Loading [MathJax]/extensions/tex2jax.js

4

2
0

文字

分享

4
2
0

如果,這些名人都是Gay?

鄭國威 Portnoy_96
・2012/12/28 ・2191字 ・閱讀時間約 4 分鐘 ・SR值 513 ・六年級

圖片來自維基百科

公開揭露「某人」是同性戀,一向是件備受爭議的行為,尤其是當「某人」並未同意被揭露時。然而;然而即使「某人」自己公開出櫃,還是會被有心人批評這種行為不宜,只因為他們心中對於同性戀的某些負面刻板印象被召喚起。

然而「公開出櫃」這件事,除了出櫃這個動作以外,還有「公開」,公開要到什麼樣的程度才叫作公開呢?即使某人公開表示自己是同性戀了,但並不表示所有人都會在同一瞬間知道這件事。演藝圈裡頭一直有這種所謂「公開的秘密」,就是指圈內人都知道某某明星是Gay或Lesbian,但是因為沒有話題性、不夠大牌,所以也沒人在乎;相反的,台灣演藝圈中最知名的男同志蔡康永即使公開出櫃,也因為他的地位、身份,或許還有人緣,不會有媒體狂追猛打,報導動輒在他的名字前面加上「男同志」,例如「男同性戀主持人康永即將接下本屆XX獎主持棒…」;所以,由於各種原因,並不是人人都知道「某人」是同志,或是確定某人的確是同志,即使某人已經公開出櫃。

螢幕快照 2015-06-24 上午1.28.37

(2015年6/23,蔡康永在中國電視節目《奇葩說》上談到自己出櫃其實經歷過許多挫折,因此儘管許多人在鼓起勇氣出櫃前最後一刻跟他聯絡,他通常會勸對方再想想。同時他也表示許多知名人士出櫃,對他都是很大的鼓舞。完整影片請見此。)

說到這個,有人認為媒體報導動輒加註某人的「同性戀」身份是種污名,也有人認為這種作法才能提高同性戀在大眾印象中的存在感,讓人們覺察到「其實同性戀很普遍」。兩種說法都得看上下文脈絡跟實際的閱聽人感受才能說個準,不過一般來說,若一個人有家庭成員或朋友是同性戀,這個人在表現上較不會「展現出」對同志的偏見,「心理上」對同性戀也較能接受。也就是說,熟悉的人如果出櫃,會影響人們對同性戀的看法,那麼對於一般人來說,知道知名人物(同樣也算是熟悉的人)是同性戀,會不會也降低人們對同性戀的偏見呢?

-----廣告,請繼續往下閱讀-----

讓我們看看這個調查:Nilanjana DasguptaLuis Rivera兩位研究者透過報紙廣告招募了127名異性戀。這些人被分為兩組,研究者給其中一組(對照組)看15種「花」的照片跟描述,另一組(實驗組)則看知名同性戀人士的照片跟簡單介紹,然後進行內隱態度測試(Implicit Attitude Test)。如果你有興趣的話,可以到這個網站自我測試看看。簡單來說,你會看見同性戀或異性戀的照片,你必須立即按鍵盤上的E(同性戀)或是I(異性戀)進行判斷。跟著你會看見一組組字詞,有些正面,有些負面,像是「愛」、「喜悅」、「朋友」、「恨」、「嘔吐」、「炸彈」等等,然後同樣按E或是I鍵盤進行判斷。下一階段是把上面兩個測試(圖像跟字詞)合併,網站會要求「當你看見同性伴侶或正面字詞時,按E;當你看見異性伴侶或負面字詞時,按I」,然後再反過來做,當看見同性伴侶或負面字詞時按E,異性伴侶跟正面字詞時,按I。網站會紀錄你的測試時間,如果你對特定連結之間的反應特別快,那就代表你內隱態度較喜歡這樣的連結。

接著所有受測者回答自己的朋友與家人裡頭有多少同性戀,研究者再依照這些數字將受試者分成兩群–「少接觸群」(low-contact)跟「多接觸群」(high-contact),配合之前的測試,得出結果如下圖:

從圖中可以發現,

1. 不管一開始看得是花的圖片,還是知名同志人士的照片,多接觸群(High Contact)對於同性戀的內隱偏見較低,看的資料並沒有帶來顯著影響。
2. 但是在少接觸群(Low Contact)中,看了知名同志人士照片的實驗組,對同志的偏見比看花朵照片的對照組顯著來得低。
3. 單單只是看了同志的照片跟簡短介紹,少接觸群對於同志的內隱偏見就降低至跟多接觸群差不多(無顯著差異)。

-----廣告,請繼續往下閱讀-----

內隱偏見很難造假,所以這個實驗調查出來的結果讓人頗驚訝。但內隱偏見跟外顯偏見還是不同的:回答偏見問題時手指動得稍微慢了點,不代表你在真實生活中也會將偏見表現出來。所以研究者在一週之後又邀集了同一批受測者進行調查;首先,先簡單測試他們是否還記得上週看過的花朵或知名同性戀照片,接著用「投票」的方式讓受測者表明他們對一系列議題的政治傾向,裡頭混雜了一些跟同性戀相關的議題,例如支不支持同性婚姻同志認領小孩、以及職場上差別待遇等。針對不同議題,受測者須表示他們是否可能願意為了支持該議題而投票,給出從0(非常不可能)到6(非常可能)的分數,下圖為這次再測試的結果:

從上圖我們又可以再次觀察到一些有趣的結果:

1. 多接觸群普遍比較支持同性戀公民權,不管先前的實驗中看的資料是什麼。
2. 在少接觸群中,看過知名同志人士照片跟介紹的那組更傾向於支持同性戀公民權,比起看花的那組來得顯著高出許多。

從接連的調查可以發現,只是單純看見出櫃知名人士的照片跟介紹,知道這些知名人士其實都是同性戀,就足以大幅改變人們對同性戀的偏見,不管是內隱還是外顯。世界各地都有保守的反同者不贊同知名的同志人士公開表露性傾向,也不喜歡媒體提到或報導他們的性傾向,大概就是希望人們不受影響,繼續保持偏見吧。我想這個實驗調查頗值得搬到台灣來複製,尤其在此時此刻。

-----廣告,請繼續往下閱讀-----

資料來源:
Cognitive Daily: “Outing” admired gays and lesbians may decrease prejudice

Dasgupta, N., Rivera, L.M. (2008). When Social Context Matters: The Influence of Long-Term Contact and Short-Term Exposure to Admired Outgroup Members on Implicit Attitudes and Behavioral Intentions. Social Cognition, 26(1), 112-123. DOI:10.1521/soco.2008.26.1.112

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 4
鄭國威 Portnoy_96
247 篇文章 ・ 1300 位粉絲
是那種小時候很喜歡看科學讀物,以為自己會成為科學家,但是長大之後因為數理太爛,所以早早放棄科學夢的無數人其中之一。怎知長大後竟然因為諸般因由而重拾科學,與夥伴共同創立泛科學。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

30
1

文字

分享

0
30
1
民眾黨是未來台灣政治的樞紐?
林澤民_96
・2024/01/30 ・3382字 ・閱讀時間約 7 分鐘

一、前言

選後的立法院三黨不過半,但民眾黨有八席不分區立委,足以與民進黨或國民黨結成多數聯盟,勢將在國會居於樞紐地位。無獨有偶的是:民眾黨主席柯文哲在總統大選得到 26.5% 的選票,屈居第三,但因其獲得部分藍、綠選民的支持,在選民偏好順序組態的基礎上,它卻也同樣地居於樞紐地位。這個地位,將足以讓柯文哲及民眾黨在選後的台灣政壇持續激盪。

二、柯文哲是「孔多塞贏家」?

這次總統大選,誰能脫穎而出並不是一個特別令人殷盼的問題,更值得關心的問題是藍白綠「三跤㧣」在選民偏好順序組態中的消長。台灣總統大選採多數決選制,多數決選制英文叫 first-past-the-post(FPTP),簡單來講就是票多的贏,票少的輸。在 10 月中藍白合破局之後,賴蕭配會贏已經沒有懸念,但這只是選制定規之下的結果,換了另一個選制,同樣的選情可能就會險象環生。

從另一個角度想:選制是人為的,而選情反映的是社會現實。政治學者都知道天下沒有十全十美的選制;既定的選制推出了一位總統,並不代表選情的張力就會成為過眼雲煙。當三股社會勢力在制度的帷幕後繼續激盪,台灣政治將無法因新總統的誕生而趨於穩定。

圖/作者自製

如果在「三跤㧣」選舉之下,選情的激盪從候選人的得票多少看不出來,那要從哪裡看?政治學提供的一個方法是把候選人配對 PK,看是否有一位候選人能在所有的 PK 中取勝。這樣的候選人並不一定存在,如果不存在,那代表有 A 與 B 配對 A 勝,B 與 C 配對 B 勝,C 與 A 配對 C 勝的 A>B>C>A 的情形。這種情形,一般叫做「循環多數」(cyclical majorities),是 18 世紀法國學者孔多塞(Nicolas de Condorcet)首先提出。循環多數的存在意涵選舉結果隱藏了政治動盪。

-----廣告,請繼續往下閱讀-----

另一方面,如果有一位候選人能在配對 PK 時擊敗所有的其他候選人,這樣的候選人稱作「孔多塞贏家」(Condorcet winner),而在配對 PK 時均被擊敗的候選人則稱作「孔多塞輸家」(Condorcet loser)。三角嘟的選舉若無循環多數,則一定會有孔多塞贏家和孔多塞輸家,然而孔多塞贏家不一定即是多數決選制中贏得選舉的候選人,而多數決選制中贏得選舉的候選人卻可能是孔多塞輸家。

如果多數決選制中贏得選舉的候選人不是孔多塞贏家,那與循環多數一樣,意涵選後政治將不會穩定。

那麼,台灣這次總統大選,有沒有孔多塞贏家?如果有,是多數決選制之下當選的賴清德嗎?我根據戴立安先生調查規劃的《美麗島電子報》追蹤民調第 109 波(1 月 11 日至 12 日),也是選前最後民調的估計,得到的結果令人驚訝:得票墊後的柯文哲很可能是孔多塞贏家,而得票最多的賴清德很可能是孔多塞輸家。果然如此,那白色力量將會持續地激盪台灣政治!

我之前根據美麗島封關前第 101 波估計,侯友宜可能是孔多塞贏家,而賴清德是孔多塞輸家。現在得到不同的結果,顯示了封關期間的三股政治力量的消長。本來藍營期望的棄保不但沒有發生,而且柯文哲選前之夜在凱道浩大的造勢活動,還震驚了藍綠陣營。民調樣本估計出的孔多塞贏家本來就不準確,但短期內的改變,很可能反映了選情的激盪,甚至可能反映了循環多數的存在。

-----廣告,請繼續往下閱讀-----

三、如何從民調樣本估計孔多塞贏家

根據這波民調,總樣本 N=1001 位受訪者中,如果當時投票,會支持賴清德的受訪者共 355 人,佔 35.4%;支持侯友宜的受訪者共 247 人,佔 24.7%。支持柯文哲的受訪者共 200 人,佔 19.9%。

美麗島民調續問「最不希望誰當總統,也絕對不會投給他的候選人」,在會投票給三組候選人的 802 位支持者中,一共有 572 位對這個問題給予了明確的回答。《美麗島電子報》在其網站提供了交叉表如圖:

根據這個交叉表,我們可以估計每一位明確回答了續問的受訪者對三組候選人的偏好順序,然後再依這 572 人的偏好順序組態來判定在兩兩 PK 的情形下,候選人之間的輸贏如何。我得到的結果是:

  • 柯文哲 PK 賴清德:311 > 261(54.4% v. 45.6%)
  • 柯文哲 PK 侯友宜:287 > 285(50.2% v. 49.8%)
  • 侯友宜 PK 賴清德:293 > 279(51.2% v. 48.8%)

所以柯文哲是孔多塞贏家,賴清德是孔多塞輸家。當然我們如果考慮抽樣誤差(4.1%),除了柯文哲勝出賴清德具有統計顯著性之外,其他兩組配對可說難分難解。但在這 N=572 的小樣本中,三位候選人的得票率分別是:賴清德 40%,侯友宜 33%,柯文哲 27%,與選舉實際結果幾乎一模一樣。至少在這個反映了選舉結果的樣本中,柯文哲是孔多塞贏家。依多數決選制,孔多塞輸家賴清德當選。

-----廣告,請繼續往下閱讀-----

不過以上的分析有一個問題:各陣營的支持者中,有不少人無法明確回答「最不希望看到誰當總統,也絕對不會投給他做總統」的候選人。最嚴重的是賴清德的支持者,其「無反應率」(nonresponse rate)高達 34.5%。相對而言,侯友宜、柯文哲的支持者則分別只有 24.1%、23.8% 無法明確回答。為什麼賴的支持者有較多人無法指認最討厭的候選人?一個假設是因為藍、白性質相近,對許多綠營選民而言,其候選人的討厭程度可能難分軒輊。反過來說,藍、白陣營的選民大多數會最討厭綠營候選人,因此指認較無困難。無論如何,把無法明確回答偏好順序的受訪者歸為「遺失值」(missing value)而棄置不用總不是很恰當的做法,在這裡尤其可能會造成賴清德支持者數目的低估。

補救的辦法之一是在「無法明確回答等於無法區別」的假設下,把「遺失值」平分給投票對象之外的其他兩位候選人,也就是假設他們各有 1/2 的機會是無反應受訪者最討厭的候選人。這樣處理的結果,得到

  • 柯文哲 PK 賴清德:389 > 413(48.5% v. 51.5%)
  • 柯文哲 PK 侯友宜:396 > 406(49.4% v. 50.6%)
  • 侯友宜 PK 賴清德:376 > 426(46.9% v. 53.1%)

此時賴清德是孔多塞贏家,而柯文哲是孔多塞輸家。在這 N=802 的樣本中,三位候選人的得票率分別是:賴清德 44%,侯友宜 31%,柯文哲 25%。雖然依多數決選制,孔多塞贏家賴清德當選,但賴的得票率超過實際選舉結果(40%)。用無實證的假設來填補遺失值,反而造成賴清德支持者數目的高估。

如果擔心「無法明確回答等於無法區別」的假設太勉強,補救的辦法之二是把「遺失值」依有反應受訪者選擇最討厭對象的同樣比例,分給投票對象之外的其他兩位候選人。這樣處理的結果,得到

-----廣告,請繼續往下閱讀-----
  • 柯文哲 PK 賴清德:409 > 393(51.0% v. 49.0%)
  • 柯文哲 PK 侯友宜:407 > 395(50.8% v. 49.2%)
  • 侯友宜 PK 賴清德:417 > 385(52.0% v. 48.0%)

此時柯文哲又是孔多塞贏家,而賴清德又是孔多塞輸家了。這個樣本也是 N=802,三位候選人的得票率分別是:賴清德 44%,侯友宜 31%,柯文哲 25%,與上面的結果一樣。

以上三種無反應處理方法都不盡完美。第一種把無反應直接當遺失值丟棄,看似最不可取。然而縮小的樣本裡,三位候選人的支持度與實際選舉結果幾乎完全一致。後兩種以不同的假設補足了遺失值,但卻過度膨脹了賴清德的支持度。如果以樣本中候選人支持度與實際結果的比較來判斷遺失值處理方法的效度,我們不能排斥第一種方法及其結果。

無論如何,在缺乏完全資訊的情況下,我們發現的確有可能多數決輸家柯文哲是孔多塞贏家,而多數決贏家賴清德是孔多塞輸家。因為配對 PK 結果缺乏統計顯著性,我們甚至不能排除循環多數的存在。此後四年,多數決選制產生的總統能否在三角嘟力量的激盪下有效維持政治穩定,值得我們持續觀察。

四、結語

柯文哲之所以可以是孔多塞贏家,是因為藍綠選民傾向於最不希望對方的候選人當總統。而白營的中間偏藍位置,讓柯文哲與賴清德 PK 時,能夠得到大多數藍營選民的奧援而勝出。同樣的,當他與侯友宜 PK 時,他也能夠得到一部份綠營選民的奧援。只要他的支持者足夠,他也能夠勝出。反過來看,當賴清德與侯友宜 PK 時,除非他的基本盤夠大,否則從白營得到的奧援不一定足夠讓他勝出。民調 N=572 的樣本中,賴清德得 40%,侯友宜得 33%,柯文哲得 27%。由於柯的支持者討厭賴清德(52.5%)遠遠超過討厭侯友宜(23.7%),賴雖然基本盤較大,能夠從白營得到的奧援卻不多。而侯雖基本盤較小,卻有足夠的奧援。柯文哲之所以成為孔多塞贏家,賴清德之所以成為孔多塞輸家,都是這些因素的數學結果。

-----廣告,請繼續往下閱讀-----

資料來源

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

林澤民_96
37 篇文章 ・ 245 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。

0

1
0

文字

分享

0
1
0
匈奴西側邊疆,女主與她們的手下?
寒波_96
・2023/07/05 ・5509字 ・閱讀時間約 11 分鐘

匈奴帝國是歐亞草原的第一個帝國,主要疆域位於蒙古,世界史上有一席之地。匈奴人缺乏自身的文字記載,後人只能參考旁觀者,主要是漢朝人的歷史紀錄。所幸近來考古學、遺傳學的進展,大幅增進我們對匈奴的認識,也帶來新的啟示。

由遺骸直接取得古代 DNA 分析遺傳訊息,此前得知「匈奴人」的血脈源流相當多元,2023 年問世的一篇論文,調查匈奴帝國西部邊疆的墓葬,發現當地地位最高的都是女生,血緣絕大部分算是「東方」;而地位較低的男生們,遺傳上更加多元。

匈奴帝國全盛時期的疆域。雖然古早遊牧帝國的領土範圍,僅供參考。圖/wiki 百科

匈奴帝國的西部邊疆

匈奴帝國沒有明確的國界,不過當然有個勢力範圍。這項研究調查的地點位於現今的蒙古國西部,地理上算是阿爾泰山的南部,新疆的準噶爾盆地的東北方。這兒在匈奴時期,可謂匈奴勢力的最西端。

兩處大墓葬群距離約 50 公里,各有很多個墓。一些墓中有不少高貴的陪葬品,推測長眠者的地位較高;還有更多墓的派頭普通,墓主生前地位似乎較低。

-----廣告,請繼續往下閱讀-----

一處墓葬群 Takhiltyn Khotgor,簡稱 TAK,年代介於公元前 40 年到公元 50 年。有兩小群 THL-82 和 THL-64 被完整挖掘,都以一位女性的華麗墓葬為主,周圍環繞幾個衛星墓葬。另外 THL-25 目前只有挖掘衛星墓葬。這兒以前報告過 1 個,加上這回 7 個,總共 8 個古代基因組。

另一處墓葬群 Shombuuzyn Belchir,簡稱 SBB,年代介於公元前 50 年到公元 210 年,這回貢獻 10 個古代基因組。

遺址地點,這項研究關注的 TAK、SBB 遺址位於匈奴勢力範圍的最西端。圖/參考資料1

身份高貴的女士們

匈奴帝國的年代約為公元前 200 年到公元 100 年,因此這回調查的樣本包括中期到後期,是匈奴已經興起一段時間後的狀況。研究對象們都只有代號,讀者假如有興趣,也能試著替他們取名字,比較有親切感。

完整挖掘的 THL-82 墓群的成年女生「TAK001」,陪葬在該區域最豐富。她長眠於裝飾精美的木製棺材,旁邊擺著六匹馬、中國風格的青銅馬戰車配件、一個青銅壺等陪葬品。

-----廣告,請繼續往下閱讀-----

THL-64 墓群另一位狀況類似的女生「TAK002」長眠於木製棺材,旁邊擺著一匹馬、四隻羊,以及代表太陽及月亮的金盤。日、月是匈奴的象徵之一, 匈奴價值充斥。

澎湃的陪葬品以外,考古學家認為,我們想來平凡的木頭棺材,其實最能彰顯她們匈奴精英之尊貴地位。因為附近地區缺乏樹木,墓葬一般採用石材;木製棺材必需長途進口木柴方能製作,或許有數百公里之遙。更不用說,弓箭是匈奴人的命脈,而木頭是生產弓箭的寶貴原料。

由墓葬況狀判斷,這兩位女生當年是該地區身份很高的人,而周圍的附屬墓葬可能是她們的手下。有意思的是,與她們埋在一起的其他人,大家都沒有血親關係。

由於缺乏匈奴女主形象,請來滿都海鎮場面。成吉思汗以後,滿都海是蒙古影響力最大的統治者之一。圖/IMDB《Mandoukhai the Wise 智者滿都海》劇照

寫到這兒不能逃避,有必要解釋一下何謂匈奴的「血緣」,古遺傳學家講的「多元」或東方、西方是什麼意思?

-----廣告,請繼續往下閱讀-----

多元血緣之匈奴帝國,哪些DNA融入蒙古?

至今已經累積超過一萬個古代基因組,大部分位於歐洲、中東,不過歐亞大陸北部、中部也有一批,交叉對照可以判斷,歷代蒙古居民的遺傳組成與變化。

匈奴帝國在兩千多年前誕生,比這更早以前,蒙古地區的人口十分有限,可以粗略劃分出三大遺傳族群。

偏東邊的 Slab Grave,以蒙古鐵器時代早期的樣本為代表(也類似所謂的 Ancient Northeast Asian,簡稱 ANA 祖源)。北邊的 Khövsgöl,以貝加爾湖附近青銅時代晚期的樣本為代表。拆解更細的話,Khövsgöl 其實也有源於草原西部的小部分血緣,不過兩者在這項研究都被視為「東方」。

靠西邊的阿爾泰地區,以青銅時代中期、晚期的樣本為代表,這支血脈大部分能追溯到草原西部較早的移民,算是匈奴較早的「西方」成分。這些祖源應該是匈奴帝國興起前,蒙古地區的人群基礎。

-----廣告,請繼續往下閱讀-----
蒙古地區,早於匈奴、匈奴帝國形成後的血脈流動狀況。極為簡化,不過能展示大概的架構。圖/參考資料4

匈奴時期,又有更多方向的血脈加入草原大聯盟。東南方向的漢朝人,用此前發表的「Han_2000BP」為代表,無疑算作「東方」。

「西方」有多個源頭。西北方向的 Sagly/Uyuk,以阿爾泰山鐵器時代的 Chandman 樣本為代表(和東方的斯基泰人,例如「巴澤雷克文化」類似,還具備小部分 BMAC 血緣),不過地理上其實沒有太西。

還有西南方向的綠洲地帶「巴克特里亞-馬爾吉阿納(Bactria–Margiana Archaeological Complex,簡稱 BMAC)」,以及再度由草原西部遠道而來,血緣類似薩馬提亞人(Sarmatians)的新移民。

匈奴作為歐亞大陸中心的大帝國,融入各地血脈並不意外。奇妙的是,這項研究只探索一處很小的地區,同屬一個社群的幾個墓葬,竟然涵蓋大部分的血緣變化。

-----廣告,請繼續往下閱讀-----

少少幾人,大家血緣都不一樣

陪葬品最華麗的 TAK001 有馬有車,姑且稱呼她為「馬車女士」。她配備約 9.3% 的少量西方血緣,大部分則是 Khövsgöl 東方血緣。葬在她附近的兩位男生「TAK008」和「TAK009」約 86.8% 西方血緣,三人間都沒有血緣關係。

充斥匈奴精神的 TAK002 姑且稱為「日月女士」。她幾乎完全配備東方血緣,卻與馬車女士不同。日月女士有一半為 Slab Grave,另一半則是漢朝血緣。她附近兩位男生「TAK003」的西方成分很高,「TAK004」則是 Slab Grave 東方血緣,三人間都沒有血緣關係。

另一處目前只挖掘衛星墓葬的 THL-25,分析兩人。男生「TAK006」完全為東方血緣,和日月女士一樣是 Slab Grave 加漢朝組合,不過比例不同。

「TAK005」是蘿莉,她是這群墓葬中唯一陪葬寒酸的女性,或許是年紀太小。她完全為 Sagly/Uyuk 西方血緣,另一位成年男生 TAK003 也有 70%。再度提醒讀者,盡管視作西方,此一追溯到阿爾泰地區的血脈,實際上並沒有多西邊,距離這回調查的遺址也不太遠。

-----廣告,請繼續往下閱讀-----

總之,TAK 墓葬中人,每個人的血緣組成都不太一樣。男生們的血緣可謂變化多端,什麼都有。地位最高的馬車女士、日月女士皆以東方血緣為主,雖然兩位的「東方」完全不一樣。

TAK 遺址的古代基因組樣本之遺傳組成。Gonur1_BA 出土於中亞,現今的土庫曼 Gonur Tepe 遺址, 作為 BMAC 血緣的代表。圖/參考資料1

高貴女士的姻親網絡

50 公里遠處的 SBB 墓葬群,遺傳主要有 Slab Grave 東方、Sagly/Uyuk 西方兩款祖源,不同人的比例不同。看起來地位最高的墓葬 SBB002、SBB003、SBB007、SBB008 四位都是女生。

男生「SBB010」的陪葬品有鐵製的縫衣針。可見在匈奴文化中,縫衣針並非專屬於女生的陪葬品。

成年女生「SBB007」陪葬算這兒最豪華的,長眠於裝飾精美的木製棺材,擺著騎馬用的裝備、鍍金鐵帶扣、漢朝的彩繪漆杯。顯然匈奴女生不只社會地位高,也會騎馬(她以前因此被判斷為男生)。

-----廣告,請繼續往下閱讀-----

為表示尊崇,姑且稱她為「騎馬女士」。她擁有大量 Slab Grave,少量漢朝和 Sagly/Uyuk 血緣。

個人層次上,「SBB005」最有意思。她是一位蘿莉,父母為遺傳上的近親,大概是表兄弟姐妹等級的二度血緣關係(不過取樣分析中沒有直接見到她的父母),也是這回分析中唯一的近親繁殖寶寶。

這位蘿莉和騎馬女士是二度親戚關係,遺傳組成也類似騎馬女士。蘿莉也與「SBB001」是二度親戚關係,但是 SBB001 和騎馬女士兩位並非血緣上的親戚,所以他們可謂騎馬女士為首的同一社群中,埋葬在一塊的姻親。

SBB 遺址的古代基因組樣本之遺傳組成。Gonur1_BA 出土於中亞,現今的土庫曼 Gonur Tepe 遺址, 作為 BMAC 血緣的代表。圖/參考資料1

匈奴大聯盟,眾多女主經營的統治網絡?

這回的分析對象僅管沒幾個人,眾人的血緣卻千變萬化,乍看有些雜亂。從中能得知哪些啟發?論文強調的觀點是:匈奴西部的邊疆地帶,東方血緣的女性扮演重要角色。

匈奴人的血緣非常多元,可謂歐亞大陸的熔爐,沒有所謂的匈奴 DNA;可是掌握權力與資源的,似乎更集中在特定族群。然而,Khövsgöl(匈奴北部)、Slab Grave(匈奴東部)、漢朝(匈奴外頭的東南部)血緣僅管都可以歸類為「東方」,淵源卻明顯有別。

從已知極為有限的樣本看來,配備這些血脈的女生,都有機會在匈奴社會中身居高位。加上其他匈奴邊疆的考古調查,此狀況似乎更為常見。也許這是匈奴的統治集團,在各地建構權力網絡的方式:源自東方的貴族女生,各自經營各地的群體。

由漢朝人的記錄看來,匈奴好像是鬆散的部落聯盟,但是匈奴帝國具體如何運作,我們幾乎沒有概念。這將是有意思的探索方向,也令人興起一些大膽的猜想。

如果對蒙古帝國的女性參政有興趣,傑克.魏澤福的《成吉思汗的女兒們》值得一讀。有些人看到匈奴女主的研究,就想起這本書。

與日月同在的文明帝國

換個角度思考也很有意思。依照漢文記載,匈奴人在荒郊野外居無定所,文化低落,生活原始又暴力;漢朝人假如被野蠻人擄掠,或是隨著和親進入匈奴,簡直就是從天堂淪落到地獄!

可是如今知道,歷來應該也有些漢朝人口用腳投票,自願投奔匈奴,想來匈奴生活並沒有那麼慘。至少我們能肯定, 被編戶齊民鎖在土地上,當韭菜索求無度的那些漢朝人,日子超級淒慘。

這回取樣的地點位於匈奴西部的邊疆,距離漢朝本土頗有距離。不過分析的 18 人中,五位或多或少具有漢朝血緣,三位還是地位崇高的成年女性。

倘若再考慮性別與政治,或許會有更不一樣的想像。住在漢朝的女性出生再好、個人資質再優秀,一輩子都沒機會擔任行政工作職位,但是如果活在匈奴……

有一半漢朝血緣的日月女士(粒線體單倍型為 A11。不確定她是第一代移民的女兒,或父母搭配剛好提供一半),生前是一方疆土的管理者,死後高規格的墓葬,見證她畢生的功績受到認可。伴她長眠,象徵匈奴精神的日、月金盤,對她有什麼特殊意義嗎?

有一位漢朝官員陳湯曾言:「明犯強漢者,雖遠必誅」,可謂反辱華的先驅。但是如今我們也知道這個世界上,不只一種「文明」。

延伸閱讀

參考資料

  1. Lee, J., Miller, B. K., Bayarsaikhan, J., Johannesson, E., Ventresca Miller, A., Warinner, C., & Jeong, C. (2023). Genetic population structure of the Xiongnu Empire at imperial and local scales. Science Advances, 9(15)
  2. Ancient DNA reveals the multiethnic structure of Mongolia’s first nomadic empire
  3. Politically savvy princesses wove together a vast ancient empire
  4. Jeong, C., Wang, K., Wilkin, S., Taylor, W. T. T., Miller, B. K., Bemmann, J. H., … & Warinner, C. (2020). A dynamic 6,000-year genetic history of Eurasia’s Eastern Steppe. Cell, 183(4), 890-904.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
寒波_96
193 篇文章 ・ 1090 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。