0

0
0

文字

分享

0
0
0

人工智慧能幫助中國對抗霧霾嗎?

機器之心_96
・2017/02/01 ・1517字 ・閱讀時間約 3 分鐘 ・SR值 531 ・七年級

585b6f3717a62
2016 年 11 月北京霧霾彌漫的一天,而 IBM 和微軟在此前已經對此進行了預測。圖/機器之心提供

本文轉載自機器之心〈抗擊霧霾的戰鬥中,人工智慧的身影〉,原文來自 IEEE,作者 Lucas Laursen

北京和中國很多其他城市都正籠罩在厚重的霧霾之下。在霧霾嚴重的時候,到達這些城市的飛機都需要備降其他機場。2016 年 12 月 14 日,北京發布了今年第一次霧霾「紅色預警」。據報道,北京地區 1200 家工廠被下令關閉或是減少生產量。

2016 年冬天,中國政府已經開始使用 IBM 和微軟的預測工具,而這些工具在去年已經進行過了測試。各市政府使用的 IBM 預測工具能夠結合傳統來源的數據,例如北京 35 個檢測多種污染物的空氣測量站,另外還有一些成本更低但是卻更廣泛的數據來源,如環境監測站、交通系統、氣象衛星、地形圖、經濟數據,甚至是社交媒體。微軟的系統能夠運用全中國超過 3000 個站點的數據。IBM 和微軟的工具結合了傳統的大氣化學物理模型和基於數據的統計工具如機器學習相結合,以便可以在更短時間內做出更準確的預測。

IBM 中國研究院「綠色地平線」計劃項目經理黃瑾說:「我們的優勢或者說是不同之處就在於我們將這些都結合在了一起。」IBM 提前三天預測空氣狀況的準確率高達 80%,提前 7-10 天預測準確率可達 75% 左右。目前,微軟為中國環保部提供 48 小時的空氣預測支持。2015 年在北京進行測試時,微軟的預測工具在提前 6 小時預測時,準確率達到 75%,提前 12 小時預測準確率達 60%。

-----廣告,請繼續往下閱讀-----

怎麼將物理模型和機器學習結合在一起從而實現最好的空氣品質預測,「這是目前一個很活躍的研究領域」氣體科學家 Vincent-Henri Peuch 說,他是英國歐洲哥白尼大氣監測服務的主管。他補充說融合是一個正確的解決問題思路:兩種類型的模型都可以發揮作用且不會互相阻礙。目前的市場情形似乎也印證了這點。IBM 目前在新德里和約翰內斯堡發布了自己的融合模型,北京的初創公司 AirVisual 也提供私人商業應用的機器學習增強型空氣預測解決方案。

北京政府已宣稱在降低可吸入顆粒物污染的努力中取得了一些成果:他們的報導裡表明 2015 年的污染程度比 2014 年降低 6%。北京政府處於減輕空氣污染的壓力之下,同時也面臨防止經濟增長下滑的雙重壓力。IBM 的預測工具包含一個模擬裝置來估量類似關閉一到兩天城市中逆風工廠或者限制一兩天的汽機車所產生的作用。「這個工具逐一估計所建議調解措施下氣體排放引起的後果和經濟影響,」Huang 說道。

AirVisual、 IBM 和微軟都正在針對不同的工作地點對他們的軟體進行泛化,這不但需要集成不同城市的物理模型,還需要對不同類型的輸入數據和變化參數進行調整。例如,在南非約翰尼斯堡(Johannesburg)有 8 個北京空氣品質的監測站。IBM 約翰尼斯堡研究室的電腦工程師 Tapiwa M. Chiwewe 說道:「目前我們仍然可以對南非的一些數據重新進行利用。」

加拿大英屬哥倫比亞大學(University of British Columbia)的一個研究團隊在 2016 年中的報告稱,每一個不同的環境都需要有自己的機器學習模式。在他們的研究中發現,不同的學習方式的成本取決於其包含的數據量以及在運算期間程式中的數據量。對於像北京這樣的城市來說,其累積的空氣品質數據很少,這和那些有著多年歷史數據的城市不同,也為政府提出了挑戰,所以最好的解決辦法就是需要北京政府為當地選擇正確的系統。Peuch 說,「如果不在同一個地方使用相同的數據集,我們很難對不同的模型進行比較。」

-----廣告,請繼續往下閱讀-----

要想把空氣品質控制在世界衛生組織建議標準下,全世界的各個城市都需要為之努力。根據 2015 年全球疾病負擔研究的報告顯示,2015 年,空氣懸浮微粒(不包括煙草煙霧)共帶來了 1.031 億失能調整生命年(disability-adjusted life years,一種衡量人類生命品質和長度的單位),它已成為第六大疾病風險因素。這也成為了各國政府和公司工作的重點。據估計,在未來 5 年內,檢測空氣品質的市場每年都將增長 8.5%,有望達到 56.4 億美元。所以也可以預見,空氣品質預測的市場也將會隨之增長。

-----廣告,請繼續往下閱讀-----
文章難易度
機器之心_96
2 篇文章 ・ 0 位粉絲
機器之心是中國領先的前沿科技垂直媒體,關注人工智能、機器人、神經認知科學等前沿科技以及深度科技思考,旨在通過高質量內容讓用戶更好地了解即將到來的下一次技術變革,同時啟發大家對人與科技的哲學思考。

0

0
0

文字

分享

0
0
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3286字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

2

1
0

文字

分享

2
1
0
物理學家說,公車的窗戶開這幾扇才通風
胡中行_96
・2023/01/09 ・1779字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

在流感盛行的嚴冬,您可曾為了開窗與否,天人交戰?還是在搭公車的時候,選擇開走道對面的窗戶,凍死別人,造福自己?通風能降低感染空氣傳播疾病的風險,但交通工具的窗戶到底要怎麼開,才能達到最佳效果?墨西哥物理學團隊發揮所長,在 2022 年 12 月的《科學報告》(Scientific Reports)期刊上,推薦開公車窗戶的方法。[1]

公車模型

COVID-19 疫情期間,防疫資訊滿天飛。因為事關人命,「♪ 雖然我曾經這樣以為/♪ 我真的這樣認為」,並不能做為給予建議的理由。許多公衛措施的效益,例如:戴口罩和保持社交距離等,都被嚴厲地以科學的方法檢視。這群墨西哥物理學家著眼於通風的機制,想瞭解到底挑哪個位置的窗戶,打開多少扇,對公車內的空氣品質最好。當然,他們並未唱著林憶蓮的〈為你我受冷風吹〉,親自搭車實測,被風吹到掉眼淚;而是打造了一台小模型來實驗,再以電腦模擬運算。[1, 2]

公車模型:A 是風速計;S 為二氧化碳偵測器;窗戶被黑虛線框出;二氧化碳則由中央車底灌入。圖/編輯自參考資料 1,Figure 1b、8a和8b。CC BY 4.0)

他們參考一輛 9.92 x 2.5 x 2.2 公尺,地板內側離路面 0.4 公尺的實體公車,打造出約 1/10 大的壓克力模型。如圖所示,車體透明,僅窗戶用黑色虛線框出,方便觀察;裡面有二氧化碳偵測器(CO2 sensor)、風速計(anemometer);以及可裝卸的 3D 列印乘客,方便創造空車和滿載等狀態。由於假人不會呼吸,所以得從模型的中央車底灌入二氧化碳,代替真實的吐氣。測試氣流時的車速,則主要設定在每小時 50 公里。[1]

實驗項目

這個實驗從下列兩個角度,來探討通風效果:

-----廣告,請繼續往下閱讀-----
  1. 開啟的窗戶數目:從不開窗、開 2 扇或 4 扇,到全部開啟等,都嘗試一輪。[1]
  2. 窗戶的位置:一般常見的公車,窗戶都是開在車體兩側,也就是乘客座位的旁邊。不過,科學家在模型的車頭,挖了 2 個長方形的氣窗,看看這種設計的效果又是如何。[1]

實驗結果

研究團隊發現,在一般擁有左右兩排窗戶的公車上,氣膠(aerosols,又稱「氣溶膠」或「懸浮微粒」)的擴散與排出,均受車內負壓造成的吸力驅動。打開 4 扇,也就是左右各 2 扇窗戶最通風;全開也不會加快氣膠排散,或減少累積。氣流促使氣膠向車頭聚集;有些從前面離開的氣膠,會由後面的窗戶回流;而氣膠在車裡停留的時間,平均為 6 分鐘。不過,當科學家拿出他們改造的新型公車,馬上就超越了傳統公車開 4 扇窗的成效。[1]

有別於市面上常見的款式,這種新型公車的前方擋風玻璃,靠近車頂處,多了兩個氣窗。如下圖所示,公車移動時,前方氣窗會進氣,產生一股推力帶動通風,而不再仰賴車內負壓的吸力。空氣從前方灌入,通過座位區域,再由車尾原本就設在兩側的窗戶出去;不像開 4 扇的,氣流無法完全貫穿車體。[1]

左:一般有兩排窗戶的公車;右:車頭設氣窗的新款公車。圖/參考資料 1,Figure 1c(CC BY 4.0)

以公車滿載 50 人的狀況為例,車速每小時 50 公里時,新款公車內的通風換氣速率,為每人每秒 100 公升;遠高於英國急難科學顧問團(Scientific Advisory Group of Emergencies,簡稱SAGE),在 COVID-19 疫情期間建議的 8 至 10 公升。就算行車速度只有每小時 9 公里,也還能符合 SAGE 的標準。同時,車內氣膠的總量減少,在車速每小時 50 公里的狀態下,滯留的時間降至 50 秒。[1]

公車向左行駛時,開不同窗戶的通風情形。影/參考資料 1,Supplementary Information 2(CC BY 4.0)

尚待研究的變因

既然新款公車這麼通風,何不趕快上市?上述實驗未涵蓋的數個變因,其實仍有待探究。比方說,3D 列印的假人沒有體溫,真實的公車坐滿活人乘客時,車內的溫度可能較高。如果再考量各地天候,造成的車外氣溫差異,這裡關於氣體流動的結論,便不見得適用。[1]更何況在空氣污染嚴重的市區,開窗搞不好會弄得灰頭土臉,大概也無益於呼吸功能。假如將來臺灣除了密閉且附空調的公車,也有這種墨西哥的新式車款,身為乘客的您,會想搭哪一種?

-----廣告,請繼續往下閱讀-----

  

參考資料

  1. Alexei Pichardo-Orta F, Luna OAP, Cordero JRV. (2022) ‘A frontal air intake may improve the natural ventilation in urban buses’. Scientific Reports, 12, 21256.
  2. 滾石唱片ROCK RECORDS(01 JUN 2012)「林憶蓮Sandy Lam【為你我受冷風吹 Suffer for you】Official Music Video」YouTube.
-----廣告,請繼續往下閱讀-----
所有討論 2
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

1

4
1

文字

分享

1
4
1
臺灣的空污問題與眾不同,如何使空污預報更精確?先瞭解大氣邊界層和感測物聯網吧!
研之有物│中央研究院_96
・2022/10/16 ・6113字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/陳儀珈
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

你以為的大氣,不是真實的大氣!

大氣邊界層是人類的生活範圍,也是大部分空氣污染物存在的地方。然而,傳統氣象學模擬的大氣邊界層結構並不符合臺灣的真實情況,因此真實的空氣污染現象和理論的模擬預測間往往存在顯著的差異,導致污染防制策略缺乏精確的指引。

中央研究院「研之有物」專訪院內環境變遷研究中心研究員兼空氣品質專題中心執行長周崇光,他是建立空品專題中心的主要推手,研究團隊從大氣結構出發,試圖改善臺灣空氣品質的診斷及預報,這項計畫集結了來自民生公共物聯網國家高速網路與計算中心環境保護署等跨部門的資源,以下讓我們一起看周崇光怎麼說。

中研院環變中心研究員兼空品專題中心執行長周崇光。圖/研之有物

根據國際貨幣基金組織(IMF) 2021 年的報告,臺灣位列全球第 22 大經濟體,這個只有 3.6 萬平方公里的小小島國,一年內卻可以創造出高達 7,855.89 億美元的市場價值。

-----廣告,請繼續往下閱讀-----

在美國國家航空暨太空總署(NASA)公布的地球夜景照中,我們彷彿可以看見,高樓一棟棟升起、工廠一座座建成、百貨一間間林立,在又長又窄的西半邊,從北到南形成臺北、臺中和高雄三大都會區。

西部臨海,東部靠山,這個寬度可能不到 100 公里的窄長地區,不僅聚集了臺灣 2,300 萬人的極大多數人口,凝聚出商業與工業的巨大產能,更集結了大量、複雜的「空氣污染物」。中研院「研之有物」專訪周崇光研究員,請他從空氣品質與都市氣象學的角度,細細剖析空污議題在這座海島上的獨特之處。

ASA 在 2016 年 12 月 31 日拍攝的夜景照,可看出臺灣有北、中、南三大亮區。圖/NASA

臺灣雖然小,但空汙問題好複雜!

臺灣國土面積僅有 3.6 萬平方公里,以大氣尺度來看非常的小,然而,我們在空氣污染面臨的挑戰卻異常艱鉅。

臺灣不僅處於許多境外污染源的下風處,接受來自各方的空氣污染物,各大都會區也因為地形的關係吃足了苦頭,整個中西部更是在窄長的地域中,面臨來自山、海的多重影響。

-----廣告,請繼續往下閱讀-----

以下圖的臺中都會區為例,臺中位處於中央山脈西側的中央,本身是一個有數個開口的盆地,被多重大氣動力機制所影響,包含季風、海陸風、山谷風以及熱島環流,形成極度複雜的區域環流。

盆地內的空氣污染物原本就不容易擴散,再加上複雜的大氣環流和大氣化學反應,讓臺中的空氣品質狀況非常、非常的複雜,無法使用現有的大氣理論進行簡單的描述,使得大氣科學家極為不易於觀測和研究臺中的空污情形。

「這裡就像是巫婆煉湯一樣。」周崇光這麼說。

臺中位處於中央山脈西側的中央,本身是一個有數個開口的盆地,被多重大氣動力機制所影響,包含季風、海陸風、山谷風以及熱島環流,形成極度複雜的區域環流。圖/研之有物(資料來源/周崇光)

臺灣在東北風的影響下,不適合傳統的高煙囪理論

周崇光笑著說,到處觀察「煙囪」是他的職業病。

-----廣告,請繼續往下閱讀-----

大陸環境的大氣結構相對簡單,自歐洲工業革命開始,傳統大氣科學的理論都告訴人們:越高、風越大,只要把煙囪建得高高的,就可讓風把污染物吹散、吹到很遠的地方。

平坦的大陸環境中,把煙囪建高可以讓煙流擴散及傳輸至很遠的地方。圖/rawpixel

「到了大陸國家,你會發現他們煙囪排出來的煙,經常是非常穩定的水平煙流,可以飄得很遠,這種煙流挾帶著空氣污染物飛到 10 幾公里外都不是問題!」,然而反觀臺灣的煙囪,卻很少出現這樣的水平煙流。

中研院空品專題中心對臺中火力發電廠的煙流觀測顯示,傳統高煙囪設計反而容易讓煙流進入「污染累積區」,在高度 450~800 公尺左右,橘色區域的空氣層風速僅有 0.5~3 公尺/秒。不同折線表示有兩個時段,分別是觀測當天凌晨 1 點到 3 點(紅線),以及晚上 19 點到 21 點(黃橘線)。圖/研之有物(資料來源/周崇光)

根據中研院空品專題中心對火力發電廠的煙流觀測資料,如果臺灣的煙囪蓋得跟大陸國家一樣高,有時候反而容易造成空氣污染物的累積。

從上圖可知,當臺灣處在微弱東北風的大氣環境之中,西部沿海風速最快的大氣區域(藍底),大約落在 200~400 公尺高之間,此區的風速大約為 5~6 公尺/秒左右,以東北風為主,是空氣污染物的「最佳擴散區」。

-----廣告,請繼續往下閱讀-----

若是再往上,到了 450~800 公尺左右,風速驟然下降(橘底),僅有 0.5~3 公尺/秒。這個區域的大氣就像是被下層的東北風與上層的南風「夾擊」一樣,在兩個不同方向的風的對切之下,形成一個風速很低的「污染累積區」。

因此,若臺灣真的按照傳統的大氣理論建造高煙囪時,反而會讓煙囪的高溫煙流進入污染累積區;換個做法,如果煙囪低一點,才可以被強風吹散。

不過周崇光話鋒一轉:低煙囪設計要相當謹慎,也很難推行。高溫煙流排出去會有很明顯的白煙(水蒸氣凝結),一般人都不喜歡看到白煙離居住地太近,因此實務上還會特別做加熱設計,讓煙流先往上浮,再擴散,等於加高了煙囪的高度,這在工程上稱為「有效煙囪高度」。降低煙囪高度除了有視覺污染的問題,污染排放點離民眾越近,當工廠發生緊急異常排放時,異常事件的衝擊風險也會越大。

和傳統理論不一樣?那就做出臺灣自己的資料吧!

這麼經典的高煙囪理論,為什麼不能用在臺灣?

-----廣告,請繼續往下閱讀-----

周崇光表示,大氣科學的理論大都源自於美國、歐洲,使得傳統大氣理論都更適用於大陸環境之下,因此難以直接應用於臺灣地狹人稠的海島結構,而中研院空品專題中心的目標之一,就是發展出屬於臺灣的「空污氣象學」。

周崇光提到:「臺灣跟大陸國家的空間條件實在差太多,所以我們必須要更精確知道,臺灣空氣污染物的高度分布到底長什麼樣子,才能更有效的管制並改善空品狀況。」

既然臺灣無法參考大陸型國家的大氣狀況,那麼小一點的、近一點的國家呢?韓國、日本的有沒有參考的價值?

周崇光笑著說,「你知道嗎?臺中盆地也才 10 幾公里,但是外圍的中央山脈高達 3,000 公尺以上!」就算是韓國、日本,它們的地理空間也比臺灣大多了,而且地形也沒有這麼複雜。

-----廣告,請繼續往下閱讀-----
臺中盆地的衛星空照圖。圖/Wikipedia

當這麼多的工廠、車輛都擠在這小小的區域,究竟會對臺灣的空氣品質造成多嚴重的後果?某種程度來說,這也許是個細思極恐的問題呀。

因此,為了國內空污氣象學的發展,搞懂臺灣的大氣邊界層(Atmospheric boundary layer)是刻不容緩的工作。

大氣邊界層除了是人類的生活範圍,也是大部分的空氣污染物存在的地方,又被稱為行星邊界層(Planetary boundary layer)。在氣象學中,大氣邊界層指的是「直接受到地表作用影響」的大氣,高度從地表一直到數百至數千公尺不等,是大氣層中最靠近地球表面的部分。

然而,傳統氣象學所模擬出來的大氣邊界層結構並不符合臺灣的真實情形,因此,大氣科學家必須釐清大氣邊界層的氣象參數、動力機制,未來才能夠更精準的找到影響都市氣象以及空氣品質的關鍵因子。

但周崇光也感慨的說,「坦白講,目前臺灣還沒有辦法很『系統化』的改善邊界層的模擬條件,但我們仍然不斷的在努力,透過很多很多的調查、研究、模擬參數,漸漸地發展出半經驗、半理論的結構,最終的目標是歸納成一個系統性的成果,作為臺灣空污氣象學最扎實的理論基礎。」

-----廣告,請繼續往下閱讀-----

從大規模的調查研究、積極補足知識的缺口、重新建立理論模型,到回頭檢視國家的空污防制策略,大氣科學家必須腳踏實地的、一步一步的,藉由大氣科學研究的力量,才能讓空氣品質管制更上一層樓。面對迫切的空氣污染防制議題、空污氣象學理論的不足,「空氣品質專題中心」也應運而生。

中研院在「大氣物理與化學」的研究群早已相當成熟,有著極為厚實的研究經驗和基礎,然而為了讓研究目標更明確、進一步聚集研究能量並進行跨部門的合作,中研院以提出空污議題的科學解釋與建議對策為目標, 2021 年 1 月在環境變遷研究中心之下成立空氣品質專題中心,成為全國規模最大的空氣品質專業研究機構。

除了宣示中研院對空污議題的重視之外,如此一來,研究預算的匡列、人力的評估,都有更紮實、更有架構的基礎。擺脫以往研究員們「自動自發」的空品研究,在中心的管理之下,空污的學術研究更能夠產生聚焦效果。

更精確的空氣品質預報

如果大家點入行政院環保署的空氣品質監測網,可以發現,目前來自中央監測的空氣品質預報的解析度並不高,由於空品狀況站數僅有 85 站,只能以「北部」、「竹苗」、「宜蘭」、「花東」、「中部」、「雲嘉南」、「高屏」等大範圍空品區進行未來三日的預報,尚無法以「縣市」或更小的區域為單位提供精準的預報。

全國空氣品質指標的測站點位圖,可看出共有 85 個測站。圖片資訊日期為 2022 年 9 月 13 日。圖/空氣品質監測網
未來三日空品區預報,目前僅能呈現大範圍空品區預報。圖片資訊日期為 2022 年 9 月 13 日。圖/空氣品質監測網

因此,為了提供更先進的空氣品質預報,致力掌握國內 PM2.5 及 O3 等空氣污染物濃度變化情形的「高解析度空氣品質診斷與預報模式發展計畫」,是空品專題中心相當關鍵的研究計畫之一,此計畫是行政院前瞻基礎建設中「民生公共物聯網數據應用及產業開展計畫」的一個分支,集結了中研院、國家高速網路與計算中心、環保署等跨部門資源。

該計畫預計發展一套 1 km*1 km 高解析度的 72 小時空氣品質預報模式,並描繪空氣污染物的 3D 空間分布,預期能夠對臺灣地區 PM2.5 及 O3 生成與傳輸過程進行更精確的模擬,進而應用於空氣污染事件的預報和成因診斷。

周崇光將這個計畫比喻為一個「神經系統」,由環保署統合高達 10,000 個感測器,就像是神經系統中的神經元,負責感知大氣環境中的變化,並透過民生公共物聯網提供的神經網路,將資訊傳輸至國家高速網路中心的超級電腦,而超級電腦就像是大腦一樣,提供強大的運算力,使得空污模式得以統合氣象條件、污染物排放量、以及感測器提供的環境變化狀況,計算和預報未來幾天空氣品質的可能變化。

雖然感測器來源不一,不同層級的靈敏度也有所落差,但隨著近年技術的進步和突破,微型感測器對 PM2.5 的監測資料已經具有足供參考的準確度,目前各縣市大約都有 100 個以上的微型感測器,環保署已經在全臺灣佈建了約 10,000 個感測器,透過高密度的監測數據進行資料分析,有效掌握全臺各地的空品狀態。

環保署已佈建約 1 萬個微型感測器,可監測各地 PM2.5 狀態。圖片資訊日期為 2022 年 9 月 13 日。圖/air 空氣網

此外,此研究計畫也希望藉由感測器的大量需求,協助推動臺灣感測器的產業,與經濟部、工研院合作推動感測器的國產化。目前工研院的技術已經技轉給國內廠商,國產感測器在環保署監測網的佔有率已達將近 3 成,未來會持續輔導相關廠商。

研究計畫一邊發展預報系統,也一邊透過微型感測器資料即時驗證預報的成效。就像是如果寫考卷時,我們可以一填答就馬上得知正確答案時,就可以隨時檢討自己的計算流程到底哪裡出了問題,不斷修正,找出最正確的解方。

同理,拜微型感測器遍布全臺之賜,大氣科學家逐漸能夠快速驗證空氣品質預報的模擬結果,有朝一日,國內空污的物理化學機制以及關鍵污染源,將不再是讓人頭痛的黑盒子。目前由於 PM2.5 的感測器已相對成熟且數量足夠,因此中研院空品專題中心已成功驗證 3 km*3 km 解析度之 PM2.5 預報資料,最終目標是精確到 1 km*1 km。

影/YouTube
中研院周崇光團隊已成功驗證高解析度 72 小時 PM2.5 預報資料,每小時可模擬 3 km*3 km 空間解析度,最終目標是精確到 1 km*1 km。圖片預報日期為 2021 年 12 月 18 日~2021 年 12 月 20 日。圖/研之有物(資料來源/周崇光)

如何讓空氣品質變好,又不影響現有的生活?

在中研院環變中心周崇光研究員帶領下的空品專題中心,其中一個核心精神,就是要對社會關鍵議題有貢獻。

專注發表學術論文是科學研究的本質,也是科學進步的動力,不過進行社會議題相關的科學研究通常會更辛苦,往往會花費極大的心力與時間。

做空氣污染防制就像是「精準醫療」的概念一樣,如何讓藥物只攻擊癌細胞而不對身體的其他地方造成太大的副作用?經過科學研究的探索後,如何讓臺灣的空氣品質更好而不衝擊社會文化和經濟?

空污管制並非是一味阻擋臺灣經濟和工業發展,空品專題中心希望可以藉由科學的力量,更精準、更沒有副作用的改善臺灣空氣品質。

除了大氣科學理論和空氣污染排放清單有所不足之外,像是能源政策、交通規劃、國土計畫都需要重頭思考。周崇光說:「一路研究下去,我們開始疑惑,當初為什麼我們都傻傻的,把這麼多的大型污染源擺在海邊,讓海風把污染物往內陸帶?為什麼臺灣的國土利用那麼集中?」這一些命題,都是一環扣一環。

最後周崇光強調,「空氣品質絕對是應用導向的研究,因此,我們除了做科學,也要讓這些研究結果有願景、有視野,讓臺灣變得更好。」

-----廣告,請繼續往下閱讀-----
所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3851 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook