1

0
0

文字

分享

1
0
0

在紫外線下能自我修復的聚合物

cbug
・2011/04/22 ・613字 ・閱讀時間約 1 分鐘 ・SR值 502 ・六年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 


車子的刮痕要怎麼處理?除了重新烤漆,未來或許可以試試這種新的材料。(圖片來源:原文)

自我修復(self-healing)材料是未來的東西,但必定不是在遙遠的未來。舉例來說,NASA就計畫在未來二十年內在飛機機身包覆這種具自我修復性的外殼。美國凱斯西儲大學(Case Western Reserve University)的研究人員,以及他們在美國和瑞士的夥伴,公開了一種會自我修復的聚合物,在紫外線下只要一分鐘,就會恢復原貌。

這個研究的關鍵在於,找到了透過分子交互作用、可以假裝成一個巨大整體的小聚合物。在超分子聚集體的機制下,這些由小分子組成的聚合物,聚集成類聚合物的長鏈,以金屬離子作為某種「分子黏膠」(molecular glue)。而一般聚合物的構成,是由數千個分子藉由強力的分子鍵組成的超長鏈分子。

藉由金屬離子黏著在一起,這些新的聚合物被稱作「金屬—超高分子聚合物」(metallo-supramolecular polymers),在許多方面都像一般的聚合物那樣作用。但是在密集的紫外線光之下,分子黏膠的作用沒有完成,使得這些材料像液體般流動,並且填滿刮擦處或裂開的地方。將紫外線來源移開,分子黏膠又重新作用,重新將聚合物鏈結起來,並再一次地產生固態的外層。

起初的試驗顯示,研究者可以一直刮擦聚合物塗層表面的同個地方,且會在紫外線照射下一再地修復,看不出任何損傷的痕跡。看看下面的影片吧!

資料來源:Self-Healing Polymer Fixes Itself Under Ultraviolet Light

編譯:cbug

文章難易度
所有討論 1
cbug
22 篇文章 ・ 0 位粉絲
各位先進大家好,很高興加入PanSci。希望專欄 Nutrition Buiscuits 能如其名,跟大家分享小份量卻高營養的文章。

0

3
0

文字

分享

0
3
0
CO2 不是廢物!以嶄新材料推進人造光合作用——林麗瓊專訪
鳥苷三磷酸 (PanSci Promo)_96
・2022/03/22 ・5496字 ・閱讀時間約 11 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文由 台灣萊雅L’Oréal Taiwan 為慶祝「台灣傑出女科學家獎」15周年而規劃,泛科學企劃執行。

  • 2017 年「台灣傑出女科學家獎」傑出獎第十屆傑出獎得主

在辛亥路側的臺灣大學凝態科學研究中心,曾為中心主任的林麗瓊帶著我們上上下下好幾層樓,如數家珍地說明各設備的能耐,以及學生要如何經過她紮實訓練跟親自審查才能上機。「還有好多,今天沒時間看」,站在她稱為「起家本」的第一台自製反應爐旁,她說當年太貪心,加了多個 Port,增加了殘餘氣體吸附而使樣品被污染的風險。然而這台由她自己設計、自己到工廠請人開模製作的機器,在她細心調教跟利用下,創造了許多研究突破。我們請林麗瓊與這座別具意義的反應爐一起合照,她則邀請在旁的學生 Suman 一起入鏡。

來自伊朗的 Suman 她選擇來台灣學習,一方面是因為台灣是個很安全的地方,另一方面就是因為林教授是很棒的楷模。「那你會在台灣待到什麼時候?」我問,她回說「這要看我什麼時候拿到博士學位。」「那就是要看林教授囉?」「不是,是要看她自己何時取得足夠的進展。」林麗瓊笑著說這句話,也透露出她指導學生的方法:不由上而下決定主題,讓學生自由探索、從好奇心出發。

回到辦公室,林麗瓊從玻璃櫃中拿出一幅裱框的照片,裡頭是朵特別的玫瑰。「本來該長成平的、漂漂亮亮的磊晶,結果長成一朵花。」

林麗瓊教授與我們分享學生的作品——〈Formosa Nano-Rose〉

拿著學生的「作品」,她笑說通常學生若做出這樣的磊晶應該要挨罵才對,然而學生發揮想像力,將奈米尺度的不規則形狀染上玫瑰紅,參加美國材料學會(Materials Research Society)年度的科學即藝術(Science as Art)競賽,拿到首獎,還有外國人寄信來,希望能取得圖片,用來求婚。

在林麗瓊經營帶領下,聚集多國、多領域人才的研究團隊看似和樂輕鬆,其實他們正探索一個可能改變人類未來的終極領域:光觸媒。

光觸媒的莫大潛力

如果要列出如今人類面對的最大挑戰,抑制二氧化碳排放、讓空氣中的二氧化碳量回到 350 ppm 的安全水平以下,不讓氣候危機加劇,肯定是其一。(順帶一提:2021 年 的 1 月是 413 ppm 上下。來源) 

就算逐步淘汰煤炭跟天然氣,改成再生能源發電,我們的生活依舊仰賴大量的石油化學產品,大氣跟海洋中依然有過量的 CO2,種樹也難趕上森林被砍伐跟遭野火肆虐的速度。然而林麗瓊另闢蹊徑,從拿手的材料科學著手,正研究如何將二氧化碳還原成低碳氫比燃料,關鍵就在於高效能的光觸媒。

這當然不是林麗瓊一開始就研究的主題。她於 1989 年取得哈佛大學應用物理博士學位後,馬上被美國奇異公司研發總部材料研究中心延攬為終生聘雇研究員,也是當時該研究中心唯一的亞裔女性。那時她加入的團隊裡有物理學家、化學家、電子電機工程師等,研究的主題從飛機引擎到核能電廠五花八門,例如他們開發新型飛機引擎的材料跟設計,讓飛行速度更快、更省燃料。

1994 年回台後,她返台主持凝態中心的尖端材料實驗室。「一開始做鑽石薄膜,後來做奈米碳管、奈米線、石墨烯。」開發這些碳基的低維度奈米材料,並使其展現出新奇特性是她的拿手絕活。既然現在二氧化碳成了眾矢之的,那就換個角度,把它從廢物變寶物吧!

「如果只是要把二氧化碳轉化成低碳氫比的燃料,或是高工業價值的原物料,方式不只有光觸媒,用電催化也可以。」林麗瓊表示電催化成熟度比光催化高,發展歷史久,但是腐蝕容易造成污染,而且 CO2 與水的溶解度低、需要額外耗電,因此不見得是最佳選項。若採用光觸媒,只要將工廠的排氣經過導管收集,將 CO2 分離,進入可以接受光照的反應爐,搭配適當的材料(如金屬氧化物),就能產生光催化效應,把 CO2 變成甲醇、甲烷、乙醇、乙烷、乙醛等。

「關鍵步驟就是那個材料的觸媒,它的催化功能性要夠,那怎樣功能性才會夠?這就有我們做材料的人可以玩的空間。」林麗瓊表示這樣的材料須具備半導體特性,也就是其特有的「能待結構」或「能階」,能接受光子的能量而激發,同時「能隙」不能太大也不能太小。目前已經商用的材料為二氧化鈦(TiO2),然而其吸收光需要 3.2-3.4 電子伏特(eV)的能量,也就是得用波長很短的紫外光,限制了發展。 因此她將重點放在找尋能夠吸收可見光的材料與最佳結構,提升轉化效率。「可能是1.7、1.8(eV)是最好的……就同樣一個材料,它本質可能是 1.5 eV,但位置不對,所以我們就想辦法做一些缺陷工程啊、做一些參雜、複合的結構。」

這樣的材料在吸光後會產生電子電洞對,林麗瓊生動地形容「要活活的」,才能跟二氧化碳與水起反應。意思是說這材料得身兼多職,先吸可見光、然後拆解電子電洞對,傳達到表面後,能接著活化其實很穩定的二氧化碳,再加上水氣才有可能轉化成甲醇等產物。即使是同一個氧化亞銅,他們也發現邊邊角角的活性才高,「所以就有辦法跟 CO2 招手,黏住又不能太黏喔!太黏 CO2 不跑啦!就把活性點通通給蓋住蓋死了。」

為了讓二氧化碳若即若離、欲迎還拒的戲碼能在奈米尺度上演,身為導演兼製作人的林麗瓊與團隊花了大把工夫選角(材料),如今已獲得初步的成果。

「在產量上,雖然還不是很高,但是有機會到 1% 了。假以時日,push 到 10%,應該是有機會」。她表示儘管還需要很多努力,而且後續也還有產物選擇性與分離的課題,但一關一關解,就能將二氧化碳變成原物料,邁向循環經濟「零廢物」的目標。

林麗瓊表示反應過程中的產物分析、以及反應控制的關鍵機制需要徹底釐清,才能知道到底材料的「什麼」在做出貢獻,例如是形狀、是位置、是大小、還是其他性質?她用各種技術來監測,將這過程比喻為「盲人摸象」,得一片一片摸熟了才能前進。雖然離製程成熟跟產業化還有很長的路,她發現這個領域受關注跟投入的程度在全球都大大提升,從她剛開始時一年不超過 50 篇研究,到現在每年破千篇。

從半導體、光電、能源材料、奈米薄膜到光觸媒,研究範圍廣泛的林麗瓊笑稱自己喜新厭舊又隨性,但萬變不離其宗:「我們就是玩材料的,我們玩得很開心啊!」

Welcome to the jungle 

外表溫和沈著、說話總是體貼地再三確認我們能否理解的林麗瓊,得過台灣與世界各國的獎項,也曾被選為美國材料學會董事會成員,曾任眾多知名學術期刊、專書的編輯與學術會議的主席,成就非凡。然而正如她研究的光觸媒,對於許多學生來說,她也是一位如光般賦予能量、催化著他們的觸媒。

林麗瓊坦言自己「鍛鍊很久」,努力學習理解各種關係必然遇到障礙,有時轉個彎就撥雲見日的道理。她不會給剛進門下的學生太明確、太細節的題目,而是讓他們先朝一個方向探索看看,約略三個月後再請他們提出 Proposal,她就在這段時間內觀察新學生與其他同學的互動,了解其性格,能力,再依此給出建議。

她將自己在美國奇異公司研發總部任職時學到的團隊合作方式,帶入自己的實驗室。「有的人性格像獅子、有的像兔子。但不能都一直是獅子或兔子」她順著學生的性格,鼓勵其發揮,但也鼓勵他們學習彼此的優點,懂得變換。

她說有些學生活動力很強,坐不住,沒辦法一直待在機器前;反過來有些學生開工之後,一天不去開機就覺得不舒服,連機器壞了也不肯停。但就是這樣不同的性格,獲得了意想不到的發現。雖然有時會建議學生互相合作,但她的安排也不一定成功,反而是讓資深的、主導性強的學生們發展、組隊,結果更好。她則透過每週定期的 Group meeting 發揮觸媒的作用,激發團隊成長。「我關心他們怎麼發展,可是絕對不強迫。有點黏又不會太黏。」她微笑說。

是傑出科技人,也是女人

2017 年得到第十屆「臺灣傑出女科學家獎」時的林麗瓊,已得過科技部傑出獎、教育部學術獎與國際上的諸多不分性別的榮譽,對於冠在科學家獎前的「女」字,很高興能獲得肯定,也自覺要承擔更多責任。然而在 30 年前,類似的經歷曾經困擾過她。

當她被奇異聘為終生職研究員時,她在哈佛的一位韓國同學則失之交臂,扼腕地對她說「都是因為妳是女生啦。」林麗瓊覺得自己夠認真、夠努力,當然有資格加入頂尖的企業。但反過來說,那位韓國同學也很認真、很努力,所以……是臨場表現有差別?還是真的因為她是女性而成了保障名額?

「不瞞你說,這的確是很矛盾、很複雜的一種心理。」她說:「如果只是因為我是女生,這個對我很傷啊!是不是?」後來在物理學會女性工作小組內討論這種「肯定」時,她漸漸想通,認為即使有這種可能,她也要勇敢去爭取,放下不舒服的感覺,不要覺得自己是被憐憫、被施予,而是要當第一個衝破現況者,別人才有機會跟上。

「有一些東西是非常根深蒂固的,男生女生都是這個文化的受害者。」她分享自己剛加入奇異公司的一段經歷:當時懷第二胎的她,發現好幾個月都沒有被分配到任務,也沒有被安排出差到工廠幫現場面臨的挑戰找題目。於是她鼓起勇氣去問經理,經理反而愣住,回答說就是因為知道她懷第二胎,家裡還有一個兩歲孩子,怎麼能讓她做這些又累又辛苦的事?

這樣的善意跟體貼,若說是歧視,林麗瓊認為就太重了,但結果卻幽微地害她投閒置散。於是她向經理明確表示自己先生非常支持,而且有保母能照顧小孩,承接任務沒有問題,才改變了這種不利自己發展的狀況。

「我自己覺得物理並沒有性別的問題,覺得好玩又可以發揮,學科本身不會阻擋女生。那是我們的環境嗎?還是什麼?」物理學界的女性比例「是可怕的低」,林麗瓊說大學部其實有 20-30% 是女生,研究所也可能還能維持 10-20%,但到教職就不到 5%。她認為這個現象不能簡單歸因,需要抽絲剝繭。舉例來說,由於她與先生(陳貴賢,中研院原子與分子科學研究所研究員)密切合作,剛回國任教提交計畫書審查時,曾被問「貢獻到底在哪裡?」但同樣的問題,她先生卻不會被問。她認為審查者不見得有意打壓,而是文化養成的習慣。要讓其他人知道自己有真功夫,需要一段不短的時間,她已十年沒被這樣問了,但的確成了女生額外要處理的。

得獎後,她參與台灣萊雅與吳健雄學術基金會合辦的高中女性科學教育巡訪計畫,每年都與許多年輕學生面對面交流,座談時間常互動熱烈到讓她趕不上搭車時間。透過這個獎跟活動,能讓許多學生有個學習楷模,提出心中的問題,幫她們去除刻板印象,其實讓她備感欣慰。她甚至因此收了高中生來實驗室實習,但她強調來的高中生得要「玩」、藉實習想像未來的生活,而不是為參加科展得名而來。

對林麗瓊來說,大她四屆,同樣就讀臺大物理系的四姐是最接近的楷模,也因此她學習科學一路以來備受鼓勵而沒受阻礙。另外,曾返台演講的吳健雄則是她朝聖的偶像,曾親睹吳健雄在新竹演講風采的她說自己非常震撼。後來與自己的大哥討論該不該朝物理學邁進時,大哥對她說「吳健雄不就是物理學家嗎?為什麼不呢?」她也因此非常感激。

她給予學生的力量,也承襲自她在哈佛的指導教授 Frans Spaepen。她記得在考慮該留在哈佛做博後,還是去產業界資源豐沛的實驗室時,Spaepen 教授對林麗瓊說,若她能留下來當博後,他會很高興,但不必將哈佛當作第一或是唯一的選擇,該把握機會到外頭更大的世界看看。這番話讓她至今銘記於心,也一直將這種「不為自己設限」的理念傳達給每一位學生。

「你覺得你的興趣在哪、你的才能在哪,就走走看,不要劃地自限。刻板印象是別人的刻板印象,若連自己都有刻板印象,當然就沒救。」身為物理學界的頂尖女性科學家,林麗瓊參與、籌辦了不少推動女性加入科研領域的工作,例如與物理學會女性工作委員會籌拍《物理好丰采》影片,協助成立臺灣女科技人學會等。她說,每個人有各自的問題,但有些問題有共通性,就該以團體的名義來爭取。

例如她參與的物理學會女性工作委員會曾以團體名義向國科會提案,讓有生產事實的女性研究者在提出研究計畫時,可以將過去七年內的發表成果納入,而不是原本的五年,否則女性研究者很容易因為生兒育女放慢進度而被系統性地歧視、或是擔心可能耽誤發展而乾脆不生育。

林麗瓊認為自己沒有天花板,但她不能代表所有女性研究者,因此「如果有需要去衝破的,一起去衝破吧。」她說。

台灣傑出女科學家獎邁入第 15 年,台灣萊雅鼓勵女性追求科學夢想,讓科學領域能兩性均衡參與和貢獻。想成為科學家嗎?妳絕對可以!傑出學姊們在這裡跟妳說:YES!:https://towis.loreal.com.tw/Video.php

本文由 台灣萊雅L’Oréal Taiwan 為慶祝「台灣傑出女科學家獎」15周年而規劃,泛科學企劃執行。

鳥苷三磷酸 (PanSci Promo)_96
154 篇文章 ・ 268 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

8
3

文字

分享

0
8
3
沒看過打不壞的木製球棒?最新「加工法」讓木材硬度堪比金屬!
Rock Sun
・2021/11/19 ・2152字 ・閱讀時間約 4 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

如果今天你想要好好的切食物,該用什麼樣的刀呢?

大家馬上想到的,應該不外乎就是金屬或是陶瓷吧?自古以來要製作工具,這兩個材料一定是首選,直到當代貪圖方便而使用的塑膠刀叉之外,好像想找不太到其他更好的替代方案了。

但是最近,有一群研究人員打破了大眾的想法和材料科學的界線——用木頭製作的刀來取代金屬。

10 月 20 號,這一群來自馬里蘭大學的材料科學家們在期刊《Matter》上發表了一種全新的加工方法,可以把跟木材大幅強化,製作成餐刀等工具。這把刀的硬度不只跟一般的牛排刀不相上下,可以輕鬆地切開 8 分熟的牛排,還可以多次使用、洗滌、有效的回收再利用,整個產品製造過程的能源消耗也比金屬或陶瓷低非常的多,有望在未來取代這類餐具。

經過最新加工方法製成的木材,所製作出的餐刀可比不鏽鋼材質的更加鋒利。圖/Pixabay

比金屬和陶瓷更環保的選擇:木材

當你環顧生活周遭需要以「堅硬」為訴求的材料,你會發現它們大部分都是人造或經過加工的,因為想製作堅硬的物品,最怕的就是整個物理結構上有裂痕、中空或缺口等等瑕疵,只要有以上任何一種,工具的耐久度就無法維持多久,然而天然材料通常都有這種缺陷,例如木頭內部會有中空導管,石頭內則會有導致它容易剝落或裂開的天然紋理。

所以物質多半都都需要經過高溫冶煉才能夠成為堅硬的材料,例如光是製造陶瓷,就需要將陶土加熱到幾千度的高溫,而在這個講求環保的時代,有時候又要考慮產品的碳足跡……不用說,從地球土壤中開採鐵礦和陶土所耗費的能源,絕對與使用天然材質相對多很多。

所以這群研究人員把腦筋動到了陪伴原始人類到現在、樸實無華的木頭身上,他們覺得人類還沒發揮木頭 100% 的能力。

一般的木材在結構上有裂痕、中空或缺口等等瑕疵,無法加工成非常堅硬的工具。圖/Pixabay

請給我木材!人類尚未 100% 發揮它

好幾千年來,人類就不斷地想在木頭身上動手腳,但是在工具和建築上,木頭的加工通常只限於蒸氣曲木和壓縮法,用這種方法處理的木頭都會有個問題,在一段時間過後,木頭本身會有些許的回彈(定型)。

要知道為什麼就得先了解木頭!

木頭最主要的成分是纖維素,雖然平常可能無感,但纖維素其實有相當高的強度與密度比,表面上看起來是一個輕量又堅固的超理想材質,只看數字的話,甚至凌駕於大部分的高密度建築材料如水泥、金屬等等。但是我們目前加工木頭的方式,都無法把木材的材料潛力發揮到極致,部分是因為纖維素其實只佔了木材的 50%,除此之外還包含半纖維素、木質素等物質,這些聚合物主要是作為介質,而非提供強度,但如果將這些東西去除掉,整個木頭結構會變得容易崩壞。

所以研究團隊找到了方法,移除木頭內比較脆弱的物質,但是仍保留纖維素的結構,這個技術可以把原本木材的硬度整整強化 23 倍,並打造出比不銹鋼刀還鋒利 3 倍的餐刀。

蒸氣曲木加工法,將木材放在充滿蒸氣的箱子內彎曲,能加工出優美的弧線。圖/WIKIPEDIA

兩步驟加工:讓「普通木材」變「超硬木材」

第一步是將木頭浸泡在添加了特定化學物質的水中,並加熱到攝氏 100 度,以去除部分木質素。失去木質素的木材會變得較為柔軟、具有彈性甚至還會黏稠;以往的木材加工通常不會將這個方法用在木材上,除了如上述提到的結構問題外,還會有使用溶劑的毒性問題,但研究人員研發出了毒性較低、還能重複使用的溶劑。

第二步是對木頭進行高溫加壓,去除水分並讓其材質更為緻密,確保不會有結構上的缺陷,連樹木中原本被導管佔用的空間都能夠去除。

藉由這兩個步驟,他們有辦法去除木頭原本的結構問題,而經過這樣處理後的木頭還可以裁切成想要的形狀,然後再塗抹礦物油延長壽命、也隔絕水分讓纖維素不要再吸水,以免洗滌餐具降低刀子的鋒利程度。

將木材加工為「超硬木材」的實驗步驟。圖/參考資料 1

木材應用百百種!「五金材料」的新未來?

同樣的手法可以用來製作其他工具,例如和金屬釘子一樣堅硬的木頭釘子,一樣可以釘穿 3 塊木板,但是好處是木頭釘子不會有生鏽的問題,除了釘子之外,還有很多東西可以用這種木頭材質製作,例如更耐用的木頭地板。

儘管目前這個技術的使用還只是存在於實驗室環境中,但是不可否認的是,我們還沒有發揮木頭百分之百的實力,只要這個技術成熟,加上樹木可以種植並回收的特性,在未來每個人都可以分配到的超級強化木材資源或許可以凌駕於金屬,或只是打造出打不壞的木製球棒、堅不可摧的小木屋、輕量化的木頭汽車和飛機、或者是一把堪比鋼刀的超強木刀。

阿銀,你的木刀原來是這麼來的啊 ?

參考資料

2021,《Hardened wood as a renewable alternative to steel and plastic

Rock Sun
62 篇文章 ・ 586 位粉絲
前泛科學的實習編輯,曾經就讀環境工程系,勉強說專長是啥大概是水汙染領域,但我現在會說沒有專長(笑)。也對太空科學和科普教育有很大的興趣,陰陽錯差下在泛科學越寫越多空想科學類的文章。多次在思考自己到底喜歡什麼,最後回到了原點:我喜歡科學,喜歡科學帶給人們的驚喜和歡樂。 "我們只想盡我們所能找出答案,勤奮、細心、且有條理,那就是科學精神。 不只有穿實驗室外袍的人能玩科學,只要是想用心了解這個世界的人,都能玩科學" - 流言終結者

1

7
1

文字

分享

1
7
1
整個宇宙都是我的動物園?——歡迎進入「天文化學」的思考領域
ntucase_96
・2021/09/24 ・3150字 ・閱讀時間約 6 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 撰文|許世穎

本文轉載自 CASE 科學報整個宇宙,都是我的動物園——天文化學

整個宇宙就像是一座「分子動物園」,藉由研究的分子光譜,我們可以得知這分子的分佈、溫度等性質;而由於不同的分子有著不同的「習性」,我們還可以得知孕育這些分子的星際環境。

要了解星際環境,可以從透過分子開始!圖/ESA/Hubble, CC4.0

天文化學是什麼?

天文學是研究宇宙間天體的自然科學,除了一般大眾較為知道的「天文物理學」以外,宇宙擁有很多的面向,其中一個就是本文的主題:「天文化學」。

同樣都是研究「物質」的科學,物理學與化學卻是以不太一樣的方式來觀察這個世界。天文化學著重那些宇宙間「不同天體環境中的原子、分子、離子」等,研究它們的形成、分布、彼此之間的交互作用,或是與環境的交互作用。(接下來為了方便起見,我們將分子、離子等統稱為分子。)

天文學雖然是最古早的科學之一,但是天文化學這個學門,則要到 20 世紀中期才開始慢慢出現。理由很簡單:因為分子看不到呀!星星那麼大一顆,用望遠鏡都不一定能看清楚了,更何況是擺在眼前都看不到的分子呢?

因此要研究宇宙中的分子,必須要靠特別的技術才行;其中,最重要的技術之一,就是「光譜學」。

研究宇宙中的分子,必須依賴「光譜學」才行。圖/envato elements

光譜(spectrum)是將光依照波長或頻率排列出來的圖案,像「彩虹」就是一種光譜,是太陽光依照不同頻率分開來的圖案。而光的範疇除了可見光以外,還有很多肉眼看不到的波段,例如無線電波、紅外線、紫外線、X光……等。

每一種分子都有著屬於自己的光譜,在地球上的我們,如果想要知道分子的光譜長什麼樣子的話,除了可以做實驗量測以外,更多的是用電腦做精密的模擬計算來預測。分子的光譜就像它們的「指紋」,就像警察會將採集到的指紋與資料庫比對,來得知這枚指紋是哪個人留下來的,天文學家則是將觀測到的光譜與資料庫比對,來得知遙遠星際的另一端有哪些分子,甚至是它們的含量、溫度等(圖 1)。

想要了解更多天文學家如何使用光譜學,可以參考:<把光拆開來看:天文學中的光譜>。

銀河系中央的光譜,從中可以分析出很多不同的分子,甚至包括他們的含量、溫度、分佈等等。圖/ESO/J. Emerson/VISTA, ALMA (ESO/NAOJ/NRAO), Ando et al. Acknowledgment: Cambridge Astronomical Survey Unit [2]

為什麼宇宙是「分子動物園」

動物們往往能反應出當地的環境,舉例來說,看到河馬就知道那邊是有水有草的環境;看到櫻花鉤吻鮭就知道有水溫偏低的溪流 [3]。將宇宙視為分子動物園也是一樣的,觀察分子的分佈、含量,也可以讓我們回推物理環境。目前,我們已從星際間,觀測到了約 200 多種分子,這裡就介紹幾種常見的星際分子吧!

宇宙中有很多不同的分子,分佈在不同的地方(示意圖)。圖/EAS2020[4]

氫分子(molecular hydrogen, H2

宇宙中含量最高的分子,也是「分子雲」的主要成分。分子雲中每一立方公分大約有一萬個氫分子(104 cm-3)。

分子雲是恆星、行星誕生的地方,所以了解氫分子的分佈,能幫助我們研究恆星形成。同時,氫分子能與較重的元素反應,是許多化學反應的催化劑,產生其他的分子如一氧化碳(CO)、二氧化碳(CO2)、 氰基自由基(CN)等。

氫分子對天文化學來說相當重要,可惜在分子雲這種均溫只有零下 200 多度的環境,幾乎是不太可能觀測到(因為它是個對稱的分子,有興趣的讀者可以再進一步了解。)[5][6]

一氧化碳(carbon monoxide, CO)

一氧化碳分佈在星際間低溫、高密度的區域。它是星際間含量第二高的分子。

比起氫分子,一氧化碳容易觀測太多了,所以天文學家更容易從一氧化碳的圖像,來得知分子雲的分佈。由於分子雲幾乎沒辦法用可見光直接觀測,早期的科學家根本不知道我們周邊有這麼多分子雲的存在,直到觀測了一氧化碳的圖像之後才大開眼界。 [5][6][7]

被戲稱為「中指星雲」的分子雲。圖/維基百科, CC0

氨(ammonia, NH3

氨也是很容易被觀測到分子。歷史上第一個觀測到的分子是就是氨。氨有許多譜線,而這些譜線的強度對於環境變化非常敏感,能對應到很多種不同的星際環境。對氨的觀測能讓我們更精確地回推出該處的環境狀況 [8][9]

宇宙中的環境變化太大了,不同的環境下化學反應可能會有很大的差異。宇宙間的發散星際雲(diffuse cloud)、密集分子雲(dense cloud)、恆星形成的熱原恆星核(hot core)等這些已經偵測到大量分子的區域,溫度分佈從 10 K~1000 K(約攝氏 -200 度到 +800 度)、密度從每立方公分一百顆粒子到十兆顆粒子(102 cm-3~1013 cm-3)都有!

這裡接著再介紹幾種分子含量高的星際環境。

恆星形成區域(star-forming region)

分子雲內部高密度、正在形成恆星的地方。獵戶座 KL 星雲(Orion KL)是獵戶座大分子雲中,恆星形成最活躍的區域。在這裡有許多的「複雜飽和有機分子」出現,如:甲醇(CH3OH)、甲酸甲脂(HCOOCH3)等,也有一些長鏈的碳分子,如:氰基乙炔(HCCCN)[10]

獵戶座 KL 星雲。圖/NASA, ESA/Hubble [10]

彗星 67P/Churyumov-Gerasimenko (comet 67P/C-G)

在近幾年的觀測資料中,科學家在這裡看到了含量極高的氧分子(molecular oxygen, O2),這讓他們感到非常意外。因為氧分子在宇宙中很容易起反應、變成其它的分子,而在彗星這麼樣一個容易揮發的環境中,卻能有高含量的氧分子存在,代表這些氧分子很有可能是在彗星形成的時候,就已經存在周遭的環境中,並且冰封在彗星上 [11][12]

彗星 67P/C-G(右)以及它的光譜(左)。圖/ESA/Rosetta/NAVCAM [12], CC 3.0(右)A. Bieler et al. (2015) (左)[11]

天文化學所牽涉到的範圍很廣,橫跨了許多不同的領域。 整個宇宙就是一座「分子動物園」。天文學家觀察這些宇宙中的分子,來得知遙遠天體中具有什麼樣的環境。星際間也發現了許多有機分子,研究這些分子甚至能幫助我們理解生命的起源,這是現在天文化學研究的一個重點方向。

參考資料

所有討論 1
ntucase_96
30 篇文章 ・ 687 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。