菌 rRNA 的 10 倍;而轉移 RNA(tRNA,負責攜帶胺基酸、辨認 mRNA 的零件)在哺乳細胞有高達 25% 的核苷酸被修飾,比例遠高於原核生物;相較於毫無修飾的細菌 mRNA,哺乳動物mRNA 的 5’ 端帽(5′ cap)修飾,則有形形色色的核苷酸亞型,像是 m5C(5-methylcytidine)與 m6A(N6-methyladenosine)等。細菌和動物 RNA 微結構的差異,也讓卡林柯團隊能試圖釐清 RNA 亞型和免疫反應之間的關係〔註二〕。

向細胞學習,天然的免疫逃避

科學家分離出細胞內不同的 RNA,分別為 rRNA、mRNA、tRNA、粒線體 RNA等,餵給免疫細胞如樹突細胞(dendritic cell),並觀察不同的 RNA 是否會引起不同程度的發炎反應。結果發現,哺乳細胞的 rRNA、mRNA 會誘發些微的發炎相關因子(TNF-α);粒線體 RNA 會引起劇烈的發炎反應〔註三〕;而核苷酸修飾比例最高的 tRNA,則幾乎不會活化免疫細胞。

為了確認何種核苷酸的修飾,能避免活化免疫細胞,科學家合成了多種 RNA,其中的核苷酸分別由偽尿苷、m5C、m6A 等取代,再將眾多人工 RNA 和人體的樹突細胞混合。結果顯示,特定的核苷酸修飾,如偽尿苷等,能降低免疫細胞的活化程度。也就是說,若要打造出不會引起人體發炎反應的 mRNA 療法,關鍵就在於讓人工合成的 mRNA,有足量的修飾核苷酸,讓細胞受器誤以為這是「自己人」,然後細胞就會乖乖地照著 mRNA、做出我們心中的蛋白質了!

隨後,卡林柯團隊將帶有核苷酸修飾的螢光蛋白 mRNA,注入小鼠靜脈。他發現,若注射的是有核苷酸修飾的人工 mRNA,小鼠體內的發炎因子都遠低於無修飾的組別;更重要的是,在動物脾臟裡檢測出高量的螢光蛋白及更穩定存在的 mRNA。動物實驗的結果同樣顯示,核苷酸修飾 mRNA 技術,能有效降低發炎反應、大幅提高轉譯效率和穩定性的優勢。

此刻開始,卡林柯真的做到了她當年心中所想的「更出色的實驗」!即使在人生低潮時,她也沒有放棄的 mRNA 療法,逐步向治療癌症、罕病的目標挑戰。而他們做出的研究結果更在數十年後,一躍成為拯救世界、終止 COVID-19 疫情的 mRNA 疫苗。

而他們做出的研究結果更在數十年後,一躍成為拯救世界、終止 COVID-19 疫情的 mRNA 疫苗。圖/Giphy

從實驗可行到正規醫療手段

卡林柯與魏斯曼的研究,幫 mRNA 療法開啟了綠燈,也吸引了更多科學家,持續地最佳化 mRNA 療法,如:

  • 提升轉譯效率

最佳化 mRNA 的 5’ 端帽(5′ cap)、5’-和 3’-非轉譯區(untranslated region, UTR)、多聚腺苷酸尾(poly-A tail)等部位,並增強 mRNA 在細胞內的穩定性和轉譯效率。像是在 5’ 端帽模仿真核生物的 m7GpppN〔註四〕結構,或開發新的微結構;在特定療法設定最佳的多聚腺苷酸尾鹼基長度等。這些技巧讓 mRNA 在細胞內能存活更長的時間,產出更大量的蛋白質,使得在臨床現場中,需要的 mRNA 量更少,大幅地增加了未來 mRNA 療法成為正規醫療的可行性。

  • 最佳化載體

儘管病毒載體,例如慢病毒(lentivirus)也能投遞 mRNA,但白血球對病毒外殼的免疫反應,仍令人卻步。而早期的投遞技術通常使用正電脂質吸附與保護 mRNA,但它的肝臟毒性使它逐漸被棄用。目前研究單位逐漸轉向改用 pH 敏感性脂質,在中性的生理環境下可保持電中性、降低毒性;當 pH 敏感性脂質被細胞吞噬,進入溶體(lysosome)後,會因 pH 值降低而重新帶電,進而逃脫溶體。

圖/Giphy

而在 COVID-19 疫苗開發中,從 mRNA 療法延伸出的 mRNA 疫苗更展現了其他技術無可取代的優異性:

  • 開發/改良速度

和腺病毒載體類型疫苗,如牛津疫苗比較起來,mRNA 疫苗無須進行細胞培養和純化病毒,整體更快速、安全;而和蛋白質類型疫苗,如 Novavax、高端疫苗比較,mRNA 疫苗能直接讓細胞產出病毒棘蛋白,不需要煩惱蛋白質在剪接(splicing)、摺疊(folding)、醣化(glycation)等轉譯後的修飾,生產上更加迅速。從病毒基因序列公布的那天算起,莫德納僅花了 25 天就完成了疫苗。而面對各地的變異株病毒,輝瑞疫苗表示僅需 6 週,就能完成針對變異株病毒改版的新劑型。mRNA 療法的驚人開發速度展露無疑。

  • 安全性

mRNA 在人體內分解速度快,安全性高,由於未採用 DNA,能減輕民眾對於疫苗是否會插入人體基因的疑慮。

  • 接近自然感染

和蛋白質類型疫苗比較,mRNA 疫苗更接近病毒自然感染細胞的過程,讓細胞表面布滿病毒棘蛋白,能有效刺激細胞免疫(cellular immunity)反應。

從卡林柯飛往美國那天開始,她已經在 mRNA 療法領域耕耘數十年。誰也沒想到,她當初的堅持與科學界的棄兒,至今已成了拯救世界、終結大規模傳染病的關鍵技術,未來更可能戰勝癌症、克服罕病。現在不少人都認為她的卓越表現,應得到諾貝爾獎的肯定。你認為呢?

圖/Giphy

〔註一〕被免疫系統判定疑似細菌 DNA 的 CpG 序列,由於它可以引起發炎反應,所以反倒在疫苗領域被作為佐劑使用。如國產高端疫苗,其佐劑就是使用 CpG 序列。

〔註二〕有趣的是,許多病毒(如流感、腺病毒、單純皰疹等)的 RNA 也有大量的修飾。這此現象暗示這些病毒和人類共存極久,可能從我們的細胞偷學了這招,以更好地模仿宿主特徵,騙過我們的免疫系統。

〔註三〕粒線體是古代細菌殘留在我們體內的痕跡。

〔註四〕在真核生物 mRNA 鏈第 1 個鹼基的前方,尚有個以 3 個磷酸聯結的鹼基(G),被稱為 5’ 端帽。若缺乏此修飾,mRNA 在細胞內會快速被降解。

延伸閱讀

  1. Katalin Karikó et al., Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA, Immunity, Vol. 23(2): 165–175, 2005.
  2. Ugur Sahin et al., mRNA-based therapeutics — developing a new class of drugs, Nature Reviews Drug Discovery, Vol. 13: 759–780, 2014.
  3. Katalin Karikó et al., Incorporation of Pseudouridine Into mRNA Yields Superior Nonimmunogenic Vector With Increased Translational Capacity and Biological Stability, Molecular Therapy, Vol. 16(11): 1833-1840, 2008.

〈本文選自《科學月刊》2021 年 5 月號〉

科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。


數感宇宙探索課程,現正募資中!

文章難易度
所有討論 3

2

2
4

文字

分享

2
2
4

為何新冠病毒突變之後傳染力更強?——關鍵在於變異株的棘蛋白結構

研之有物│中央研究院_96
・2022/01/25 ・5088字 ・閱讀時間約 10 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/寒波
  • 美術設計/林洵安

為何新冠病毒突變之後傳染力更強?

COVID-19 至今仍深深影響全人類,新冠病毒持續演化,例如曾經造成臺灣大規模社區感染的 Alpha 變異株、傳染力更強的 Delta 變異株,近期出現的 Omicron 變異株等,它們逃避免疫系統的能力都不一樣,關鍵就在不同的棘蛋白(spike protein)結構。「研之有物」專訪中央研究院生物化學研究所徐尚德副研究員,他的團隊陸續解析各種新冠病毒變異株的棘蛋白結構,不但能釐清新的突變帶來的威脅,後續也可作為研發人造抗體的指引。

徐尚德手上拿著新冠病毒的棘蛋白模型,顯示棘蛋白與兩種不同抗體結合的情況。圖/研之有物

解析新型冠狀病毒棘蛋白

COVID-19 的病原體是一種冠狀病毒,和 SARS 病毒是近親,正式命名為 SARS-CoV-2,中文常稱作新型冠狀病毒。為了知道病毒如何感染人體細胞,以及如何逃避免疫系統的辨識,我們需要進一步瞭解冠狀病毒表面的棘蛋白結構。

