1

3
1

文字

分享

1
3
1

長輩常抱怨助聽器噪音大?——孝子們該認識的「音量壓縮」科技

雅文兒童聽語文教基金會_96
・2022/01/07 ・3349字 ・閱讀時間約 6 分鐘
  • 作者/張逸屏|雅文基金會聽語科學研究中心

阿公的重聽愈來愈嚴重,阿嬤已經快受不了、都不想跟阿公講話了!而且阿嬤平時喜歡和朋友打打麻將,阿公現在因為常聽不清楚,無法和阿嬤一起與朋友打麻將、聊天同樂,也變得經常悶悶不樂、甚至易怒。但是不管怎麼勸,他老人家就是不願意去配助聽器。阿公說:「你那個阿勇伯花了一大筆錢買助聽器,結果戴上去吵死了,根本沒效!最後都放在抽屜裡沒有用。我才不要花冤枉錢!」

女士, 听听, 内心的声音, 哭了, 耳朵, 聆讯, 警告, 发威, 听众, 感觉, 感知, 信托, 专注
重聽的情況常會對身邊的人帶來困擾。圖一/Pixabay

隨著年紀漸長,許多年長者聽力會逐漸退化而有重聽的現象,佩戴助聽器是能讓年長者聽得更清楚、跟家人朋友順暢溝通的解決辦法。然而,許多長者不願意佩戴助聽器,或是抱怨戴上助聽器後覺得很吵、根本沒有效。花了一大筆錢,卻將助聽器束之高閣,不免覺得可惜!但助聽器真的會戴起來很吵嗎?

根據報導 [1],剛戴上助聽器的人常見的五大抱怨中,就有兩項是噪音相關的問題。除了感覺噪音變大聲了,還會覺得噪音變得尖銳。畢竟助聽器的功能就是將聲音放大,在放大說話聲音的同時,噪音也一起被放大了。而重聽的情況通常已經存在多年,大腦已漸漸習慣聽不到一些日常生活中的小噪音,像是電器運轉聲(冰箱、冷氣、風扇等)、腳步聲、風聲等[2],戴上助聽器後突然又能再聽到這些聲音,一時之間會難以適應而覺得吵雜。

此外,大多數的重聽是高頻的聲音聽不清楚,因此助聽器會特別針對高頻聲音放大,造成使用者覺得聲音和噪音聽起來特別尖銳[1]。以上這些感受,都會讓人降低佩戴的意願,佩戴時間少就更無法適應,深深留下助聽器很吵又沒效的印象。那到底是什麼原因造成這些問題呢?

手, 助听器, 听力损失, 听
助聽器的噪音問題是重聽者不願意配戴的主因之一。圖二/Pixabay

助聽器不只放大聲音,同時要做壓縮

要說明助聽器使用者所面臨的噪音問題,就要談談聽力的動態範圍(dynamic range)和助聽器的聲音處理技術──音量壓縮(compression)。動態範圍指的是一個人所能聽到的音量範圍,一般聽力正常者可聽到大約 0 到 120 分貝的聲音,因此動態範圍大約是 120 分貝(120-0=120)[3]。聽力損失者聽不到較小聲的聲音,而超過 120 分貝以上的聲音會造成不適、甚至會傷害聽覺系統。

假設有一位中度聽損者,大約要 50 分貝以上的聲音才聽得見,那麼他的動態範圍只有 70 分貝(120-50=70),所以聽損者的動態範圍比聽常者小。對這位中度聽損者而言,助聽器必須將小聲(0-50 分貝)的聲音放大到他的動態範圍內(50-120 分貝);然而,針對大聲(50-120 分貝)的聲音,聽損者本來就能聽見,卻不能同等的放大,否則就會超出他的動態範圍、過於大聲無法忍受,甚至對聽覺系統造成傷害。所以,助聽器的輸入是聽常者的動態範圍,而輸出則要符合聽損者、較小的動態範圍,因此必須要進行音量壓縮。

聲音壓縮科技──讓小聲的聲音更清楚

助聽器的音量壓縮技術的專業名稱為寬動態範圍壓縮(WDRC;wide dynamic range compression),對不同音量的聲音放大的程度不同(非線性壓縮)[4],主要概念是將小聲的聲音放大得多一些、中等音量的則放大得稍微少一點、大聲的音量放大得更少。如此一來,小聲的聲音放大到可以讓聽損者聽得見,而中等音量和大聲的聲音也不會過於大聲、造成不適[5]

以上述的中度聽損者來舉例說明(圖三),可能會將 0-30 分貝的聲音增加 50 分貝,變成 50-80 分貝,讓聽損者能聽得見,如同圖三中的藍色線段,輸入和輸出範圍都是 30 分貝,壓縮比是 1:1,也就是沒有壓縮。而 30-90 分貝的聲音(橘色線段),則放大到 80-110 分貝的範圍,從原本 60 分貝的輸入範圍壓縮成 30 分貝的輸出範圍,壓縮比是 2:1。而 90-120 分貝的聲音(綠色線段),則放大到 110-120 分貝的範圍,從輸入範圍 30 分貝壓縮到 10 分貝的輸出範圍,壓縮比是 3:1。

助聽器的寬動態範圍壓縮(WDRC)技術針對不同音量範圍進行不同比例的放大,兼顧語音清晰度和聆聽舒適度。圖三/雅文基金會

助聽器的必要之惡?壓縮處理造成的問題

助聽器使用以上策略的優點,是能讓小聲的聲音聽得更清楚,提高語音的聆聽清晰度,因此聽損者容易錯失的輕聲子音(如:ㄈ、ㄙ、ㄒ…等)都能聽清楚了,就能提升語音理解。但不幸的是,身邊的各種小聲聲音,包括一些環境噪音也都一起放大了。於是,雖然語音聽得更清楚了,但空調運轉聲、地板上的腳步聲等噪音也因聽得更清楚而覺得干擾[5]

此外,壓縮處理也可能會造成聲音訊號的扭曲,例如當音量有變化時,如圖四上半部,可看出在壓縮處理前,原始的音量變化較大;經壓縮處理後,音量變化前後的差異較小。不過,聲音的壓縮處理需要一些時間,才能調整到最適當的輸出音量。因此若聲音忽大忽小且變化劇烈,壓縮處理就會時常需要轉換調整,這時候輸出的聲音也就難以精準符合使用者的需求。

此外,因為助聽器無法分離語音和噪音,兩者只能同時接收,當突然有大聲的噪音時,如圖四下半部,因為整體音量變大,語音只能和噪音同時經過壓縮處理。最後輸出的聲音當中,語音被放大的幅度就無法達到理想的程度[4]。整體而言,聲音壓縮科技對於安靜情境中的語音理解有所幫助,但噪音下的聆聽對於聽損者來說,即使戴了助聽器,仍然會感到挑戰。

Distortion caused by compression
聲音壓縮處理技術可能會造成聲音的扭曲。圖四/參考資料4

善用其他科技與策略,發揮助聽器功效

儘管如此,請不要跟阿勇伯一樣把助聽器鎖在抽屜裡!事實上,現今助聽器有降噪的技術可多加利用,建議諮詢聽力師開啟降噪設定。除了開啟降噪功能外,助聽器通常有方向性麥克風,針對坐在前方的說話者的聲音放大,讓來自於背後的噪音不會造成干擾。或是可以請聽力師針對不同情境設定,分別在安靜、吵雜,甚至看電視、聽音樂有最合適的設定。如此,可善用科技讓提升語音清晰度和降低噪音達到理想的平衡。

人们说话, 父亲, 先生, 男子, 葡萄酒, 人, 美丽, 肖像, 人类, 复古
善用溝通策略,例如:讓光線照在說話者臉上,可讓溝通更順暢。圖五/Pixabay

除了科技之外,也有一些策略可以降低噪音的負面影響。可請聽力師協助安排聽能復健課程,來訓練大腦專注語音、忽略噪音,同時學習一些生活上的策略,包括去餐廳挑選較安靜的座位、選擇光線充足的地方談話(讓聽損者可看到表情和嘴型做為溝通輔助)、溝通不順暢時試著換句話說並加上手勢動作等,都可以讓噪音的影響降低、溝通更順暢(註1)。除此之外,需了解剛開始戴助聽器通常需要一段適應期,漸漸拉長每天佩戴助聽器的時間,慢慢學著將注意力集中在語音上。如此同時搭配助聽器科技及大腦可塑性,就可讓聽損者感受到助聽器的效果,讓助聽器有效又不覺得吵!

了解了以上的技術和原理,趕快帶著阿公和阿勇伯去找聽力師,善用科技降噪、多多配戴並練習聆聽,讓阿公阿嬤找阿勇伯夫妻來打麻將時,也可以輕鬆聊天,享受樂齡社交生活!

註解

註1 :欲了解更多溝通策略,可參考雅文基金會「聽損溝通小學堂」「微聽損網站-聽說策略」

參考資料

  1. Common Complaints by First-Time Hearing Aid Users. (n.d.). Audiological Services. Retrieved from https://audiologicalservices.net/audiology-blog-lufkin-tx/common-complaints-by-first-time-hearing-aid-users
  2. Banks, L. (2020, Oct. 2). Why does the world sound so noisy with my hearing aids? Clear Living. Retrieved from https://www.clearliving.com/hearing/hearing-aids/background-noise/
  3. Pujol, R. (2018, June 6). Human auditory range. Journey into The World of Hearing. Retrieved from http://www.cochlea.org/en/hear/human-auditory-range
  4. Corey, R. M. (2020, Dec. 7). Dynamic range compression and noise. Innovation in Augmented Listening Technology. Retrieved from https://publish.illinois.edu/augmentedlistening/dynamic-range-compression-and-noise/
  5. The Compression Handbook, 4th Ed. (2017). Starkey Hearing Technologies. Retrieved from https://starkeypro.com/pdfs/The_Compression_Handbook.pdf
  6. Ehrenfeld, T. (2019, Sep. 18). Hearing aids and background noise: Overcoming the battle. Healthy Hearing. Retrieved from https://www.healthyhearing.com/report/41066-Hearing-aids-background-noise

數感宇宙探索課程,現正募資中!

文章難易度
所有討論 1
雅文兒童聽語文教基金會_96
34 篇文章 ・ 194 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。


2

8
3

文字

分享

2
8
3

既是科學家,也是樂團鼓手!──專訪數學物理學家程之寧

研之有物│中央研究院_96
・2022/03/11 ・5978字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|郭雅欣、簡克志
  • 美術設計|林洵安、蔡宛潔

在學術與搖滾的多重維度上行走

還記得美劇《The Big Bang Theory》嗎?劇中常常出現的物理名詞「弦論」,是描述物理世界基本結構的理論。中央研究院「研之有物」專訪院內數學研究所程之寧研究員,她正是研究弦論的科學家,也是熱愛音樂的搖滾樂團鼓手,這種跨領域身份並不衝突,兩邊都需要創造力與紀律。由於天生斜槓的性格,讓程之寧在數學和物理領域大展身手,透過數學的深入探討,她試圖將弦論更往前推進。最近程之寧更跨足到人工智慧領域,為學界提供理論物理上的貢獻。

中研院數學所程之寧研究員,主要研究 K3 曲面(特殊的四維空間)的弦論,她發現模函數和有限對稱群之間有 23 個新的數學關聯,稱之為「伴影月光猜想」(Umbral Moonshine)。圖/研之有物

萬有理論和難以捉摸的「月光」

世界從那裡來呢?物理世界的本質是什麼呢?回答這樣的大哉問,一直是理論物理學家所追求的目標。從牛頓力學(日常應用)、廣義相對論(探討很重的物質)到量子力學(探討很小的物質),隨著物理學不斷發展,我們似乎一步步接近答案,但至今卻還未走到終點。

舉例來說,如果有個東西很重又很小,就像「黑洞」,或是大爆炸時的宇宙,我們要怎麼用數學描述?於是科學家試圖整合廣義相對論和量子力學,找出所謂的「萬有理論」(Theory of Everything)──能完全解釋物理世界基本結構的核心理論。

程之寧研究的「弦論」就企圖發展成這樣一個萬有理論。弦論一如其名的「玄妙」,它設定宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。

「人類一直以來的夢想之一就是,如果能用一句話解釋所有事情,那該有多麼美好。」中研院數學所研究員程之寧說道。

程之寧的研究牽涉到數學上的「月光猜想」(Moonshine)與弦論中 K3 曲面的連結。月光猜想是存在於模函數係數與特殊群之間的數學關聯,程之寧與其研究夥伴共發現了 23 個新的關連,並稱之為「伴影月光猜想」(Umbral Moonshine)。

基於弦論的假設,我們的世界是十維的,除了人們在日常生活中可以感知到的 3+1 維(空間+時間),還有六維是因為尺寸太小而無法用肉眼觀察的,這些看不到的維度影響著物理世界,最終也產生了我們這個物理世界所需的各種條件與特性。

綜觀程之寧的研究,橫跨了物理與數學兩個領域,她笑稱自己「天生斜槓」。在學術上,程之寧原先喜歡文學,之後卻走上數理研究的道路;在音樂上,程之寧喜愛搖滾樂,至今仍在自己的樂團裡擔任鼓手。

她如何看待自己一路走來的各種轉折?游徜在數學與物理之間,她又對這兩個領域的連結有怎樣的體會?在與「研之有物」的訪談中,程之寧侃侃而談她的經歷、想法,以及對學術研究的熱忱所在。

在弦論的設定中,宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。圖/iStock
  • 請問您是如何對數學及物理產生興趣?從何時開始?

一開始考大學時,其實我想去念中文系(笑)。不過,因為我高中是選理組,而且只念了一兩年,對文科考試比較沒把握,加上對工程科系沒興趣,最後就選擇臺大物理系就讀。

後來發生兩個轉折,第一個是我很認真的去修了大學中文系的課,結果發現真的沒有想像中容易。第二個就是我發現物理系的課還蠻有趣的,像量子力學和相對論,讓我覺得還想再多學一點、多知道一點。

我開始覺得如果念完臺大物理系就停下來,好像有一種小說沒讀完的感覺,所以就想繼續讀碩士班。那時還沒有覺得自己會走上學術研究的路,單純抱著想把故事看完的想法。

  • 後來是如何接觸到弦論?弦論是如何引起您的興趣?

後來我去荷蘭念碩士,指導教授是諾貝爾物理獎得主 Gerard ’t Hooft。他其實蠻不認同弦論,但他對於如何處理量子力學與相對論很有興趣。

當時 ’t Hooft 教授在建議我碩士題目時就說:「你也知道我不太認為弦論是一條正確的道路,不過聽說弦論最近真的在量子重力這一塊有一些成果。不如妳去讀一讀,看看是不是真的有一些東西在那裡,也可以比較一下其他量子重力理論。」

在我很認真的比較各個量子重力理論之後,就變成弦論派了(笑)。’t Hooft 教授對此也保持開放態度,他有幾個不錯的博士生後來也變成弦論學家,之後我在 Erik Verlinde 的指導下念博士時,就完全以弦論為研究主題了。

  • 研究理論物理會影響您對現實世界的理解嗎?

蠻多人會問我說,妳學了量子力學,是不是就會比較了解這個世界不是非黑即白?或問我量子力學跟宗教是不是有關?可是我覺得我分得很開,我不會去做這樣的連結,我還是活在現實裡,走路時大部分都在專注於自己不要跌倒之類的。

如果真的要講,我蠻感激我們的存在,因為我所學的東西讓我知道這是沒有必然性的。我們能這樣以一種人形的很奇怪的生物的形式存在,然後在這樣一個環境過一輩子,是機率很低的事情,而且我還蠻開心我是當人,而不是奇怪的阿米巴蟲或外星生物!有些人會從這裡連結到宗教或轉世,但我不會,我就停在這裡。

  • 來談談您的研究,伴影月光猜想與 K3 曲面弦論之間是什麼關係?

弦論中有很多的可能性,我們可以挑選特定的四維,然後假設這四維空間是個 K3 曲面。例如說,我們可以把兩個甜甜圈乘起來,在上面做特殊的奇異點,來製造出一個 K3 曲面。這個曲面有一些很有趣的對稱性。從弦論的角度來講,我們可以透過這個過程,找出一個解釋為何有伴影月光猜想的框架。

「把維度乘起來」這個概念很難想像,但這在數學上是成立的。我舉例一個我們能想像的「乘起來」:如果有一個空間是一條線,另一個空間是一個圓,乘起來就變成一個圓柱形,從一個方向剖面可以切出圓,另一個方向則切出線。而在數學上,不管幾維,能不能在紙上畫的出來,都可以這樣操作。

程之寧向「研之有物」採訪團隊解釋「把維度乘起來」的概念。圖/研之有物
  • 如何透過計算,發現捉摸不定的「月光」?

有時候這看似湊巧,一個數學上的函數正好就是弦論某個問題的答案。但其實並不是真的那麼巧,弦論看起來很有彈性,好像什麼都可以解釋,但它其實有非常多結構及限制。

當我在計算一個弦論理論時,它的內部結構可能原本就具有某些特定的性質,然後我再去觀察數學中,有這樣性質的函數可能就只有一兩個,只要再初步算一下,就能知道哪一個是答案。弦論學家日常的計算常常是這樣的,所以這是巧合嗎?是也不是。

  • 您曾經發現 23 個新的伴影月光猜想,您對這類題目特別有興趣嗎?

我覺得數學有兩種,有些數學家喜歡系統性的事情,就像蓋房子一樣,在數學裡建造一個很美麗、非常有系統性的結構,可以把很多事情都放入這個結構來理解。

另一種比較少數的,就是喜歡獵奇,去收集分類奇奇怪怪的特殊東西,例如有這些性質的函數在哪裡?可能你算出來就是 5 個,你也不知道為什麼。月光猜想很明顯就屬於這一類。

兩種的樂趣感覺是不一樣的,我覺得應該都很棒,但我可能是屬於偏好獵奇的這種。

  • 您的研究連結了物理上的弦論與數學上的月光猜想,您怎麼看待這兩個知識體系的互動?

弦論是一個需要很多數學理論配合的物理理論,它是一個有點繁複的框架,我們什麼都要會一些,才能看懂這個理論。當你把許多不一樣的學門的知識加起來,有時候就會在某一個學門──例如幾何──有意想不到的收穫。

弦論在數學上也扮演探索與找尋新方向的角色,讓數學家有新的發現。雖然最後數學定理的證明還是得仰賴傳統數學方法,但在這二三十年間,我們一直從弦論身上找尋數學研究的新方向或有趣的猜想,看到了弦論與數學之間的互動。

數學家有兩種,一種人喜歡建立美麗又有系統性的結構,另一種人喜歡尋找和收集奇怪特殊的數學物件(比如函數),程之寧表示自己屬於後者。圖/研之有物
  • 剛才一開始提到,您高中只念了一兩年,是因為對學校沒有興趣嗎?

其實我一直都覺得上學很無聊。我小時候臺灣教育和現在很不一樣,一班 50 幾個人,老師必須盡量軍事化管理,大家最好都一模一樣,比較好管理。我和學校一直處於互相磨合的狀況,我自認已經努力配合學校,但學校一直覺得我在反抗,這可能是一個認知上的差別。

舉例來說,我小學的時候不想睡午覺,可是老師說大家都一定要睡午覺,不睡午覺的人要罰抄課文,所以我早上到學校時就會把已經抄好的課文交給老師。我覺得我這樣做是在配合老師的規定,可是以老師的立場會覺得我在反抗,學校教育中我遇到了很多類似的情況。

還有就是不喜歡高中的升學氛圍,同學和老師好像都只有一個活著的目標,就是「考大學」。我當時無法習慣升學氛圍,感覺好像活在平行宇宙一樣。

  • 高中休學後,您去唱片行工作,可否談談當時的想法?

我國中開始聽音樂,這是我除了看書之外的重要興趣,我也很快就喜歡上了搖滾樂。高中休學的時候,我唯一的謀生技能可能就是我對音樂的各類知識吧!所以我就去了唱片行,這是唯一一個我會做又有興趣的工作,還好那時候還有很多唱片行(笑)。

  • 對音樂的熱忱,讓您與朋友共組了樂團,並擔任鼓手。您是否比較過樂團生活和學術研究之間的異同之處?

有些人覺得我這樣很跳 tone,但我自己覺得還好。音樂和學術都是我發自內心覺得好玩的東西,兩者也有相同之處,例如它們都需要創造性,也都有需要了解的框架。數學需要嚴謹的證明,音樂演奏也需要遵循結構,例如不能掉拍。

音樂領域還有一點和數學類似──玩樂團的圈子也是以男性為主。我們樂團則是只有一個男生,其他都是女生,可能我真的天生對框架有點遲鈍,玩團之後才發現:「怎麼大家都是男生?」

程之寧表示,學術界仍有許多性別不平等問題未受重視。圖/研之有物
  • 也就是說,目前數學學術圈仍是男性主導,在研究路上,您有因為性別而感受到一些衝擊或眼光嗎?您怎麼面對?

有。那感覺很明顯,日復一日地要去面對,尤其是年紀還比較輕、還必須每一天去證明自己的能力的時候,特別有感。

我遇到時的反應就是,在心裡暗罵一句髒話,然後繼續做我要做的事。我不會想改變別人的想法,感覺那是浪費時間,就算環境給我的阻礙是這樣,我還是繼續去做該做的事。

可是有些事情沒那麼簡單,現在我也當過老師,有時候會看到年輕女生在學術界因為性別而被欺負,或遭到不公平待遇、甚至騷擾。

對此我感到心痛,覺得為何我們學術領域還是這樣的狀況?甚至為什麼性騷擾至今還是一個議題?可以確定的是,學術界許多性別不平等問題未受到重視。

  • 您現在已經有傑出的研究成果,還會因為性別而遭受質疑嗎?

我現在比較會遇到一個狀況反而是來自學生的質疑。我在荷蘭阿姆斯特丹大學教書時,有時候學生會因為我是女教授,而且我的外表在許多歐洲人眼中看起來就像小妹妹,所以比較容易去挑我的毛病。

在課堂上,下面坐的可能都是男學生,只有一兩個女學生,那個氣氛就會變得很奇怪。例如說偶爾會聽到學生評論我的身材或樣貌。

我有和其他一些在歐洲或美國的女性教授聊過這樣的問題,似乎不少人都有類似的不太愉快的經驗。感覺不是很好。

  • 看到您最近的研究和人工智慧(AI)有關,為何會想往這個方向發展?

我有兩個動機。一個就是我真的想深入了解人工智慧。我也可以像普羅大眾,看看 AI 下圍棋,讚嘆「哇!好厲害!」這樣就好,可是我覺得我一定可以真的去理解它,這可能就是數學家的自大吧!

另一方面,我知道對科學研究來說,未來 AI 將會是一個非常重要的工具。這是「在職訓練」的概念,我可能會用到這個新工具,或以後我可能會需要教這樣的課,因為學生是下一代的科學家。因為這些原因,我覺得我需要去訓練自己使用新的工具。在我的領域裡,也有一些有趣的、還沒被解答的科學問題,是 AI 有可能幫得上忙的,我看到了一些潛力。

  • 弦論和 AI 感覺差距很大,AI 也可以應用到弦論的研究嗎?

乍看之下,弦論的確比較抽象,也不像其他許多實驗會產生大量數據。但其實弦論有大量的可能性,我認為使用 AI 來在這些巨量的可能性當中搜尋特別有趣的理論,是一個有潛力能夠加深我們對弦論理解的新的研究方法。

而且 AI 的應用絕不僅限於巨量資料。如果是面對一些比較新的挑戰,在沒有現成的演算法可以用的情形之下,可以自己做出需要的功能嗎?這過程我覺得也非常很有趣,而且應該是會有成果的一條路。這種不是那麼顯而易見的事情,我覺得很有挑戰性,也蠻好玩的。

除了用 AI 來幫助物理跟數學的研究之外,我也試著物理研究當做靈感來源,找出新的 AI 的可能性,我覺得這也是一個很有趣的研究方向。我現在有和 AI 的學者合作,嘗試做出一些創新的演算法,真的還蠻有趣的。

  • AI 對您而言是全新的領域,您如何面對跨領域遇到的門檻?

一開始會覺得真的要去碰這個新的領域嗎?其實現在也還是偶爾會有這樣的懷疑。我在弦論領域可能已經是專家,但去了一個新的領域,我學得不會比二十歲的人快,要怎麼去跟人家競爭?是不是在浪費時間?

但也會想,與其想這麼多,不如先做再說。到目前為止我做了兩年多,感覺還蠻好的,我有學到東西,也有做出小小的貢獻。

其實我還蠻感激有這樣的學習機會。對我來說當科學家最大的好處就是,去搞懂一個新的東西就是工作的一部分。當科學家雖然蠻辛苦,但就結果論來說,我還蠻開心能當一位科學家!

延伸閱讀

  1. Moonshine Master Toys With String Theory | Quanta Magazine
  2. Mathematicians Chase Moonshine’s Shadow | Quanta Magazine
  3. 林正洪教授演講 一 怪物與月光(Monster and Moonshine),《數學傳播》

數感宇宙探索課程,現正募資中!

文章難易度
所有討論 2
研之有物│中央研究院_96
8 篇文章 ・ 16 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook