0

0
0

文字

分享

0
0
0

群眾力圖改善都會空氣品質

thisbigcity城事
・2012/08/22 ・842字 ・閱讀時間約 1 分鐘 ・SR值 583 ・九年級

作者:Adam OxfordGreen Futures

公民科學能否改善空氣品質?若使用「空氣品質蛋」,或許能有效果,這項小型感應器連結網路,希望協助藉群眾之力,繪製污染地圖。

產品最終設計目前尚在測試,但已自群眾集資網站Kickstarter募得12萬美元,第一批產品預計於夏末推出,預估單品售價約100美元,自己動手做套裝組售價為40美元起跳,製作團隊強調硬體採「開源碼」模式,並使用現成零組件,不僅壓低成本,亦鼓勵消費者自行改良。第一代設計正如其名,將採用蛋型,能夠靜置於手上或桌上。

組裝完成後,蛋內多項被動感應器會分析通過的氣流,運用各種電磁、化學與光學技術,偵測一氧化碳、二氧化氮、溫度與濕度,另可附加其他裝置,感應臭氧、微粒與輻射,結果直接上傳至資料交換中心Cosm(前名Pachube),可做為個別讀數或納入區域地圖中。

-----廣告,請繼續往下閱讀-----

專案領導人波登(Ed Borden)表示,這個構想源自在日本與志工合作經驗,他們在福島核災發生後,繪製即時輻射量資訊地圖,不過遭到某些學者批評,認為感應器未經校正,準確度不足,無法用於正式科學研究中。

波登也明白此事,但他很有信心,只要累積許多用戶長期資料,即可正確歸納出空氣品質趨勢,協助社區挑戰當地污染源。

他指出,「重點在於,這個蛋型裝置比科學設備便宜許多,一般未連結網路的手持感應器成本也高出六至七倍,只要是科學研究器材,要價動輒數萬元」。

休維特(Nick Hewitt)為蘭開斯特環境中心大氣化學教授,他也認為,蛋型感應器能開發未來可進一步研究的領域,也為住家提供寶貴資料。

-----廣告,請繼續往下閱讀-----

休維特提到,「許多地區都設置戶外感應器,但多數人待在室內的時間很長,一生有三分之一時間待在臥房,但相關研究資料卻很少」。

本文原載於獨立永續專業團體「未來論壇」雜誌《Green Futures》,照片來源:Flickr用戶jepoirrier 

原刊載於 this big city城事

-----廣告,請繼續往下閱讀-----
文章難易度
thisbigcity城事
45 篇文章 ・ 0 位粉絲
《城事》為永續城市部落格,長期發掘關於建築、設計、文化、科技、運輸、單車的都市創新構想,曾數度獲獎。《城事》網羅世界各地城市生活作者,文章曾發表於Next American City、Planetizen、Sustainable Cities Collective、IBM Smarter Cities等網站。《城事》遍尋全球,在世界奮力邁向永續的時刻,呈現城市帶來的種種機會,力求保持樂觀,但不忘批判。

0

4
1

文字

分享

0
4
1
為什麼會被陽光曬傷?光有能量的話,為什麼照日光燈沒事?
PanSci_96
・2024/05/05 ・3185字 ・閱讀時間約 6 分鐘

唉!好曬呀!前兩集,一些觀眾發現我曬黑了。

在臺灣,一向不缺陽光。市面上,美白、防曬廣告亦隨處可見,不過,為什麼我們會被陽光曬傷呢?卻又好像沒聽過被日光燈曬傷的事情?

事實上,這也跟量子力學有關,而且和我們今天的主題密切連結。

之前我們討論到量子概念在歷史上的起點,接下來,我們會進一步說明,量子概念是如何被發揚光大,以及那個男人的故事。

-----廣告,請繼續往下閱讀-----

光電效應

在量子力學發展過程中,光電效應的研究是非常重要的轉捩點。

光電效應指的是,當一定頻率以上的光或電磁波照射在特定材料上,會使得材料發射出電子的現象。

在 19 世紀後期,科學家就已經發現某個奇特的現象:使用光(尤其是紫外線)照射帶負電的金屬板,會使金屬板的負電消失。但當時他們並不清楚背後原理,只猜測周遭氣體可能在紫外線的照射下,輔助帶負電的粒子從金屬板離開。

光電效應示意圖。圖/wikimedia

於是 1899 年,知名的英國物理學家 J. J. 湯姆森將鋅板放置在低壓汞氣之中,並照射紫外線,來研究汞氣如何幫助鋅板釋放負電荷,卻察覺這些電荷的性質,跟他在兩年前(1897 年)從放射線研究中發現的粒子很像。

-----廣告,請繼續往下閱讀-----

它們是比氫原子要輕約一千倍、帶負電的微小粒子,也就是我們現在稱呼的電子。

1902 年,德國物理學家萊納德發現,即使是在抽真空的玻璃管內,只要照射一定頻率以上的光,兩極之間便會有電流通過,電流大小跟光的強度成正比,而將光線移除之後,電流也瞬間消失。

到此,我們所熟知的光電效應概念才算完整成型。

這邊聽起來好像沒什麼問題?然而,若不用現在的量子理論,只依靠當時的物理知識,很難完美解釋光電效應。因為根據傳統理論,光的能量多寡應該和光的強度有關,而不是光的頻率。

-----廣告,請繼續往下閱讀-----

如果是光線把能量傳給電子,讓電子脫離金屬板,那為什麼需要一定頻率以上的光線才有用呢?比如我們拿同樣強度的紫外線跟紅外線去照射,會發現只有照射紫外線的金屬板才會產生電流。而且,當紫外線的頻率越高,電子的能量就越大。

另一方面,若我們拿很高強度的紅外線去照射金屬板,會發現無論如何都不會產生電流。但如果是紫外線的話,就算強度很低,還是會瞬間就產生電流。

這樣難以理解的光電效應,使得愛因斯坦於 1905 年一舉顛覆了整個物理學界,並建立了量子力學的基礎。

光電效應的解釋

為了解釋光電效應,愛因斯坦假設,電磁波攜帶的能量是以一個個帶有能量的「光量子」的形式輻射出去。並參考先前普朗克的研究成果,認為光量子的能量 E 和該電磁波的頻率 ν 成正比,寫成 E=hν,h 是比例常數,也是我們介紹過的普朗克常數。

-----廣告,請繼續往下閱讀-----

在愛因斯坦的詮釋下,電磁波的頻率越高,光子能量就越大,所以只要頻率高到一定程度,就能讓電子獲得足以逃脫金屬板的能量,形成電流;反過來說,如果電磁波的頻率不夠高,電子無法獲得足夠能量,就無法離開金屬板。

這就像是巨石強森一拳 punch 能把我打昏,但如果有個弱雞用巨石強森百分之一的力道打我一百拳,就算加起來總力道一樣,我是不會被打昏,大概也綿綿癢癢的,不覺得受到什麼傷害一樣。

而當電磁波的強度越強,代表光子的數目越多,於是脫離金屬板的電子自然變多,電流就越大。就如同我們挨了巨石強森很多拳,受傷自然比只挨一拳要來得重。

雖然愛因斯坦對光電效應的解釋看似完美,但是光量子的觀點實在太過激進,難以被當時的科學家接受,就連普朗克本人對此都不太高興。

-----廣告,請繼續往下閱讀-----

對普朗克來說,基本單位能量 hν,是由虛擬的「振子」發出的;但就愛因斯坦而言,電磁波本身的能量就是一個個光量子,或現在所謂的「光子」。

然而,電磁波屬於波動,直觀來說,波是綿延不絕地擴散到空間中,怎麼會是一個個攜帶最小基本單位能量的能量包呢?

美國物理學家密立根就堅信愛因斯坦的理論是錯的,並花費多年時間進行光電效應的實驗研究。

到了 1914 年,密立根發表了世界首次的普朗克常數實驗值,跟現在公認的標準數值 h=6.626×10-34 Js(焦耳乘秒)相距不遠。

-----廣告,請繼續往下閱讀-----

在論文中,密立根更捶心肝(tuî-sim-kuann)表示,實驗結果令人驚訝地與愛因斯坦那九年前早就被人拋棄的量子理論吻合得相當好。

這下子,就算學界不願相信愛因斯坦也不行了。愛因斯坦也因為在光電效應的貢獻,獲得 1921 年的諾貝爾物理獎。

1921 年,愛因斯坦獲得諾貝爾物理學獎之後的官方肖像。圖/wikimedia

光電效應的應用

在現代,光電效應的用途廣泛。我們日常生活中常見的太陽能發電板,利用的就是光電效應的一種,稱為光生伏打效應,材料內部的電子在吸收了光子的能量後,不是放射到周遭空間,而是在材料內部移動,形成正負兩極,產生電流。

而會不會曬傷也跟光子的能量有關。

-----廣告,請繼續往下閱讀-----

曬傷是皮膚受到頻率夠高的太陽光,也就是紫外線裡的 UVB 輻射造成的損傷。這些光子打到皮膚,會讓 DNA 分子裡構成鍵結的電子逃逸,引起皮膚細胞中 DNA 的異常變化,導致細胞損傷和免疫反應,這就是為什麼曬傷後皮膚會出現紅腫、疼痛和發炎的原因。

而頻率較低的光線,因為光子能量偏低,所以就不太會造成傷害,這也是為什麼我們沒聽過被日光燈曬傷這種事。

結語

從 17 世紀後半,惠更斯和牛頓各自提出光的波動說和微粒說開始,人們就聚焦於光到底是波動還是粒子的大哉問;19 世紀初,湯瑪士.楊用雙狹縫干涉實驗顯示了光的波動性,而到 19 世紀中後期,光屬於電磁波的結論終於被馬克士威和赫茲分別從理論和實驗兩方面確立。

經過約莫兩百年的研究發展,世人才明白,光是一種波動。

怎知,沒過幾年,愛因斯坦就跳出來主張光的能量由一個個的光量子攜帶,還通過實驗的檢驗——光又成為粒子了。

物理學家不得不承認,光具有波動和粒子兩種性質,而會呈現哪一種特性則依情況而定,稱為光的波粒二象性。

愛因斯坦於 1905 年提出的光量子概念,顛覆了傳統認為波動和粒子截然二分的觀點,將光能量量子化的詮釋也被實驗印證,在那之後,除了光的能量之外,還有其他物理量被發現是「量子化」的,像是電荷。

我們現在知道,電荷也有個基本單位,就是單一電子攜帶的電荷大小。

儘管之後又發現組成原子核的夸克,具有 -1/3 和 +2/3 單位的基本電荷,但並沒有改變電荷大小是不連續的這件事,並不是要多少的電量都可以。

如果你覺得很奇怪,不妨想想,我們用肉眼看會覺得身體的每一個部位都是連續的,但其實在微觀尺度,身體也是由一個個很小的原子和分子組成,只是我們根本看不出來,才覺得是連續的。

光子的能量和電荷的大小,其實也是像這樣子,細分下去就會發現具有最基本的單位,不是連續的。

事實上,量子力學在誕生之後,一直不斷地為人們帶來驚喜,簡直就是物理學界突然闖進一隻捉摸不定的貓。我們下一個故事,就要來聊量子力學發展過程中,打破世間常識的某個破天荒假說,而假說的提出者,是大學原本主修歷史和法律,擁有歷史學士學位,但後來改念物理,並憑藉博士論文用 5 年時間就拿到諾貝爾物理學獎的德布羅意。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

3
2

文字

分享

0
3
2
量子力學可以幫你判斷物體溫度?從古典物理過渡到近代的一大推手——黑體輻射
PanSci_96
・2024/03/24 ・3639字 ・閱讀時間約 7 分鐘

1894 年,美國物理學家邁克生(Albert Abraham Michelson)作為芝加哥大學物理系的創立者,在為學校的瑞爾森物理實驗室(Ryerson Physical Laboratory)落成典禮致詞時,表示:「雖然無法斷言說,未來的物理學不會比過去那些驚奇更令人驚嘆,但似乎大部分的重要基本原則都已經被穩固地建立了。」

以我們現在的後見之明,這段話聽起來固然錯得離譜,但在當時,從 17、18 到 19 世紀,在伽利略、牛頓、馬克士威等前輩的的貢獻之下,物理學已經達成了非凡的成就。

我們現在稱為古典的物理學,對於整個世界的描述幾乎是面面俱到了,事實上沒有人預料到 20 世紀將出現徹底顛覆世界物理學認知的重要理論,量子力學。

而這最一開始竟只是出自於一件不起眼的研究,關於物體發出的光。

-----廣告,請繼續往下閱讀-----

萬物皆輻射

在此我們要先理解一個觀念:所有物體無時無刻不在發出電磁波輻射,包括了你、我、你正使用的螢幕,以及我們生活中的所有物品。

至於為什麼會這樣子呢?其中一個主要原因是,物體都是由原子、分子組成,所以內部充滿了帶電粒子,例如電子。這些帶電粒子隨著溫度,時時刻刻不停地擾動著,在過程中,就會以電磁波的形式放出能量。

除了上述原因之外,物體發出的電磁波輻射,還可能有其他來源,我們就暫時省略不提。無論如何,從小到大我們都學過的,熱的傳遞方式分成傳導、對流、輻射三種,其中的輻射,就是我們現在在談的,物體以電磁波形式發出的能量。

那麼,這些輻射能量有什麼樣的特徵呢?為了搞清楚這件事,我們必須先找個適當的範本來研究。

-----廣告,請繼續往下閱讀-----

理想上最好的選擇是,這個範本必須能夠吸收所有外在環境照射在上面的光線,只會發出因自身溫度而產生的電磁輻射。這樣子的話,我們去測量它發出的電磁波,就不會受到反射的電磁波干擾,而能確保電磁波是來自它自己本身。

這樣子的理想物體,稱為黑體;畢竟,黑色物體之所以是黑的,就是因為它能夠吸收外在環境光線,且不太會反射。而在我們日常生活中,最接近理想的黑體,就是一點也不黑、還超亮的太陽!這是因為我們很大程度可以肯定,太陽發出來的光,幾乎都是源於它自身,而非反射自外在環境的光線。

或者我們把一個空腔打洞後,從洞口發出的電磁波,也會近似於黑體輻射,因為所有入射洞口的光都會進入空腔,而不被反射。煉鐵用的鼓風爐,就類似這樣子的結構。

到目前為止,一切聽起來都只是物理學上一個平凡的研究題目。奇怪的是,在對電磁學已經擁有完整瞭解的 19 世紀後半到 20 世紀初,科學家儘管已經藉由實驗得到了觀測數據,但要用以往的物理理論正確推導出黑體的電磁波輻射,卻遇到困難。正是由此開始,古典物理學出現了破口。

-----廣告,請繼續往下閱讀-----

黑體輻射

由黑體發出的輻射,以現在理論所知,長得像這個樣子。縱軸代表黑體輻射出來的能量功率,橫軸代表黑體輻射出來的電磁波波長。

在理想狀況下,黑體輻射只跟黑體的溫度有關,而跟黑體的形狀和材質無關。

以溫度分別處在絕對溫標 3000K、4000K 和 5000K 的黑體輻射為例,我們可以看到,隨著黑體的溫度越高,輻射出來的能量功率也越大;同時,輻射功率最高的波段,也朝短波長、高頻率的方向靠近。

為了解釋這個曲線,物理學家們開始運用「當時」畢生所學來找出函數方程式,分成了兩派:

-----廣告,請繼續往下閱讀-----

一派是 1896 年,由德國物理學家維因(Wilhelm Carl Werner Otto Fritz Franz Wien),由熱力學出發推導出的黑體輻射公式,另一派,在 1900 與 1905 年,英國物理學家瑞立(John William Strutt, 3rd Baron Rayleigh)和金斯(James Jeans),則是藉由電磁學概念,也推導出了他們的黑體輻射公式,稱為瑞立-金斯定律。

你看,若是同時擺上這兩個推導公式,會發現他們都各自對了一半?

維因近似 Wien approximation 只在高頻率的波段才精確。而瑞立-金斯定律只對低頻率波段比較精確,更預測輻射的強度會隨著電磁波頻率的提升而趨近無限大,等等,無限大?――這顯然不合理,因為現實中的黑體並不會放出無限大的能量。

顯然這兩個解釋都不夠精確。

-----廣告,請繼續往下閱讀-----

就這樣,在 1894 年邁克生才說,物理學可能沒有更令人驚嘆的東西了,結果沒幾年,古典物理學築起的輝煌成就,被黑體輻射遮掩了部分光芒,而且沒人知道,這是怎麼一回事。

普朗克的黑體輻射公式

就在古典物理學面臨進退維谷局面的時候,那個男人出現了——德國物理學家普朗克(Max Planck)。

1878年學生時代的普朗克。圖/wikimedia

普朗克於 1900 年就推導出了他的黑體輻射公式,比上述瑞立和金斯最終在 1905 年提出的結果要更早,史稱普朗克定律(Planck’s law)。普朗克假想,在黑體中,存在許多帶電且不斷振盪、稱為「振子」的虛擬單元,並假設它們的能量只能是某個基本單位能量的整數倍。

這個基本單位能量寫成 E=hν,和電磁輻射的頻率 ν 成正比,比例常數 h 則稱為普朗克常數。換言之,黑體輻射出來的能量,以hν為基本單位、是一個個可數的「量」加起來的,也就是能量被「量子化」了。

-----廣告,請繼續往下閱讀-----

根據以上假設,再加上不同能量的「振子」像是遵循熱力學中的粒子分佈,普朗克成功推導出吻合黑體輻射實驗觀測的公式。

普朗克的方程式,同時包含了維因近似和瑞立-金斯定律的優點,不管在低頻率還是高頻率的波段,都非常精確。如果我們比較在地球大氣層頂端觀測到的太陽輻射光譜,可以發現觀測數據和普朗克的公式吻合得非常好。

其實有趣的是普朗克根本不認為這是物理現象,他認為,他假設的能量量子化,只是數學上用來推導的手段,而沒有察覺他在物理上的深遠涵意。但無論如何,普朗克成功解決了黑體輻射的難題,並得到符合觀測的方程式。直到現在,我們依然使用著普朗克的方程式來描述黑體輻射。不只如此,在現實生活中,有許多的應用,都由此而來。

正因為不同溫度的物體,會發出不同特徵的電磁波,反過來想,藉由測量物體發出的電磁波,我們就能得知該物體的溫度。在疫情期間,我們可以看到某些場合會放置螢幕,上面呈現類似這樣子的畫面。

-----廣告,請繼續往下閱讀-----

事實上,這些儀器測量的,是特定波長的紅外線。紅外線屬於不可見光,也是室溫物體所發出的電磁輻射中,功率最大的波段。只要分析我們身體發出的紅外線,就能在一定程度上判斷我們的體溫。當然,一來我們都不是完美的黑體,二來環境因素也可能產生干擾,所以還是會有些許誤差。

藉由黑體輻射的研究,我們還可以將黑體的溫度與發出的可見光顏色標準化。

在畫面中,有彩虹背景的部分,代表可見光的範圍,當黑體的溫度越高,發出的電磁輻射,在可見光部分越偏冷色系。當我們在購買燈泡的時候,會在包裝上看到色溫標示,就是由此而來。所以,如果你想要溫暖一點的光線,就要購買色溫較低,約兩、三千 K 左右的燈泡。

結語

事實上,在黑體輻射研究最蓬勃發展的 19 世紀後半,正值第二次工業革命,當時鋼鐵的鍛冶技術出現許多重大進步。

德國鐵血宰相俾斯麥曾經說,當代的重大問題要用鐵和血來解決。

就傳統而言,煉鋼要靠工匠用肉眼,從鋼鐵的顏色來判斷溫度,但若能更精確地判斷溫度,無疑會有很大幫助。

德國作為鋼鐵業發達國家,在黑體輻射的研究上,曾做出許多貢獻,這一方面固然可能是學術的求知慾使然,但另一方面,也可以說跟社會的需求與脈動是完全吻合的。
總而言之,普朗克藉由引進能量量子化的概念,成功用數學式描述了黑體輻射;這件事成為後來量子力學發展的起點。儘管普朗克本人沒有察覺能量量子化背後的深意,但有另一位勇者在數年後繼承了普朗克的想法,並做出意味深長的詮釋,那就是下一個故事的主角――愛因斯坦的事了。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
PanSci_96
1259 篇文章 ・ 2384 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

2

1
0

文字

分享

2
1
0
物理學家說,公車的窗戶開這幾扇才通風
胡中行_96
・2023/01/09 ・1777字 ・閱讀時間約 3 分鐘

在流感盛行的嚴冬,您可曾為了開窗與否,天人交戰?還是在搭公車的時候,選擇開走道對面的窗戶,凍死別人,造福自己?通風能降低感染空氣傳播疾病的風險,但交通工具的窗戶到底要怎麼開,才能達到最佳效果?墨西哥物理學團隊發揮所長,在 2022 年 12 月的《科學報告》(Scientific Reports)期刊上,推薦開公車窗戶的方法。[1]

公車模型

COVID-19 疫情期間,防疫資訊滿天飛。因為事關人命,「♪ 雖然我曾經這樣以為/♪ 我真的這樣認為」,並不能做為給予建議的理由。許多公衛措施的效益,例如:戴口罩和保持社交距離等,都被嚴厲地以科學的方法檢視。這群墨西哥物理學家著眼於通風的機制,想瞭解到底挑哪個位置的窗戶,打開多少扇,對公車內的空氣品質最好。當然,他們並未唱著林憶蓮的〈為你我受冷風吹〉,親自搭車實測,被風吹到掉眼淚;而是打造了一台小模型來實驗,再以電腦模擬運算。[1, 2]

公車模型:A 是風速計;S 為二氧化碳偵測器;窗戶被黑虛線框出;二氧化碳則由中央車底灌入。圖/編輯自參考資料 1,Figure 1b、8a和8b。CC BY 4.0)

他們參考一輛 9.92 x 2.5 x 2.2 公尺,地板內側離路面 0.4 公尺的實體公車,打造出約 1/10 大的壓克力模型。如圖所示,車體透明,僅窗戶用黑色虛線框出,方便觀察;裡面有二氧化碳偵測器(CO2 sensor)、風速計(anemometer);以及可裝卸的 3D 列印乘客,方便創造空車和滿載等狀態。由於假人不會呼吸,所以得從模型的中央車底灌入二氧化碳,代替真實的吐氣。測試氣流時的車速,則主要設定在每小時 50 公里。[1]

實驗項目

這個實驗從下列兩個角度,來探討通風效果:

-----廣告,請繼續往下閱讀-----
  1. 開啟的窗戶數目:從不開窗、開 2 扇或 4 扇,到全部開啟等,都嘗試一輪。[1]
  2. 窗戶的位置:一般常見的公車,窗戶都是開在車體兩側,也就是乘客座位的旁邊。不過,科學家在模型的車頭,挖了 2 個長方形的氣窗,看看這種設計的效果又是如何。[1]

實驗結果

研究團隊發現,在一般擁有左右兩排窗戶的公車上,氣膠(aerosols,又稱「氣溶膠」或「懸浮微粒」)的擴散與排出,均受車內負壓造成的吸力驅動。打開 4 扇,也就是左右各 2 扇窗戶最通風;全開也不會加快氣膠排散,或減少累積。氣流促使氣膠向車頭聚集;有些從前面離開的氣膠,會由後面的窗戶回流;而氣膠在車裡停留的時間,平均為 6 分鐘。不過,當科學家拿出他們改造的新型公車,馬上就超越了傳統公車開 4 扇窗的成效。[1]

有別於市面上常見的款式,這種新型公車的前方擋風玻璃,靠近車頂處,多了兩個氣窗。如下圖所示,公車移動時,前方氣窗會進氣,產生一股推力帶動通風,而不再仰賴車內負壓的吸力。空氣從前方灌入,通過座位區域,再由車尾原本就設在兩側的窗戶出去;不像開 4 扇的,氣流無法完全貫穿車體。[1]

左:一般有兩排窗戶的公車;右:車頭設氣窗的新款公車。圖/參考資料 1,Figure 1c(CC BY 4.0)

以公車滿載 50 人的狀況為例,車速每小時 50 公里時,新款公車內的通風換氣速率,為每人每秒 100 公升;遠高於英國急難科學顧問團(Scientific Advisory Group of Emergencies,簡稱SAGE),在 COVID-19 疫情期間建議的 8 至 10 公升。就算行車速度只有每小時 9 公里,也還能符合 SAGE 的標準。同時,車內氣膠的總量減少,在車速每小時 50 公里的狀態下,滯留的時間降至 50 秒。[1]

公車向左行駛時,開不同窗戶的通風情形。影/參考資料 1,Supplementary Information 2(CC BY 4.0)

尚待研究的變因

既然新款公車這麼通風,何不趕快上市?上述實驗未涵蓋的數個變因,其實仍有待探究。比方說,3D 列印的假人沒有體溫,真實的公車坐滿活人乘客時,車內的溫度可能較高。如果再考量各地天候,造成的車外氣溫差異,這裡關於氣體流動的結論,便不見得適用。[1]更何況在空氣污染嚴重的市區,開窗搞不好會弄得灰頭土臉,大概也無益於呼吸功能。假如將來臺灣除了密閉且附空調的公車,也有這種墨西哥的新式車款,身為乘客的您,會想搭哪一種?

-----廣告,請繼續往下閱讀-----

  

參考資料

  1. Alexei Pichardo-Orta F, Luna OAP, Cordero JRV. (2022) ‘A frontal air intake may improve the natural ventilation in urban buses’. Scientific Reports, 12, 21256.
  2. 滾石唱片ROCK RECORDS(01 JUN 2012)「林憶蓮Sandy Lam【為你我受冷風吹 Suffer for you】Official Music Video」YouTube.
-----廣告,請繼續往下閱讀-----
所有討論 2
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。