結構為什麼重要?因為結構會影響蛋白質功能。蛋白質是由不同的氨基酸所組成的長鏈,實際作用時會摺疊形成特別立體結構,而冠狀病毒的蛋白質中,又以棘蛋白最為關鍵。

徐尚德強調,棘蛋白是冠狀病毒暴露在表面的蛋白質之一,絕大多數被感染者的免疫系統所產生的抗體都是辨識棘蛋白。因此現今臨床使用的蛋白質次單元疫苗、腺病毒疫苗以及 mRNA 疫苗,都是以棘蛋白為基礎來研發。

Cryo-EM 讓蛋白質結構無所遁形

工欲善其事,必先利其器。解析蛋白質結構的方法很多,早期的 X 光晶體繞射(X-ray diffraction),就像將影片定格截圖,但不一定為蛋白質實際作用的狀態。

再來是核磁共振(Nuclear Magnetic Resonanc,簡稱 NMR),這是徐尚德留學深造時的專業,可以重現蛋白質在水溶液中的結構及動態,更接近實際作用的形態,可惜不適合分子量較大的分子。

目前結構生物學最具潛力的新技術是:冷凍電子顯微鏡(Cryogenic Electron Microscopy,簡稱 Cryo-EM),Cryo-EM 可以拍出原子尺度下高解析度的三維結構,此技術於 2017 年獲得諾貝爾化學獎。中研院則於 2018 年開始添購 Cryo-EM 設備,而 Cryo-EM 正是徐尚德用來解析棘蛋白結構的主要利器!

在 COVID-19 疫情爆發初期(2020 年 1 月),徐尚德就率先啟動新冠病毒的結構分析,當時他的研究團隊剛好已分析過感染貓科動物的冠狀病毒,對於解析棘蛋白結構有一定經驗,可說是贏得先機。

具體來說,如何用 Cryo-EM 解析新冠病毒的棘蛋白結構?

首先要大量培養新冠病毒、再分離、純化得到棘蛋白。接下來,將大量蛋白質樣本鋪成薄薄一層液體,之後以 -190℃ 急速冷凍,讓蛋白質分子保持凍結前的形態,最後用程式重建棘蛋白的三維影像。徐尚德譬喻,就像一匹馬在高速移動時,連續拍攝許多照片,再將照片疊加起來,重建馬的形狀。

棘蛋白的體積已經算大,假如又與其他蛋白質結合,體積將會更大。能解析如此龐大結構為 Cryo-EM 一大優點,但是也會創造很大的資料量。徐尚德強調,用 Cryo-EM 分析蛋白質結構不只做實驗,也要協調資料處理等疑難雜症。

冷凍電子顯微鏡可以紀錄同一時間下、不同狀態的蛋白質三維立體結構。圖/研之有物

關鍵 D614G 突變,讓新冠病毒棘蛋白穩定性大增

儘管已有貓冠狀病毒的經驗,徐尚德研究團隊初期仍經歷一陣摸索,一大困難在於,做實驗時發現不少棘蛋白壞掉,不再保持原本的結構。

這是因為一般取得蛋白質樣本後會置於 4°C 冷藏,但 4°C 其實不適合保存棘蛋白。接著徐尚德細心觀察到,具備 D614G 突變的棘蛋白,保存期限竟然比沒突變的棘蛋白要長,可以從 1 天增加到至少 1 週。

什麼是 D614G 突變呢?武漢爆發 COVID-19 疫情的初版新冠病毒,其棘蛋白全長超過 1200 個胺基酸,D614G 突變的意思就是:第 614 號氨基酸由天門冬胺酸(aspartic acid,縮寫為 D)變成甘胺酸(glycine,縮寫為 G)。

D614G 突變誕生後,存在感持續上升,2020 年 6 月時已經成為全世界的主流,隨後新冠病毒 Alpha、Delta 等變異株,皆建立於 D614G 的基礎上。

儘管序列僅有微小差異,許多證據指出 D614G 突變會增加新冠病毒的傳染力。有趣的是,它也能大幅增加棘蛋白在體外的穩定性。因此在研究用途上,變種病毒的棘蛋白反而容易保存,徐尚德更指出,對抗變種病毒的蛋白質次單元疫苗(subunit vaccine)穩定性也會增加。

圖片為徐尚德實驗室提供的新冠病毒模型與三種不同的棘蛋白模型,棘蛋白的主體為白色,棘蛋白的受器結合區域(receptor binding domain,RBD)為藍綠色。圖/研之有物

新冠病毒棘蛋白的「三隻爪子」:受器結合區域

徐尚德參與的一系列新冠病毒結構研究,除了棘蛋白本身,還包含棘蛋白與細胞受器 ACE2 的結合、棘蛋白和人造抗體的結合。

既然要解析結構,儀器「解析度」能看清楚多小的尺度就很重要!蛋白質結構學的常見單位是 Å(10-10 公尺),原子與原子間的距離約為 2 Å,Cryo-EM 的極限將近 1 Å,不過棘蛋白大約到 3 Å 便足以重建立體結構。

冠狀病毒如何感染宿主細胞,和結構又有什麼關係?棘蛋白位於冠狀病毒的表面,直接接觸宿主細胞受器 ACE2 的部分,稱為受器結合區域(receptor binding domain,簡稱 RBD),結構可能展現「向上」(RBD-up)或是「向下」(RBD-down)的狀態。向下,RBD 便不會接觸宿主細胞的受器,缺乏感染能力,;向上,RBD 方能結合受器,引發後續入侵。

徐尚德團隊透過冷凍電子顯微鏡,拍攝新冠病毒 Alpha 株的棘蛋白結構,其中有三類棘蛋白的 RBD 為 1 個向上(佔 73%),有一類(類別3)的棘蛋白 RBD 則是 2 個向上(佔 27%)。圖/Nature Structural & Molecular Biology

新冠病毒表面的棘蛋白有「三隻爪子」(3 RBD),RBD 有可能同時向上(3 RBD-up),也可能只有 1~2 個向上,結構會影響病毒的感染能力。更詳細地說,棘蛋白某些胺基酸位置的差異,會影響結構的開放與封閉程度。

棘蛋白向上或向下是動態的,假如能保持穩定性,延長向上的時間,也有助於新冠病毒的感染。這正是徐尚德一系列研究下來,實際觀察到不同品系的變化。

截至 2022 年 01 月 18 日的新冠病毒品系發展歷史,其中 Delta 變異株擁有最多品系,而 Omicron 變異株則開始興起。雖然 Omicron 的品系並不多,但已逐漸成為主流。圖/Nextstrain; GISAID

一網打盡所有高關注變異株的結構變化

和武漢最初的新冠病毒相比,D614G 突變帶來什麼改變呢?簡單說:棘蛋白向上的比例增加了,導致整個結構變得更加開放,增加新冠病毒對宿主受器的親合力(affinity)。

以 D614G 為基礎,接下來又獨立衍生出數款品系,皆具備多個突變,傳染力、抵抗力更強 。影響最大的是首先於英國現身的 Alpha(B.1.1.7)、南非的 Beta(B.1.351)、巴西的 Gamma(P.1),以及更晚幾個月後,於印度誕生的 Kappa(B.167.1)與 Delta(B.167.2)。Alpha 一度於世界廣傳,導致包括臺灣在內的嚴重疫情,不過隨後不敵優勢更大的 Delta。

對於上述品系,徐尚德率隊一網打盡。 Alpha 的棘蛋白結構解析已經發表於 《自然-結構與分子生物學》(Nature Structural & Molecular Biology)期刊,其餘新冠病毒變異株的論文仍在等待審查,目前能在預印網站 bioRxiv 看到,該研究一次報告 38 個 Cryo-EM 結構,刷新紀錄。

圖 a 顯示新冠病毒 Alpha 變異株棘蛋白的突變氨基酸序列,一共有 9 處突變, D614G 突變以紫色表示。
圖 b 顯示突變的氨基酸在立體結構中的位置。
圖/Nature Structural & Molecular Biology

Alpha 變異株的 RBD 向上結構穩定

一度入侵台灣造成社區大規模感染的 Alpha 株有何優勢?其棘蛋白除了 D614G,還多出 8 處胺基酸突變,徐尚德發現 N501Y(天門冬酰胺變成酪胺酸)、A570D(丙胺酸變成天門冬胺酸)的影響相當關鍵。

直覺地想,棘蛋白的外層結構才會與受器接觸影響傳染力,立體結構中第 570 號胺基酸的位置比較裡面,乍看並不要緊。但是徐尚德敏銳地捕捉到,A570D 突變會改變局部的空間關係,令「RBD 向上」的結構更加穩定。徐尚德形容為「腳踏板」(pedal-bin)── A570D 突變的效果就像踩著垃圾桶的腳踏板,讓桶蓋(也就是 RBD)穩定保持開啟。

事實上,棘蛋白總體向上的比例,Alpha 還比單純的 D614G 突變株更少,不過 A570D 增進的穩定性似乎優勢更大。研究團隊製作缺乏 A570D 突變的人造模擬病毒,嘗試體外感染人類細胞,發現感染力明顯減少,證實 A570D 突變頗有貢獻。

新冠病毒 Alpha 株棘蛋白的「A570D 突變」,會改變棘蛋白內部的空間,讓「RBD 向上」的結構更加穩定,就像踩著垃圾桶的腳踏板,讓桶蓋保持開啟。圖/研之有物(資料來源/徐尚德、Nature Structural & Molecular Biology

Alpha 變異株的棘蛋白親近宿主細胞,干擾抗體作用

另一個重要突變是 N501Y,不只 Alpha 有,Beta 等許多品系也有,Delta 則無。N501Y 在眾多品系獨立誕生,似乎為趨同演化所致。N501Y 能為病毒帶來哪些優勢?

第 501 號胺基酸位於棘蛋白表面,會直接與宿主受器 ACE2 結合。此一位置變成酪胺酸(tyrosine,縮寫為 Y)後,和受器的 Y41 兩個酪胺酸之間,容易形成苯環和苯環的「π–π stacking」鍵結,從而大幅提升棘蛋白對細胞的親合力。

新冠病毒 Alpha 株棘蛋白的「N501Y 突變」,讓 RBD 的胺基酸與宿主細胞受器 ACE2 形成「π–π stacking」鍵結,大幅提升棘蛋白對宿主細胞的親合力。圖/Nature Structural & Molecular Biology

另一方面,N501Y 突變也會干擾抗體的作用。中研院細胞與個體生物學研究所的吳漢忠特聘研究員,率隊研發一批針對棘蛋白的人造抗體,測試發現有一款抗體 chAb25 對 D614G 突變株相當有效,但是對 Alpha 株無能為力。徐尚德由結構分析發現:N501Y 改變了棘蛋白表面的形狀,讓抗體 chAb25 無法附著。

好消息是,另外有兩款抗體 chAb15、chAb45,依然能有效對抗 Alpha 病毒,不受 N501Y 影響。這兩款抗體會附著在棘蛋白 RBD 的邊緣,避免棘蛋白和宿主細胞接觸。而且抗體 chAb15、chAb45 會各占一方,可以同時使用,多面協同打擊病毒。

雖然新冠病毒 Alpha 株的棘蛋白表面讓某些抗體難以附著,還好仍有兩款抗體 chAb15(綠色)、chAb45(黃色)能有效「卡住」棘蛋白,干擾棘蛋白與宿主細胞結合。抗體 chAb15、chAb45 附著的位置,正好就是棘蛋白與宿主細胞結合的地方。圖/Nature Structural & Molecular Biology

棘蛋白結構不只胺基酸,還要注意表面的醣

有了 Alpha 的經驗,接下來分析 Beta、Gamma、Kappa、Delta 便順手很多。這批新冠病毒的棘蛋白變化多端,但是「RBD 向上」的整體比例皆超過 Alpha 和 D614G 突變株,可見適應上各有巧妙。徐尚德也發現,要釐清棘蛋白的結構,不能只關心蛋白質,還要考慮棘蛋白表面的醣基化(glycosylation)修飾。

蛋白質在完工後,某些胺基酸還能加上各種醣基。病毒蛋白質表面的醣基可以作為防護罩,干擾抗體和免疫系統的辨識。醣基化修飾就像替病毒訂作一套迷彩外衣,不同變異株的情況都不一樣,假如醣基化的位置和數量,由於突變而改變,便有可能影響立體結構,有助於它們閃躲抗體。例如和武漢原版新冠病毒相比,Delta 株棘蛋白少了一個醣化修飾,Gamma 株棘蛋白則多了兩處醣化。

還好從結構看來,並沒有任何突變組合能完美逃避抗體。例如由美國的雷傑納榮製藥公司(Regeneron)製作並通過緊急使用授權的抗體;以及中研院吳漢忠率隊研發,有望投入實用的多款人造抗體,對變異品系依然有效。這場人類與病毒的長期抗戰中,同時使用多款抗體的「雞尾酒」療法,仍然是可行的醫療方案。

回顧將近兩年來的研究之路,徐尚德表示:時間壓力真的非常大!COVID-19 疫情爆發後,全世界投入相關研究的專家眾多,只要稍有遲疑,便會落在競爭者後頭。但是即使跑在最前端的研究者,也只能苦苦追趕病毒演化的速度,一篇論文還在審查時,現實世界的疫情已經邁向全新局面。

人類要贏得勝利,必需全方面認識病毒,而結構無疑是相當重要的一環。


數感宇宙探索課程,現正募資中!

文章難易度
所有討論 2
研之有物│中央研究院_96
20 篇文章 ・ 8 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook