0

0
0

文字

分享

0
0
0

《醫療崩壞!》老虎的眼淚

貓頭鷹出版社_96
・2012/10/09 ・1476字 ・閱讀時間約 3 分鐘 ・SR值 490 ・五年級

撰文/吳靜芬醫師

我當住院醫師時,有一位讓所有醫師都聞風喪膽的心臟科老師。大家都說他是老虎。老虎老師查房時,住院醫師都會亦步亦趨,睜大兩個眼睛、豎起兩隻耳朵、繃緊每一條神經、撐開所有的毛細孔,精準且一個小數點後的數字都不能有誤差的報告病人狀況。要是有一丁點差錯,老虎的怒吼會讓你三魂六魄齊飛,表情瞬間凍成愛德華.孟克的名畫──吶喊。讓你自慚形穢,以為你父親母親把你生下來,是本世紀最大的災難。而且,還不只如此,你的學長姐、學弟妹,上至總醫師、下至見習醫師,左右兩旁的護理師甚至病房阿嫂,一律連坐,大家一排站好,誰都脫不了責任。心智弱一點的人,回家抱枕頭痛哭;心智強一點的人,咬牙切齒,眼冒火星。有老虎老師在的那個病房,就彷彿拉起命案現場的封鎖線般,在裡面的人,愁雲慘霧;在外面的人,就以分享今日某某某又被修理了來幸災樂禍。

但我最敬愛的,就是老虎老師。老虎那麼兇,其實每一次都是為了病人。他兇,常常是因為你照顧患者不夠精細、不夠謹慎、不夠縝密、不能在病情變化時見微知著。他會花費他必須身兼教學、研究及臨床服務三面玲瓏的寶貴時間,對你訓話兩個小時,冒著被你記恨一輩子的風險,用震撼教育告訴你,要怎麼當一個好醫師。然後再帶著你,回到病床邊,彎下腰,輕聲細語,問診、聽診、叩診、觸診。末了,還給認真勇敢與病魔對抗的病人,一個很久以前這病人曾說過的,最愛吃的蓮霧。不,今日查房尚未結束,回到護理站,老虎老師會用他犀利的眼神,還有其實應該是偽裝成眼鏡的放大鏡,仔細審閱你的病歷,哪一項未記載,哪一項有疏漏,哪一項應該思考的更多。讓你在旁邊再罰站兩個小時。

這一切,我知道,都是為了病人。這樣的他,贏得我最高的敬重。

某日,有一個急性心肌梗塞的病人來了,中壯年,人生還在高峰。第一次,老虎老師做了緊急心導管,幫病人擺脫死神的糾纏。但心肌梗塞後的恢復期,即使病人已經在病房說說笑笑,死神仍然像《絕命終結站》中的電影情節,伺機而動。病人的心臟因之前的梗塞,爛壞的心肌肌肉在永遠不能暫停的搏跳中,破裂。那一次的急救,轟轟烈烈,數個醫生輪流揮汗壓胸、做心臟按摩;掛滿五六個點滴架的輸液源源不絕的想彌補生命的缺口,葉克膜粗如大拇指的管路抖動著與死神拔河的繩索;綠色的無菌單,沾滿鮮血,變成殷紅的戰場。

老虎老師從頭到尾,急著、救著。緊鎖眉頭,不發一語。死神還是贏了,老師從開始到結束,沒有離開過一秒,即使知道遇上這種致死率極高的心肌破裂,再怎麼堅持與搶救,可能都是徒勞無功。但他,就是沒有離開、沒有放棄。病人已被鋪上白布,推離加護病房,他還不走。我們各個噤若寒蟬,覺得世界末日的老虎嘶吼即將落下。但,只有沉默。

我忍不住靜默,抬頭,卻看見老虎流淚了,一滴滴的淚珠摻雜著所有負面的情緒:氣、恨、不捨、不值、不甘心、不情願,腐蝕老虎堅強的防波堤,一顆跟著一顆墜落在病歷上。對著當時已決定投身心臟科的我說:「心臟科,是血淋淋的一科。」

強壯的老虎,面對疾病、面對蟄伏的死神,仍然脆弱。疾病加害的,不是只有受苦的患者,還有那個以隻身之力,對抗命運的醫師。面對每一段被折磨的生命,醫師、護理師都一樣煎熬。只是,我們仍然得戴起老虎的面孔,嘗試著嚇退死神。比較堅強,絕不等同於比較冷漠,只是,淚水必須在所有人都離開後,才能滴落。

如果,您不是醫護人員,那麼,我會非常感謝您,願意讀到這裡。

 

摘自《醫療崩壞!沒有醫生救命的時代》第一章〈台灣醫療崩壞正在進行中,而你該怎麼辦?〉。本書由貓頭鷹出版社出版,獲2012年10月PanSci選書推薦

文章難易度
貓頭鷹出版社_96
62 篇文章 ・ 25 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。

0

1
0

文字

分享

0
1
0
3 萬年前截肢手術,婆羅洲有史前黑傑克?
寒波_96
・2022/12/02 ・2362字 ・閱讀時間約 4 分鐘

即使沒有現代的醫療知識,古人也能進行截肢這類外科手術,不過手術很成功,但是病人死掉的狀況也不意外。一項考古研究宣稱發現已知最早的截肢手術,地點位於東南亞的婆羅洲雨林,年代距今 3.1 萬年。那麼久以前的原始人,真的有能力截肢嗎?

請注意,本文包含人類遺骸的圖像。

3.1 萬年前手術成功,而且病人活著?

之前知道最早的截肢手術年代是 7000 年前,法國新石器時代的 Buthiers-Boulancourt 遺址。

這項研究調查的地點是一處名喚 Liang Tebo 的石灰岩洞,位於婆羅洲東部。考古學家在這兒尋獲一位長眠者 TB1,估計於 3.1 萬年前去世。此時處於舊石器時代,一小群一小群人們不長期定居,沒有農業,以採集、狩獵維生。

考古學家由埋葬狀況判斷,排場儘管簡陋,應該為他人有意識的體面墓葬,骨頭保存相當完整。估計去世時 20 歲左右,憑藉骨盆無法判斷性別,他的身高不矮,可能是男生或高個子的女生。

遺址位於圖中的紅框內。婆羅洲如今是東南亞外海的島嶼,冰河時期海平面較低時,卻直接連結東南亞大陸。圖/參考資料 1

經歷好幾萬年的歲月,遺骸少掉一些部位也很合理。然而,這位就是少掉左小腿中段以下的骨頭。考古學家仔細分析後,判斷他經歷過小腿的截肢(amputation)手術,之後至少又經過 6 到 9 年,直到去世。

考古學家根據什麼理由判斷他是截肢,而不是一般的斷腿呢?主因是他的小腿骨斷面非常平整,不像是事故摔斷,也沒有感染的跡象,表示腿骨離開身體後沒有造成嚴重的病變。

他左小腿保留的脛骨(tibia)和腓骨(fibula)尺寸比右邊小,明顯有生長落差。推論他在 10 歲多時由於未知原因,被身邊的人用某種利器將左邊小腿骨切斷,而且照護得宜,又生活至少 6 年,去世時受到妥善埋葬。

如果上述推論正確,這位 3.1 萬年前的東南亞人,就是世上截肢手術最早的成功紀錄。

遺骸 TB1 的下半身。圖/參考資料 2

東南亞的史前黑傑克

執行手術的工具不明,肯定不是金屬,可能是黑曜石或某種石材,或是鋒利的貝殼或骨製器具,甚至是加工處理過的竹子,都可能用於切斷骨骼,或是在手術中使用。

截肢不是簡單的小手術,當時的婆羅洲人懂得截肢手術需要的消毒、麻醉、止痛嗎?

即使是身強體壯的(十幾歲)原始人,完全沒有藥物輔助下,要在截肢後全身而退,連明顯感染都沒有,想來不太可能。當地環境一定找得到可供藥用的植物,雖然缺乏直接證據,不過可以假設施術者懂得這些知識。

手塚治虫創作的角色「怪醫黑傑克」開刀出神入化,黑傑克也成為動手術的代名詞。婆羅洲的史前黑傑克是如何習得開刀技能呢?

我自己的想法是,古早人處理動物時,可以獲得不少練習機會,對於骨、肉、血想必不會陌生。在決定截肢的時候,操刀者應該自認有成功的機會,有信心又技術熟練地下刀,否則不會有如此漂亮的手術結果。

截肢者想像圖。圖/參考資料 4

光憑極為零星的考古調查,無法估計當時的截肢狀況,不清楚這位是成功的特例,或是大批犧牲者中唯一的幸運兒。只能確定當時的婆羅洲人,不只已經有相關的醫療知識,還有團隊照顧的精神。

考古沒有發現,不等於真的沒有,也要考慮到遺骸保存的狀況。成功的截肢手術會在四肢留下痕跡,但是舊石器時代的遺骸,四肢骨頭保存往往不全,考古上難以辨識。我猜舊石器時代應該有更多截肢的成功案例,大部分卻無法被我們知曉。

之前研究得知東南亞的婆羅洲、蘇拉威西這塊區域,超過 4 萬年前便有壁畫等藝術創作。史前黑傑克與截肢者所屬的人群,應該和藝術家有關連。醫療、藝術,果然皆為高端的人類技能。

延伸閱讀

參考資料

  1. Maloney, T. R., Dilkes-Hall, I. E., Vlok, M., Oktaviana, A. A., Setiawan, P., Priyatno, A. A. D., … & Aubert, M. (2022). Surgical amputation of a limb 31,000 years ago in Borneo. Nature, 609(7927), 547-551.
  2. Earliest known surgery was of a child in Borneo 31,000 years ago
  3. Prehistoric child’s amputation is oldest surgery of its kind
  4. World’s oldest amputation: Foot removed 31,000 years ago—without modern antibiotics or painkillers
  5. Buquet-Marcon, C., Philippe, C., & Anaick, S. (2007). The oldest amputation on a Neolithic human skeleton in France. Nature Precedings, 1-1.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
193 篇文章 ・ 928 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

2

3
0

文字

分享

2
3
0
【2022 年搞笑諾貝爾藝術史獎】浣腸也搞儀式感!藥理學家的馬雅考古
寒波_96
・2022/09/21 ・5148字 ・閱讀時間約 10 分鐘

搞笑諾貝爾獎每年都是新的開始,2022 年也不例外。今年「第 32 次第一屆搞笑諾貝爾獎」一共頒發 10 個獎項,藝術史獎 2 位學者的得獎理由是:

「以跨領域手法研究古代馬雅陶器畫面的儀式性浣腸(A Multidisciplinary Approach to Ritual Enema Scenes on Ancient Maya Pottery)」。

浣腸場景的馬雅陶器,盡在不言中。圖/取自 mayavase

2022 年,肛門或成最大贏家!

浣腸(enema)別名灌腸,就是直接向肛門注入液體,刺激排泄。灌腸也指稱香腸的作法,浣腸讀起來比較有儀式感,本文之後就採用浣腸稱呼。

今年的生物學獎也和肛門有關,肛門或成最大贏家!有種蠍子斷尾求生後,連肛門都會一起脫落,而且無法再生,再也無法排泄,最終便秘致死。好在即使屁股沒惹一半,還可以再活幾個月,完成傳宗接代的蠍生大事。

同時看到馬雅人的浣腸研究,想說能不能幫斷尾的蠍子也浣腸一下,解決便秘問題……馬上想到它們已經沒有屁股,不再有機會享受浣腸的樂趣,嗚嗚。 😭

有趣的是(疑似贅句,本文應該沒有無趣的事),2022 年受到表揚的藝術史獎來自 1986 年發表的論文,本身就很有考古精神,36 年過去,如今得獎者都老惹。

大部分搞笑諾貝爾獎頒給近幾年的研究。但是一查之下大吃一驚,穿越歲月的表揚很少,卻不算罕見:

2022 年的藝術史獎頒給 1986 年的研究,時隔 36 年。

2021 年的昆蟲學獎頒給 1971 年的研究,時隔 50 年。

2013 年的安全工程獎頒給 1972 年的研究,時隔 41 年。

2013 年的公共衛生獎頒給 1983 年的研究,時隔 30 年。

2011 年的公共安全獎頒給 1967 年的研究,時隔 44 年。

2011 年的生物學獎頒給 1983 年的研究,時隔 28 年。

2010 年的公共衛生獎頒給 1967 年的研究,時隔 43 年。

2008 年的化學獎頒給 1985 年的研究,時隔 23 年。
……

中間是考古學家地獄慕斯(Nicholas Hellmuth),右下是藥理學家德史密特(Peter A.G.M. de Smet)。圖/取自 頒獎影片

研究民族藥物的藥理學家:一個博士不夠,就再讀一個!

今年等待 36 年的 2 位得獎者,是什麼來頭呢?馬雅是個位於中美洲,有數千年歷史的文化,如今依然有數百萬馬雅人樸實地生活著,儘管不如古代輝煌。研究馬雅考古的人,應該是考古學家吧!其中一位地獄慕斯(Nicholas Hellmuth)確實符合想像,他正是探索古馬雅的考古學家。

然而,另一位德史密特(Peter A.G.M. de Smet)不是考古學家,而是藥理學家。這項探討馬雅浣腸的研究,源自他博士論文中的一部分,而且這是他的第二個博士學位。

德史密特是荷蘭人,就讀烏特勒支大學(Utrecht University),公元 1979 年取得「藥學博士(Doctor of Pharmacy)」,具有一流的藥理學專業。後來他對民族藥物,也就是各地的草藥、菸草等傳統藥物產生興趣,於是 1981 年起又深造數年,1985 年再取得一個 PhD 博士。

他的博士題目叫作《美洲的儀式性浣腸與鼻菸(Ritual enemas and snuffs in the Americas)》,這段期間他幹勁十足地完成多達 11 篇論文!這麼多素材都被整合進博士論文,後來有出書。

德史密特出版過好幾本書,有亞馬遜作者頁面。圖/取自 亞馬遜網頁

這位藥學博士在第二個博士論文中(第 13 頁),一整個理組嗆文組的 fu:

「儀式性用藥的資料中,不當使用藥理學數據,是驚人的常見錯誤。實際上這不太意外,因為這個領域中的作者,往往缺乏藥理學背景。」

初出茅廬的德史密特,整理當時藥理學、民族學、考古學的多方資訊,加上自己的實驗,探討美洲原住民在浣腸、吸菸兩項行為的材料、手法、效果,使他成為以現代科學探討民族藥理學(ethnopharmacology)的先驅。

40 年來他身兼藥理學家、民族藥物學家的雙重身份,兩個領域都頗有建樹,總共發表上百篇論文,有些引用數相當可觀。2011 年還出過一本書,由 20 世紀初的明信片討論各地的民族藥物。

出現浣腸場面的馬雅陶器畫面,中間有位睡蓮美洲豹。圖/取自 Here are the winners of the 2022 Ig Nobel Prizes

藥理學×考古學:馬雅人為什麼浣腸?

馬雅人為什麼浣腸?馬雅世界後來成為歐洲人殖民地,早在殖民時期便有紀錄,馬雅人以浣腸行醫療用途。這也是當今受過醫學訓練的醫師、護理師之基本專業。

然而,1977 年重現於世的古代陶器,上頭的浣腸畫面卻不像醫療,而是某種儀式的場景。此後累積愈來愈多證據,現在可以肯定馬雅人不只為了醫療浣腸,還會在儀式性的場子中浣腸,有搞別人屁股,也可以自己搞自己屁股,還有互相浣腸的。

馬雅浣腸是德史密特的博士論文中,少數有關考古的題材,他不懂考古學,因此找到前輩地獄慕斯助拳。地獄慕斯搜藏不少馬雅小本本(主要是 6 到 9 世紀的古典期晚期),在其協助下,德史密特能充分發揮藥理學專業,跨領域探討古代馬雅人的浣腸學問。

出現浣腸注射器的馬雅陶器畫像。馬雅人長相並不奇怪,畫面中人只是戴著面具喝酒。圖/取自〈【食慾流動】今晚我想來點中美洲烈酒

「儀式(ritual)」的目的千變萬化(很多人類學家不知道怎樣解釋就說是儀式,老套路),馬雅浣腸的目的是什麼?德史密特認為一項意義可能是「淨化」。浣腸就是人為強制排出消化道中的廢物,在淨化儀式中適合作為象徵。

有些浣腸的目是追求快感,馬雅人應該也不例外,畢竟有些浣腸儀式的畫面,看起來就是派對。在儀式中使用藥物、興奮劑助興,不論古今都很常見。馬雅浣腸多半也是令參與者愉悅的儀式。還有人浣腸的目的是保健,像是現在也有人提倡咖啡浣腸。由此推敲,浣腸儀式能達到綜合性的目的。

浣腸跨越時空。福大命大的法蘭西大皇帝「太陽王」路易十四,便以喜愛浣腸聞名,別稱「大腸王」,據說一生浣腸超過 2000 次。當時浣腸和放血一樣,是流行的醫療與保健手段,不過懂玩的路易十四,想必也從中獲得不少快感。

提醒各位讀者,浣腸未必會傷害人體,但是一定有風險。不論目的是醫療、愉悅或保健,都要審慎進行,一旦碰到狀況,快點尋求醫療協助。尤其千萬不要用屁股直接喝酒或興奮劑!肛門、腸道細胞的吸收效果好,恐怕會不知不覺地中毒。

大腸王路易十四一邊浣腸,一邊接見外賓的歷史畫面。圖/取自 wiki 公共領域

實驗精神,注入!

注入肛門的液體是浣腸關鍵,浣腸液的配方、用量大有學問。幾乎可以確定馬雅人會用酒精浣腸,畫像中便能見到稱為「balché」的含酒精發酵飲料。

一堆博士牲讀的要死要活,即使僥倖畢業,也常常像 Long COVID 後遺症般,罹患遺憾終生的 Long PhD。德史密特的博士生涯卻充滿趣味,他拿自己的屁股做實驗,測試不同濃度與用量,讓讀者也猝不及防地上車。

讓人享受快感的浣腸,要將浣腸液留在腸道一段時間,不能馬上排出,所以不能注入太多。

德史密特在博士論文第 57 頁寫到,現代西醫操作下,超過 200 cc 只作為刺激排泄使用。古代藝術品中,有些看起來 size 很大大大的注射器,能注入不少浣腸液,其目的看似為快速大爆射的淨化功能,而非慢慢醞釀,體驗灌腸的愉悅感。

然而,德史密特又指出,他用自己屁股做實驗發現,即使注入 500 cc 的酒精灌腸液,也能輕易地維持不會大爆射。因此不能說注射器比較大支,就一定無法享受快感。

大腸王路易十四直呼內行:這荷蘭仔,懂玩!

攻打荷蘭的太陽王路易十四畫像。圖/取自 wiki 公共領域

浣腸液除了酒精,馬雅人還有哪些素材?

酒精以外,德史密特還測試過 DMT(dimethyltryptamine,N,N-二甲基色胺)浣腸,沒什麼特別感覺,不過他謹慎使用的劑量非常低。致幻劑 DMT 可以調製死藤水(ayahuasca)等迷幻藥,吃多會出人命,千萬不要胡亂嘗試。

作為藥理學家,德史密特討論多款可能的成分,不過沒有自稱試用過。像是咖啡因、尼古丁、迷幻蘑菇(psilocybian mushroom)、毒蠅傘(fly agaric,學名 Amanita muscaria)、睡蓮(water lily)、柯拉豆屬植物的蟾毒色胺(Anadenanthera alkaloid bufotenin,巴西植物 paricá 的種子)等等。

德史密特認為,他探討的大部分化學物質都不適合用於浣腸液,或是有機會被馬雅人使用。稀釋的咖啡因、尼古丁溶液肯定能用來浣腸,而且效果不錯。可是沒有馬雅人使用咖啡因、尼古丁浣腸的鐵證。

還有睡蓮值得一提。有些陶器畫面上出現睡蓮,可能作為儀式用途;而某些種類的睡蓮中又含有可作為致幻劑(hallucinogen)的成分,這才懷疑到睡蓮。但是睡蓮是否用於浣腸,至今仍缺乏可靠的證據。

這些研究看似搞笑,有什麼意義呢?不少人類學家、民族學家、考古學家,歷史學家做研究時,會接觸藥物與儀式,卻時常缺乏足夠的藥學知識,對於目的、用法、用量、效果等問題無法深入探討。人類學家 David J. Minderhout 在 1987 年的書評提到,德史密特以藥理學的視角切入,能彌補人類學、民族學的不足,對藥用植物感興趣的人,這類研究頗有參考價值。

總之就是,叔叔有練過,大家不要模仿。浣腸是有風險的行為,不論出於什麼目的,都要謹慎操作。

2022 年搞笑諾貝爾獎頒獎典禮影片(藝術史獎從 47:50 開始):

更多有趣的研究,請到【2022 搞笑諾貝爾獎】

延伸閱讀

參考資料

  1. 2022 年搞笑諾貝爾獎得獎名單
  2. Here are the winners of the 2022 Ig Nobel Prizes
  3. 德史密特在 WHO 旗下 International Classification of Traditional Medicine(ICTM)的網頁
  4. 德史密特 1985 年的博士論文《Ritual enemas and snuffs in the Americas》
  5. de Smet, P. A., & Hellmuth, N. M. (1986). A multidisciplinary approach to ritual enema scenes on ancient Maya pottery. Journal of ethnopharmacology, 16(2-3), 213-262.
  6. Minderhout, D. J. (1987). Ritual Enemas and Snuffs in the Americas. Peter AGM de Smet.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

所有討論 2
寒波_96
193 篇文章 ・ 928 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

1

5
0

文字

分享

1
5
0
光學顯微技術探入果蠅腦袋最深處——描繪超高解析度的 3D 神經結構!
科技大觀園_96
・2021/08/30 ・3333字 ・閱讀時間約 6 分鐘

在常見的醫療影像技術中,有正子造影(PET)、磁振造影(MRI)及超音波等等,雖然
如何透過神經細胞彼此的連結產生進一步的功能,是21世紀科學界想破解的謎團。圖/Pixabay

大腦:人類未竟的疆土

當我望著無邊無際的蔚藍海洋、聽到浪花聲、感受微風的輕拂,喜悅地回想起和好友在此旅行的回憶,並決定拿起手機拍下眼前的美景,我是如何感知世界、如何儲存與提取記憶?我的情感、思想、決策與行為是如何發生的?這些心智行為的奧秘藏在擁有 860 億個神經細胞的大腦,是我之所以為我的關鍵。

究竟大腦如何運作?這些神經細胞是如何透過彼此的連結與交互作用產生進一步的功能?進入 21 世紀以來,美國、歐盟、日本、中國等紛紛成立大型且長期的腦科學研究計畫,企圖揭開大腦的奧秘。

我國科技部也推出「台灣腦科技發展及國際躍升計畫」,整合既有研究能量與專業人才,期望建構模式動物至部分人腦的腦神經網路結構及功能圖譜,並帶動腦部疾病的精準醫療。

光學顯微鏡:小動物腦研究的利器

想要全面分析大腦的結構與訊號,解開單一或一群神經細胞的連結情形,精良的觀測工具是其根本,因此臺大物理系教授朱士維致力研發先進的光學顯微鏡技術。

朱士維表示,常用於醫療的影像技術,像是正子造影(PET)、磁振造影(MRI)、超音波等,雖然可以穿透很深的物體,但是解析度不夠高,無法看到單一細胞;而解析度極高的電子顯微鏡穿透深度卻很小,只能看到表層。光學顯微鏡恰好介在中間,適合用於研究小動物的腦。近期,朱士維的跨領域團隊發表了數個嶄新的顯微技術,分別在解析神經訊號和結構有了重大突破。

數個影像技術在解析度與穿透深度的分布。圖/朱士維提供

飆速3D攝影,解析神經的功能性連結

首先,研究團隊發表了「高速體積成像系統」,是全球第一次可在活體果蠅腦中以毫秒解析度取得神經結構 3D 高速動態影像!

「高速體積成像系統」是由雙光子顯微鏡與「可調變的聲波漸層透鏡」(TAG)結合構成。拍攝二維的動態影像並不稀奇,厲害的是,研究團隊如何把二維變成三維?關鍵就在於「可調變的聲波漸層透鏡」。由於液體透鏡的密度,會決定光的折射率,進而影響焦距的長短,研究團隊透過壓電材料激發液體透鏡共振,當透鏡的密度不斷變化,焦點也會快速移動,其振盪頻率可高達 100 kHz – 1 MHz,也就是說,在 10 萬分之一秒以內即可完成焦點的來回移動。

「可調變的聲波漸層透鏡」(TAG)放置在物鏡前面,透過壓電材料促使TAG密度改變,進而移動焦點位置。圖/朱士維提供
焦點快速移動的示意動畫。圖/朱士維提供

一般雙光子顯微鏡每拍攝一次只能拍到水平面(xy 軸)的像素並組成二維影像,若加上「可調變的聲波漸層透鏡」組成「高速體積成像系統」,即可同時進行深度(z 軸)的來回掃描,在同樣的時間內拍攝出一個包含各個深度的體積三維影像。 

同樣的時間下,原本只能掃描一個水平面,有了「可調變的聲波漸層透鏡」,則可掃描完一個體積。圖/改自參考資料 2

這項強大的技術對於研究神經與神經之間的功能性連結非常有用,譬如說,想了解果蠅如何處理嗅覺訊號,我們可以給果蠅聞一種特殊氣體,以「高速體積成像系統」綜觀其腦,即可找出此特殊的嗅覺刺激會引發哪些下游神經反應。接著,選擇想深入研究的神經,將拍攝範圍鎖定在該神經所在的區域,便可以毫秒時間解析度與微米空間解析度,追蹤訊號在這些神經細胞之間的傳遞順序。 

朱士維表示,「高速體積成像系統」的突破之處,在於可以於腦中劃定任意形狀的空間,並以毫秒等級的時間解析度,看見目標神經中各個神經細胞的電生理動態行為。

研究團隊更進一步發展光學神經激發系統,用光精準地刺激個別神經,再透過「高速體積成像系統」,輔以自動化影像分析,精準定位有反應之神經區域,做到「全光學生理」觀察(all-optical physiology)。目前已成功解析果蠅的視覺神經迴路中,上下游的神經連結與編碼模式。

「高速體積成像系統」以高速動態影像研究神經細胞功能上的連結,為建立果蠅的「功能性全腦連結體(connectome)」提供強而有力的工具。

探入果蠅腦深處,描繪超高解析度的 3D 結構

此外,在結構解析方面,顯微鏡光是能看到神經細胞還遠遠不足。神經細胞有樹突、軸突等向外延伸的纖維,有些纖維寬度只有 100 奈米,當兩條神經纖維緊鄰彼此,需要小於 100 奈米的解析度才能將它們區分開來。而且,神經纖維常常延伸至很遠的地方與其他神經細胞連結,因此顯微鏡的穿透深度,還須深至腦的最底層。

朱士維團隊發表了「深組織超解析光學技術」(Confocal lOcalization deep-imaging with Optical cLearing, COOL),在果蠅全腦中達成 20 奈米的超高空間解析度,剖析腦中神經的細微結構,能分辨出相鄰或彼此纏繞的神經纖維,藉以判斷神經連結的路徑。

三維的神經纖維分布圖像。「深組織超解析光學技術」可將兩條緊密交纏的神經纖維清楚分離開來。右下圖為相同神經與染色,傳統共軛焦影像無法分辨神經纖維的細緻結構。圖/朱士維提供

「深組織超解析光學技術」結合了四個關鍵技術,包含「螢光蛋白標定」、「共軛焦掃描顯微鏡」、「光學組織澄清技術」以及「定位顯微技術」。

「定位顯微技術」是 2014 年諾貝爾化學獎的得獎項目,透過操縱螢光分子輪流放光,再分別計算螢光分子的中心位置,打破光學顯微鏡的解析度極限,大幅提高解析度至接近 20 奈米。「光學組織澄清技術」則是江安世院士發明的 FocusClearTM 試劑,因其獨特的化學配方,讓生物組織各部位的折射率一致,呈現透明狀態。

朱士維團隊找出可適用於腦組織的螢光分子並改善其放光能力,成功將定位顯微技術應用在果蠅腦,並且透過光學組織澄清技術讓腦組織透明化,減少組織的散射與像差,提高穿透深度,以及利用共軛焦掃描顯微鏡一層一層地掃描不同深度的影像。最終,組合成三維的超高解析影像。

這項技術最厲害之處在於可穿透厚度約 200 微米的果蠅腦,在果蠅全腦皆達成 20 奈米的解析度,可應用在建立果蠅全腦的神經連結網路。

跨領域團隊 開創顯微技術新紀元

這些研究成果仰賴跨領域的團隊,除了朱士維,還有清華大學腦科學研究中心主任、中央研究院院士江安世、中研院物理所副研究員林耿慧、清大工程與系統科學系副教授吳順吉、清大生醫工程與環境科學系助理教授朱麗安、捷絡生技公司執行長林彥穎等人,共同參與研究。

諾貝爾生醫獎得主 Sydney Brenner 曾說:「科學的進展往往是始自新的技術」,腦科學作為 21 世紀科學界的兵家必爭之地,顯微技術的研發重要性不言可喻。朱士維團隊在動態的神經訊號與靜態的神經結構,皆發展出相應的顯微技術,可說是為腦科學領域開拓出令人期待的嶄新未來。

朱士維團隊開發的兩種顯微技術比較表。圖/沈佩泠繪

參考資料

  1. K.-J. Hsu, Y.-Y. Lin, Y.-Y. Lin, K. Su, K.-L. Feng, S.-C. Wu, Y.-C. Lin, A.-S. Chiang, S.-W. Chu*, “Millisecond two-photon optical ribbon imaging for small-animal functional connectome study”, Opt. Lett. 44, 3190-3193 (2019). 
  2. C. Huang, C.-Y. Tai, K.-P. Yang, W.-K. Chang, K.-J. Hsu, C.-C. Hsiao, S.-C. Wu, Y.-Y. Lin*, A.-S. Chiang*, and S.-W. Chu*, “All-optical volumetric physiology for connectomics in dense neuronal structures”, iScience22, 133-146 (2019)
  3. H.-Y. Lin, L.-A. Chu, H. Yang, K.-J. Hsu, Y.-Y. Lin, K.-H. Lin, S.-W. Chu*, A.-S. Chiang, “Imaging through the whole brain of Drosophila at λ/20 super-resolution”, iScience14, 164-170 (2019). 
所有討論 1
科技大觀園_96
82 篇文章 ・ 1120 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。