15

26
2

文字

分享

15
26
2

機師返台後,隔離天數誰說得算?讓病毒活性告訴你

miss9_96
・2021/04/28 ・3441字 ・閱讀時間約 7 分鐘 ・SR值 538 ・八年級

-----廣告,請繼續往下閱讀-----

有症狀後超過 12 天,就養不出活病毒了。換言之, 12 天內,仍可能產出活病毒。

COVID-19 疫情期間回國,應該要隔離幾天?圖/pixabay

澳洲於今年 04/21 通知台灣,一名我國航空機師於當地確診新冠病毒疾病 (COVID-19)。臺灣進行航空員工全面採檢。直至 04/27,已知新增 10 名確診個案(不含澳洲通報)[1]。媒體也開始討論機師返台後,其居家隔離天數是否應延長等(TVBS聯合報)(機組員隔離 3 天 + 自主管理 11 天一般民眾隔離 14 天)。

「機師應該要隔離幾天?」不只是科學議題,還包含心理健康、國家貿易、必要運輸等。本文僅就科學面切入,探討「應該要隔離幾天?」,也就是「病毒幾天後就沒傳染力」了呢?

2021/04/15 修訂後之機組員返國健康管理天數。圖/交通部民用航空局

關於潛伏期之補充 (2021/05/06)

經讀者、寒波、Alice 等人建議,應加強補充潛伏期等資訊,故 2021/05/06 補充資訊

隔離的意義

隔離的目的,是希望 [1]

  • 被感染者,若是有症狀者,在隔離期就發病(然後就應該送醫),換言之,希望潛伏期 < 隔離天數。
  • 被感染者,若是無症狀者,在隔離期就無傳染力,換言之,希望帶病毒期 < 隔離天數。

瘟疫初期的研究,不同科學團隊發現的新冠病毒疾病 / COVID-19 潛伏期並不相同[2],分別為:

-----廣告,請繼續往下閱讀-----
  • 10 名患者:平均 5.2 天(95% 信賴區間為 4.1 至 7.0 天)
  • 125 名患者:中位數 4.75 天(四分位距為 3.0 至 7.2 天)
  • 88 名患者:平均 6.4 天(95% 信賴區間為 5.6 至 7.7 天)

潛伏期的平均或中位數天數,都超過航空機組員的居家隔離天數。因此可合理判斷,機組員若被感染,可能將有病人在解除隔離後才發病;若此時症狀不足以引起警覺(如:想到上班而感到疲倦),則可能就有病毒流入社區的風險。

疫情指揮中心於 2021/05/06 針對華航機組員修改隔離政策,改為居家隔離 5 天,加上自主管理 9 天(疾病管制署新聞稿)。

那如果假設後續 11 天都嚴格遵守口罩+洗手等保護措施呢(即 3+11=14 天),能不能拖到患者體內病毒都不具備活性呢?

參考文獻

  1. 寒波 (2021) 如何決定隔離天數,新型病毒和疫苗又是否有影響?泛科學
  2. Chih-Cheng Lai, Yen Hung Liu, Cheng-Yi Wang, Ya-Hui Wang, Shun-Chung Hsueh, Muh-Yen Yene, Wen-Chien Ko, Po-Ren Hsueh (2020) Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. Journal of Microbiology, Immunology and Infection. https://doi.org/10.1016/j.jmii.2020.02.012

感染者身上的病毒,幾天後還活著?

要怎麼知道體內的病毒,還活著且能傳染給別人呢?

用Ct值 (cycle threshold) 判斷嗎?Ct 值是指特定的病毒基因,放大幾次後,能被儀器測得的意思。Ct 值越低、需要被放大的次數越少,即指體內病毒基因的濃度越高[2]

-----廣告,請繼續往下閱讀-----

驗出病毒基因並不代表能傳染給他人。可能的狀況是,細胞內尚有病毒基因,但已無法產生完整的病毒(抗體或 T 細胞已夠強,能快速清除從細胞表面溢散的病毒顆粒;或細胞內僅存碎片基因,無法產生完整病毒顆粒)。因此科學家會用「能否培養出能複製、破壞細胞的病毒」實驗,判斷病毒是否仍有活性、且可感染他人。

今年 2 月時,韓國科學家招募了 21 名新冠病毒疾病患者,密集地檢測 Ct 值且培養病毒[3]。結果發現,發病初期低 Ct 值時,都能培養出活病毒。發病後,能培養出活病毒的中位數時間是 7 天(95% 信賴區間 [CI] 為 5 至 10 天),而最長的時間是 12 天;能培養出活病毒且最高 Ct 值是 28.4。

對 21 名患者密集地採檢、培養病毒。圖/參考文獻 3

此結果和去年 4 月,德國科學家對 9 名患者的測試相近。德國患者在發病後第 8 天,就無法再培養出活病毒了[4]

對 9 名患者密集地採樣、培養病毒。圖/參考文獻 4

變異株的影響

那麼,如果以韓國的研究為參考(發病後第 12 天後,無法培養出活病毒),做為居家隔離天數的規範,是不是就沒問題了呢?

-----廣告,請繼續往下閱讀-----

有風險,因為病毒會突變。

今年初,美國哈佛大學招募 65 名患者(其中 7 名被英國變異株 (B.1.1.7) 感染)進行頻繁的 RNA 檢測[5]。下表顯示英國變異株大量繁殖的時間,長達 5.3 天,而其他病毒株僅 2 天。而人體清除英國變異株,得花更久的時間,長達 8 天(其他病毒株為 6.2 天)。使英國變異株患者,整體帶病毒的時間將近兩週(13.3 天),遠高於其他病毒株患者的罹病時間(8.2 天)。我們不清楚韓國研究的患者,體內病毒是否為英國變異株,因此無法判斷 12 天的結果,是否也適用於英國變異株。但可以肯定的是,現行的隔離規定,若是參考舊的病毒株研究,那麼一旦遇到新變異株,就可能出現漏網病毒

英國突變株在人體內的病毒增殖時間、人體清除時間,括號內為 90% 信賴區間。表/參考文獻 5

疫苗有效嗎?

那麼,有什麼方法讓體內的病毒,更不易傳染呢?

有,打疫苗。

美國、以色列分別刊出了結論類似的研究。在美國一間醫療養院裡,定期地全面篩檢。結果發現無症狀感染者的 Ct 值,接種疫苗(單劑輝瑞-BNT 疫苗)和未接種者之間有明顯的差距。未接種者的中位數 Ct 值是 12.8,而接種後,即使感染,其 Ct 值也大幅降低是 19.4[6],顯示疫苗有效地降低病人體內的病毒量

接種疫苗,對無狀感染者的體內病毒量的影響。圖/參考文獻 6

以色列分析 4,938 名確診者。下圖可觀察到,在身體沒有保護力狀態下(接種疫苗第 1-11 天),若被病毒感染,體內的病毒量極高(Ct 值低);若接種的疫苗發揮效力後(第 12 天後),即使被病毒感染,體內的病毒量也能保持在極低(Ct 值高)的狀態[7]。由兩篇研究可得知,已接種疫苗、擁有免疫力的人體,即使感染病毒,它也難以在呼吸道上產生大量子代。因此可合理推測,接種疫苗的人,能有效成為屏障,避免親近的人感染。當然,也許就不用嚴守現有的隔離政策了。

-----廣告,請繼續往下閱讀-----
接種疫苗,產生免疫力前後,對感染後體內病毒量的影響。圖/參考文獻 7

那麼,機組員的隔離 3 天 + 自主管理 11 天政策,是對還是錯的呢?

如本文開頭所述,防疫政策不能僅考量科學層面。過於嚴格的政策,撐不住的人必然會增加;並且台灣高度仰賴貿易運輸,拉高空運的障礙,可能會影響必要物資的進出口。

我們只能確定的是,英國、南非等新變異株逐漸成為主流後,現有隔離政策可能需要重新討論。並且,可以考慮對接種疫苗者放鬆隔離政策

因此最好人人打疫苗、越快越好。

保持冷靜,繼續前進。Keep Calm and Carry On.

參考文獻

  1. 華航確診機師妻子染疫 武漢肺炎增1本土個案、5境外移入。中央社。2021/04/27
  2. 蔣維倫 (2020) 新型冠狀病毒篩檢怎麼做,又有什麼限制呢?—專訪長庚新興病毒感染研究中心施信如。泛科學
  3. Min-Chul Kim, Chunguang Cui, Kyeong-Ryeol Shin, Joon-Yong Bae, Oh-Joo Kweon, Mi-Kyung Lee, Seong-Ho Choi, Sun-Young Jung, Man-Seong Park, Jin-Won Chung (2021) Duration of Culturable SARS-CoV-2 in Hospitalized Patients with Covid-19. The New England Journal of Medicine. DOI: 10.1056/NEJMc2027040
  4. Roman Wölfel, Victor M. Corman, Wolfgang Guggemos, Michael Seilmaier, Sabine Zange, Marcel A. Müller, Daniela Niemeyer, Terry C. Jones, Patrick Vollmar, Camilla Rothe, Michael Hoelscher, Tobias Bleicker, Sebastian Brünink, Julia Schneider, Rosina Ehmann, Katrin Zwirglmaier, Christian Drosten & Clemens Wendtner (2020) Virological assessment of hospitalized patients with COVID-2019. Nature. DOI: https://doi.org/10.1038/s41586-020-2196-x
  5. Stephen M. Kissler, Joseph R. Fauver, Christina Mack, Caroline G. Tai, Mallery I. Breban, Anne E. Watkins, Radhika M. Samant, Deverick J. Anderson, David D. Ho, Nathan D. Grubaugh, Yonatan H. Grad (2021) Densely sampled viral trajectories suggest longer duration of acute infection with B.1.1.7 variant relative to non-B.1.1.7 SARS-CoV-2. MedRxiv. DOI: https://doi.org/10.1101/2021.02.16.21251535
  6. M Catherine McEllistrem, Cornelius J Clancy, Deanna J Buehrle, Aaron Lucas, Brooke K Decker (2021) Single dose of a mRNA SARS-CoV-2 vaccine is associated with lower nasopharyngeal viral load among nursing home residents with asymptomatic COVID-19. Clinical Infectious Diseases. https://doi.org/10.1093/cid/ciab263

目前國際上已有 6 款 COVID-19 疫苗,通過 WHO 緊急使用許可,快來看看到底有哪些吧!

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 15
miss9_96
170 篇文章 ・ 1073 位粉絲
蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9

0

1
0

文字

分享

0
1
0
海廢問題怎麼解?竟然有人回收漁網做筆電!?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/17 ・4433字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文由 HP 委託,泛科學企劃執行。 

海廢問題怎麼解?竟然有人回收漁網做筆電!?

你知道嗎?地球上最大的垃圾場,就是我們的大海。全世界一般依據位置,將海洋廢棄物分為海岸、海漂與海底三大類。英國麥克阿瑟(Ellen MacArthur)基金會曾預測,我們的海洋,到 2050 年會變成垃圾比魚多的塑膠濃湯。其中,最有名的就是太平洋垃圾帶(Great Pacific Garbage Patch),它的面積有 3 個法國和 44 個台灣那麼大。

到底是誰在亂丟垃圾?垃圾與它們的產地在哪裏?

科學家發現,漁業大國貢獻了不少垃圾,台灣更是榜上有名!雖然從陸地而來的垃圾量也很可觀,但來自漁業活動、源於海洋的廢棄物如漁網漁具,更難回到岸邊,因此成為海上最主要的垃圾。科學家推算,每年大概總計有四成的漁網漁具會掉到海中。

從太平洋垃圾帶撈回來的垃圾分析,其中 46% 就是廢棄漁網。科學家還一一檢視垃圾上的標籤字眼,發現源頭是五個北太平洋的漁業大國——日本、中國、韓國、美國及台灣。更別説全球還有另外四個海洋垃圾帶,所有垃圾量加起來勢必會更驚人。

-----廣告,請繼續往下閱讀-----

但也先別急著怪漁業從業人員,因為他們也不一定是故意要亂丟垃圾的。瞬息萬變的大海,本來就不是一個好作業的地方,破壞、遺失設備是常有的事。不過海洋垃圾問題如此棘手,難道就沒有解決方案嗎?

圖/shutterstock

人類與垃圾帶的對決,勝算到底有多大?

其實已經有不少人投身清除海洋垃圾的工作。大家還記得太平洋上的海洋吸塵器嗎?這個由「海洋清理行動( The Ocean Cleanup )」發起、號稱史上最大海廢清除計劃,雖然一開始出師未捷身先死,下水沒幾個月就故障,但後來升級調整後,已在今年 5 月完成執行第 100 次的任務。

除了清除海上的垃圾,從河川攔截也很重要。The Ocean Cleanup 還研發了攔截者(The Interceptor),它是一艘太陽能自動船,船頭設有一道垃圾集中屏障,能將垃圾引導進入船上的收集系統再集中處理。

其他活躍在海洋垃圾清除前線的,還有來自澳洲的全自動海洋垃圾桶 Seabin,被裝設在港口碼頭的它,透過底部幫浦製造水流,讓海廢可以從水面被吸入,小至 2 毫米的微塑膠也可被收集到其纖維網袋內。印度的 AlphaMERS 團隊,則設計了攔截漂浮垃圾的柵欄與串聯清掃系統,可以清除河川與湖泊表面的廢棄物。有標誌性大眼、水車造型的 Mr. Trashweel,被設置在美國巴爾的摩港口,結合太陽能與水力發電,使用清除海上油污的攔油索,將垃圾引導到它的垃圾箱中,每年可攔截 500 噸垃圾。荷蘭的泡泡屏障 the Bubble Barrier ,設計原理也相當聰明,它會從水底產生「氣泡簾」,引導塑料垃圾到水面上,再利用水流把垃圾推向捕獲系統,克服了大型撈網會阻擋船隻或海底生物,以及高維護更替成本的問題。

-----廣告,請繼續往下閱讀-----

廢漁網改頭換面?

不過要讓海廢界的奪命殺手——廢棄漁網「洗心革面」,在技術上有一大難關,因為漁網主要是以尼龍製作的。尼龍是聚硫胺高分子(Polyamide),在分子主鏈上因為有大量高極性的化學基,分子鏈間作用力較强,還能在產生氫鍵的同時,使結構排列整齊,造就了它優秀的韌性强度。

圖/HP

但如果用回收寶特瓶的「物理回收」,即沒有改變其聚合型態的方式來回收尼龍,尼龍的分子鏈就會斷裂,大幅影響纖維的機能性,走上被降級使用一途。好在如今已有廠商研發出「化學回收」尼龍的技術。收集來的廢棄漁網先被清洗、切碎成段,接著被高溫熔融,再透過像「術式反轉」的解聚(depolymerization)、分解、精煉及純化工序,讓尼龍從聚合物還原到單體狀態。這些原料單體會再被聚合,製造成尼龍再生粒子。被混煉改質、强化性能的粒子重新進行紡絲後,會形成全新的尼龍纖維,就可以被無限循環利用啦!

這種做法,可以大大節省原本用來製作原生尼龍的石化資源、減少碳排放,還可以讓廢棄漁網重獲新生。再生尼龍可以拿來做衣服、眼鏡,甚至可以搖身一變,變成你桌上的筆電!

「親愛的,我把漁網做成筆電了!」是誰這麼瘋?

是誰想到要把廢棄漁網做成筆電?早在 2019 年,HP 就領先全球,推出全球第一款使用海洋回收塑料的筆記型電腦,打破我們對海洋廢棄物的想象。在 2023 年,更進一步海洋垃圾中難以忽視的狠角色廢棄漁網,打造出 HP EliteBook 1040 G11頂級輕薄商務筆電!

-----廣告,請繼續往下閱讀-----

HP EliteBook 1040 G11 貫徹環保永續理念,是世界上第一款採用從海洋中回收的廢棄漁網製作成鍵盤的筆電。除了讓廢棄漁網重獲新生,外殼也採用部分回收鎂合金製作,外盒包裝 100% 採用可回收材質。而且我敢保證大家絕對想不到,這台筆電的材質,竟然還包括回收的家庭用油!

是的,你沒聽錯,就是 cooking oil!食用油經過回收,可以製成生質材料聚羥基烷酸酯 (Polyhydroxyalkanoates,PHA)。PHA 是目前市面上唯一可在海洋分解之生質塑膠,可謂是新興生質塑膠材料中的明日之星!雖然使用回收材質會提高成本,但 HP 持續以實際行動,支持減碳、森林復育及循環經濟,創造永續發展。

圖/HP

你也許有疑問,用海洋廢棄物製作的筆電,性能靠不靠得住?別擔心,HP 重視環境保護,效能也不馬虎!HP EliteBook 1040 G11 完美展現 AI 潮流下劃時代的超效能,搭載 Intel® Core™ Ultra7 H 處理器,再搭配 Intel® Arc™內顯,3 大 AI 引擎實現高效能低功耗,大大提升生產力。

使用筆電時最怕遇到兩大痛點,第一是筆電太重,第二就是續航力。如果為了縮小電池、減輕筆電重量,又不得不犧牲筆電的續航力。不過這些問題,在 HP EliteBook 1040 G11 身上能同時迎刃而解,兩全其美。AI 效能與電力的平衡密不可分,透過 HP Smart Sense 智慧軟體,搭配優秀的散熱功能管理,再加上全新高密度渦輪電扇,筆電續航力不僅大大提升,更能降低機身溫度 40%,機身還能維持 1.18 KG 的優雅輕薄,讓你無論通勤出差,都輕鬆隨行。

-----廣告,請繼續往下閱讀-----

這台筆電,還有什麽神奇的地方?

你是不是還在擔心電腦被駭客入侵、行蹤被偷窺,所以逼不得已,在筆電的視訊鏡頭上貼上醜醜又黏糊糊的膠帶呢?那一定是因為你還不認識 HP 全新的防窺功能!

HP EliteBook 1040 G11 搭載了全新的 Sure View Gen 5 Panel,它經過五個 Generation 的進化,終於達成完美防窺使用體驗。一鍵防窺的功能,只要一 off 就可以分享視訊,一 on 就可以確實防窺,成為你個人隱私的最佳守衛。

除了駭客病毒,你可能也害怕筆電上沾染讓你生病的病毒!這台全新冰川白配色的筆電,不只是外形設計靚麗,更採用防污油墨塗層技術,可以抗指紋沾附,而且全機殼都可以使用酒精擦拭,中看又中用,還是筆電界的衛生扛壩子!

圖/HP

HP EliteBook 1040 G11  還不止這些!

想了解更多商品 ► https://www.hp.com/tw-zh/laptops/business/elitebooks/1000-series.html
它可以搭配操作體驗超直覺觸控面板,讓你一 Touch 即通,用過的人都説他們再也回不去了。
不僅如此,HP EliteBook 1040 G11 還是你拼事業的好夥伴!標配 5 百萬畫素IR人臉辨識鏡頭,完全是為了專業會議協作而生。無論你在什麼地方、什麼時候進行線上會議,它的動態色彩調校功能,可以在背光或低光源時,自動追蹤取景,配置 Poly Studio 及 HP 的 AI 降噪技術,最佳化你的視訊會議體驗。你再也不必擔心那些視訊會議畫面模糊、聲音不清楚的尷尬時刻,可以在客戶或老闆面前自在表現。

步入 5G 萬物聯網的時代,HP EliteBook 1040 G11 也搭載 5G 廣域無線網路 (Wireless Wide Area Network,WWAN),使用者可以透過 SIM 卡或是 eSIM 服務直接連網。5G WWAN 的內建,讓整套資訊安全迴路更加穩健,是你追求資安的最安心選擇。

參考資料:

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
207 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
物理學四大神獸「薛丁格的貓」,其實是在嘲諷量子力學?物理學家對波函數機率詮釋的爭辯
PanSci_96
・2024/07/27 ・2152字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

在上一篇,我們探討了德布羅意提出物質波的概念,指出微觀粒子如電子也具有波的特性,這一點已被實驗所證實。

延伸閱讀:量子革命的開端——物質波的發現

然而,故事並未因此結束。隨著相關研究的深入,物理學家對物質波的啟示展開了激烈辯論。一些在量子力學發展初期做出卓越貢獻的物理學家並不認同量子理論的主流觀點,甚至提出了薛丁格的貓這一思想實驗,愛因斯坦也曾言道:「上帝不會擲骰子。」

究竟,發生了什麼事情呢?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從確定性到不確定性

在 20 世紀以前,古典物理學基於決定論,認為掌握某一時刻系統中所有物體的狀態,就能根據物理定律預測系統未來的演變。比如,當一顆蘋果從樹上掉下,我們可以根據物理法則計算出它掉到地面的時間和速度。

-----廣告,請繼續往下閱讀-----

然而,量子力學的觀點則不同,認為量子系統的行為無法完全確定,只能用機率描述。這一觀點源自德布羅意提出的物質波概念。

1926 年,奧地利物理學家薛丁格發表了薛丁格方程式,用來描述物質波的波函數。他成功地用該方程式解釋了氫原子的光譜能量,開啟了量子力學的新篇章。然而,波函數的物理意義一度難以被理解。

幾個月後,德國物理學家玻恩提出了波函數的機率詮釋,認為波函數與量子系統的狀態機率有關。當我們測量量子系統時,系統可能呈現不同狀態,其機率由波函數決定。這一觀點對當時的物理學界造成了巨大衝擊。

決定論的終結?波函數的機率詮釋與衝擊

玻恩的機率詮釋表明量子系統在測量後呈現的狀態無法事先確定,只能了解系統可能狀態的機率大小。這種理解框架革命性地挑戰了決定論的世界觀,部分物理學家因此感到不滿。德布羅意和薛丁格對此持保留態度,而愛因斯坦則認為量子力學還不夠完備,堅信「上帝不會擲骰子」。

-----廣告,請繼續往下閱讀-----

儘管有反對聲音,量子力學的機率詮釋在經過多次驗證後成為主流觀點。量子系統在測量前的狀態是未確定的,所有可能狀態以疊加形式同時存在,而測量後才會呈現其中一種。這一觀點對傳統的決定論提出了挑戰。

根據量子力學的主流說法,量子系統的狀態在測量之前是未確定的,所有可能狀態以疊加形式同時存在,測量後才會呈現其中一種。這就像在抽卡時,不同的卡都有一定機率會出現,但具體出現哪一張卡,要等抽取後才知道。

此外,在量子系統中,有些物理量無法同時精確測量,例如粒子的位置和動量,這稱為不確定性原理。對愛因斯坦等支持決定論的科學家來說,無法確切預測和精確測量物理系統狀態的量子理論是不夠完備的。他們認為在量子力學背後,應該還有一些隱藏的變量,導致我們無法完整預測和測量量子系統。

1935年,愛因斯坦在與薛丁格的通信中,提出一個想法來質疑量子理論的疊加態概念:想像一桶品質不穩定的火藥,經過一段時間後,可能會爆炸,也可能不會爆炸,那麼這桶火藥豈不是處於爆炸與未爆炸之間的疊加狀態?

-----廣告,請繼續往下閱讀-----

受到愛因斯坦的啟發,薛丁格進一步提出了「薛丁格的貓」思想實驗:把一隻貓放進鐵製房間,裡面有測量輻射的偵測器和少量放射性物質。放射性物質衰變是隨機的,處於衰變與未衰變的疊加態。如果放射性物質衰變,偵測器會觸發機關釋放毒氣,貓就會死亡;如果沒有衰變,貓則活著。整個系統的波函數處於貓活著和貓死亡的疊加狀態。

薛丁格提出了著名的思想實驗「薛丁格的貓」,反駁量子力學的疊加態說法。圖/Envato

這一思想實驗引發了人們對量子理論的深刻思考。薛丁格提出這個實驗,是為了強調量子疊加態的荒謬性,反對量子理論的測量詮釋。對愛因斯坦和薛丁格來說,物理真實應該是確定的,而不是機率和疊加的。

世界是決定論還是機率論?

薛丁格的貓思想實驗提出後,引發了更多的討論和質疑。例如:既然量子系統的狀態要測量之後才會確定,那麼貓的死活是要我們打開房間觀察後才會知道嗎?還是說,貓自己本身就可以是一個測量者呢?需要有一個生命意識去測量它嗎?到底,貓的死活是在什麼時候確定的呢?

儘管目前學界對測量問題還不算有一致公認的答案,但我們對量子力學的認知,已經比薛丁格那個時候增加許多,所以愛因斯坦和薛丁格對量子力學的質疑,以及薛丁格的貓引發的疑竇,我們已有能力給出大致確定但不完全塵埃落定的答覆。

-----廣告,請繼續往下閱讀-----

在下一集,我們將繼續探討這些問題,「上帝真的不玩骰子嗎?」

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1238 篇文章 ・ 2376 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

20
0

文字

分享

1
20
0
不抽菸也會得肺癌?PM2.5 如何「叫醒」沉睡的癌細胞?
PanSci_96
・2024/06/25 ・4403字 ・閱讀時間約 9 分鐘

不好意思,你很可能會得這種癌症。其實,我也是。

它就是台灣十大癌症榜首,肺癌。

現在,根據 2023 年 11 月衛福部發布的最新統計數字,肺癌一年的新增病人數已經超越大腸直腸癌,成為台灣每年癌症發生人數之最,堪稱臺灣人的「國民病」。

可怕的是,肺癌在癌症之中有三個之最:死亡率最高、發現時已經是晚期的比例最高、醫藥費也最高。現在再加上發生人數最高,堪稱從癌症四冠王。

-----廣告,請繼續往下閱讀-----

你說肺癌是抽菸的人的事?錯!台灣抽菸人口比例在全球排名 30,比日本、韓國、中國和多數歐洲國家都還低!顯然抽菸並不是肺癌的唯一主因!那難道是二手菸?還是空污惹的禍?還是台灣人的基因天生脆弱?我們到底要怎麼做才能遠離肺癌?

臺灣人的肺癌特別在哪?癌症和基因有關嗎?

根據衛福部國健署的說法,肺癌人數的增加,其實與 2022 年 7 月開始推動肺癌篩檢的政策有關。

隨著篩檢量的上升,近年內肺癌的確診人數預期還會再往上。

原來是因為篩檢量啊,那就不用擔心了。但換個角度想,這才是肺癌最可怕的地方,它可能已經存在在很多人身體裡,而我們卻沒能發現它。肺癌早期幾乎沒有症狀,高達 50% 的患者發現時已經是第 4 期。屆時不只肺部遍布腫瘤,癌細胞可能還轉移到大腦、骨頭等器官,讓治療變得加倍困難。

-----廣告,請繼續往下閱讀-----

對付肺癌,最關鍵點是愈早發現愈好。按照國健署統計,如果第 1 期就發現,5 年存活率可達九成以上,第 2 期發現降為六成,第 3 期存活率大約三成,一旦到第 4 期,僅僅剩下一成。

當然,最好的方法,就是做好預防,打從一開始就不讓癌細胞誕生。

那麼我們就要先了解問題到底是出在環境,還是你、我身體中的基因? 過去關於肺癌的遺傳研究,多半以歐美國家為主,套用到我們身上總有些牛頭不對馬嘴。幸好,我這裡一份以臺灣人為主角的大規模研究報告,將為我們揭露答案。

這份研究是由中央研究院團隊主導,結合臺灣大學、臺北醫學大學、臺中榮總等單位的研究,還登上生物領域頂尖期刊《Cell》2020 年 7 月的封面故事。非常具有權威性,不能不看。

-----廣告,請繼續往下閱讀-----

同時,這也是全球第一次完整剖析東亞地區肺癌的成因。他們的主題很明確:「為什麼不吸菸也會得肺癌?」

在西方,肺癌病人裡面只有 20% 左右的人不吸菸。但是在臺灣,卻有超過一半的肺癌病人都不抽菸,顯示有其他致癌要素潛伏在基因裡作怪。另外,臺灣肺癌病人的男女比例和西方人也大不同,臺灣女性通常更容易罹患肺癌。 為了瞭解肺癌,研究團隊取得肺癌病人的腫瘤和正常組織,解讀 DNA 序列和蛋白質表現量,最後鑑定出 5 種和西方人明顯不同的變異特徵。

其中最受關注的,是一種 APOBEC 變異,因為它有可能是臺灣女性為什麼容易罹患肺癌的關鍵。

這種變異特徵屬於內生性的,也就是人體機制自然產生的 bug。

-----廣告,請繼續往下閱讀-----

APOBEC 不是指單一基因,它是細胞內負責編輯 mRNA 的一組酵素,包含 11 個成員。主要功用是把胞嘧啶核苷酸(C)轉變尿嘧啶核苷酸(U)。簡單來說,APOBEC 原本是細胞正常活動的一環。但因為它有改寫核酸序列的能力,在 DNA 修復過程同時活躍時,就很有可能出事。這就像是一個創意豐富的阿嬤,看到破損的古畫,就在沒和別人討論的情況下上去東湊西補,用自己的方式重新修復了這件藝術。一個與原本不同的突變細胞可能就這樣產生了。

APOBEC 變異在臺灣女性病人身上特別明顯,舉例來說,60 歲以下沒有吸菸的女性患者,就有高達四分之三有這種變異特徵。研究團隊認為,APOBEC 出錯造成的基因變異可能是導致女性肺癌的關鍵。 除了內生性變異,另外一個容易導致肺癌發生的,就是周遭環境中的致癌物。

致癌物有哪些?

研究團隊總結出 5 種肺癌危險物質:烷化劑、輻射線、亞硝胺(Nitrosamine)、多環芳香烴(PAHs),還有硝基多環芳香烴(Nitro-PAHs)。

其中,亞硝胺類化合物主要來自食品添加物和防腐劑,多環芳香烴大多來自抽菸和二手菸,硝基多環芳香烴則是透過汽機車廢氣和 PM2.5 等毒害肺部。

-----廣告,請繼續往下閱讀-----
圖/unsplash

他們進一步分析,大略來說,女性在不同年紀,致癌因素也有差異。60 歲以下的女性肺癌病人,APOBEC 特徵的影響比較明顯;70 歲以上的女性患者,和環境致癌物的相關度比較高。 既然找到致癌原因,我們該如何著手預防呢?你知道肺癌,其實有疫苗可打!?

空氣污染和肺癌有關嗎?有沒有癌症疫苗?

想預防肺癌,有 2 種對策,一種是「打疫苗」,一種是「抗發炎」。

是的,你沒聽錯,英國牛津大學、跟佛朗西斯.克里克研究所,還有倫敦大學學院在 2024 年 3 月下旬公布,他們正在研發一款預防性的肺癌疫苗,就叫 LungVax。它所使用的技術,和過往牛津大學協同阿斯特捷利康藥廠製造 COVID-19 AZ 疫苗時的方法相似。

他們已經募到一筆 170 萬英鎊的經費,預計未來兩年資金陸續全數到位,第一批打算先試生產 3000 劑。不過,關於這款肺癌疫苗,目前透露的消息還不多,我們挺健康會持續追蹤這方面研究的進展。

-----廣告,請繼續往下閱讀-----

在疫苗出來之前,我們還有第二個對策:抗發炎。發炎和肺癌有什麼關係呢?這就要先回到一個問題:為什麼空污會提高得肺癌的機率呢?

一個很直觀又有力的推測是,空污會導致肺部細胞 DNA 突變,因此而催生出腫瘤。

圖/unsplash

但是修但幾勒,科學要嚴謹,不能只看結果。科學史上發生過很多次表象和真實截然不同的事件,空污和肺癌會不會也是這樣?

2023 年 4 月《Nature》的一篇封面故事,明確地說:Yes!肺癌真的和我們想的不一樣。

-----廣告,請繼續往下閱讀-----

其實早在 1947 年,就有以色列生化學家貝倫布魯姆(Isaac Berenblum)質疑主流觀點,他提出的新假設是:除了 DNA 突變以外,癌細胞還需要其他條件才能坐大。用白話說,就是肺癌是個會兩段變身的遊戲副本頭目,正常細胞先發生變異,接著再由某個條件「扣下扳機」,突變細胞才會壯大成腫瘤。

也就是説,只要攔住任一個階段,就有機會能防範肺癌。假如這論點正確,全球肺癌防治的方向將會直角轉彎。

《Nature》的研究支持這個假說,扭轉了過去 70 多年來的看法。在這項里程碑研究中,臺灣也是要角。

時間回到 2020 年,《Nature Genetics》上發表了一份針對 20 種致癌物質的研究報告,包括鈷、三氯丙烷和異丙苯等,但注意,這研究指出這些致癌物大多沒有增加實驗鼠的 DNA 變異量。

這個現象實在太違反直覺,過了 3 年,疑團還是懸而未決。直到《Nature》的跨國研究出爐,才解開部分謎底。

英國倫敦佛朗西斯.克利克研究所主導 2023 年的一項研究,他們鎖定對象為肺腺癌。肺腺癌是典型「不吸菸的肺癌」,台灣每 4 個肺癌病人就有 3 人是肺腺癌,尤其是女性肺腺癌患者有高達九成不抽菸。 為了抽絲剝繭探明空污和肺癌的關係,研究團隊聚焦在肺腺癌患者常發生的表皮生長因子受體基因變異,縮寫 EGFR。他們收集英國、加拿大、韓國和臺灣四國大約 3 萬 3 千名帶有 EGFR 突變的病人資料,進行深入分析,並且發現 PM2.5 和肺腺癌發生率有顯著關聯。研究團隊進一步用小鼠做試驗,把小鼠分成吸入和未吸入 PM2.5 兩組,結果發現吸入組更容易長出惡性腫瘤。

圖/pexels

到目前為止都還不算太意外,然而,團隊切下肺部細胞、分析 DNA 以後發現,DNA 的突變量居然沒有明顯增加!但是有另一件事發生了:堆積在肺的 PM2.5 顆粒會吸引免疫細胞從身體各處聚集過來,並分泌一種叫做 IL-1β 的發炎因子,導致肺組織發炎。

這下子有趣了,根據克利克研究所團隊的檢驗結果,估計每 60 萬個肺部細胞有 1 個帶有 EGFR 突變,這些細胞在發炎環境裡會快馬加鞭生長。相反的,當他們給小鼠注射抑制 IL-1β 的抗體,肺癌發病率就跟著下降。 《Nature》一篇評論引述美國加州大學舊金山分校分子腫瘤學專家波曼(Allan Balmain)的看法。他總結說,空污致癌的主要機制,可能不是因為空污誘發了新突變,而是持續發炎會刺激原本已帶有突變的細胞生長。換句話說,本來在熟睡的壞細胞會被發炎反應「叫醒」。

這會給肺癌防治帶來巨大衝擊,這樣一來,問題就從「用公衛或醫療方法防止 DNA 變異」變成了「如何抑制發炎」。

人體的細胞每天不斷分裂,用新細胞替換老舊細胞。但是這就像工廠生產線,良率無法百分百,組裝幾十萬產品難免會做出幾件瑕疵品,也就是帶有基因突變的細胞。換句話說,從自然界角度來看,DNA 變異是一種自發現象,醫療手段實際上幾乎不可能阻止。

但是,降低發炎卻是有可能做到的,例如注射抑制 IL-1β 因子的抗體。不過,就公共衛生來說,要給幾千萬人施打抗發炎因子藥物根本不切實際,因為太花錢,而且也可能造成其他的副作用。 波曼在《Nature》評論裡建議,透過簡易可行的飲食方式來降低體內發炎,或許有機會減少某些癌症的風險。這也就是說,科學家應該重新回來審視,怎樣把每天的生活點滴點石成金變成防癌手段。

圖/unsplash

這也等於預告了肺癌的下一階段研究方向,除了內科、外科醫療科技持續精進,尋求預防惡性疾病的最佳飲食要素,也成為聚焦重點。

也想問問你,關於肺癌,你最看好的下一個突破是什麼呢?

  1. 希望有篩檢技術 2.0,不但百發百中,如果連X光都不必照,只要抽血就能順便驗出有沒有癌細胞,那該多好。
  2. 當然是癌症疫苗,最好是能一勞永逸。
  3. 科學證實有效的抗發炎防癌食物組合,我一定立刻加入菜單,不過還是希望味道要好吃啦。

留言告訴我們你的想法吧,如果你覺得這集的內容特別實用,記得分享給你的親朋好友!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1
PanSci_96
1238 篇文章 ・ 2376 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。