1

64
4

文字

分享

1
64
4

1918 年大流感的免疫戰爭,竟在八十年後重演!——《大流感:致命的瘟疫史》

臺灣商務印書館
・2021/01/23 ・2708字 ・閱讀時間約 5 分鐘 ・SR值 547 ・八年級

-----廣告,請繼續往下閱讀-----

一九一八流感中,這個防禦適度與過度的界線在病毒與人體,生存與死亡之間的對抗成為絕對重要的關鍵。病毒入侵肺部的效率如此之高,使得人類免疫系統卯足勁道反擊。

使年輕力壯的人在被感染後快速死亡的兇手不是病毒,反而是人體自己的免疫機制。

病毒在人體裡做什麼?本來好好的怎麼下一秒就倒地不起

病毒通常會附著在呼吸道表面的上皮細胞上,這些細胞排列在氣管表面,做為保護層,直通到深處的肺泡。在病毒入侵身體的十五分鐘之後,它們的血凝素突觸會和上皮細胞的唾液酸受體結合。一個又一個的突觸讓病毒和細胞間接合越抓越緊,大約在病毒入侵細胞成功之後十個小時,細胞就會破裂,釋放出一千到一萬個能感染其他細胞的新病毒。

在更短的病毒複製時間裡,一千乘以一千再乘以一千⋯⋯我們能很容易理解為什麼前一刻外表還看來好好的人,會在病毒繁殖的連鎖反應到五、六代之後忽然倒地不起。

病毒繁殖的速度極快,短時間內就能夠讓外表看起來還沒事的人倒地不起。圖/cottonbro

另一方面病毒也會攻擊免疫系統,削弱人體的防禦力量。它們會防礙干擾素的分泌,而干擾素正是人體對抗病毒攻擊的第一道防衛。一九一八年病毒對免疫系統妨礙的情形至為明顯,讓當時已經被疫病搞得焦頭爛額的研究人員還能看得出感冒病人對其他刺激的免疫能力大幅降低。客觀的試驗可以驗證這個現象。

-----廣告,請繼續往下閱讀-----

即使溫和的感冒病毒也能把上呼吸道的上皮細胞完全剝除,使得喉嚨組織赤裸裸地暴露在空氣中。人體的修補工作在幾個小時內就會展開,但是得花上好幾天才能整個修復完成。

一旦有感染源建立灘頭陣地後,免疫系統的第一個反應就是發炎。它會使感染位置紅腫發熱,或是讓整個身體發燒,或是兩種症狀同時出現。

感冒時的頭疼不是病毒引起,而是「細胞素」!

發炎的過程包括白血球分泌出一種叫細胞素 (cytokine) 的物質。白血球有很多種類,有些攻擊入侵的有機體,有些則協調攻擊行動,還有一些負責產生抗體。細胞素的種類更多。有些細胞素直接攻擊入侵者,像干擾素的對抗病毒,有些則傳遞信息。

例如巨噬細胞會產生顆粒細胞刺激因子 (granulocyte-macrophage colony-stimulating factor, GM CSF) ,用來刺激骨髓製造更多的巨噬細胞和叫作顆粒細胞 (granulocyte) 的另一種白血球。

-----廣告,請繼續往下閱讀-----

有些細胞素會把發動抗戰的消息帶到身體中平常不屬於免疫系統的部分。當這些細胞和擔任體溫調節中樞的丘腦下部受體結合時,身體溫度會升高,讓人全身發燒。發燒其實也是免疫活動的一部分,有些病原體在較高的體溫下會被消滅。罹患流感時,發燒溫度多半達華氏一百零三度(約攝氏三十九度四),還可能更高。

白血球分泌出一種叫細胞素 (cytokine) 的物質。圖/Wikimedia common

不過細胞素本身也有毒性。感冒常出現的頭疼和身體疼痛等症狀不是病毒引起,而是細胞素造成的例如細胞素刺激骨髓製造更多白血球的結果,會使病人骨頭酸痛。

細胞素也可能造成更嚴重和長期的傷害。例如以能殺死癌細胞而得名的細胞素「腫瘤壞死因子」(Tumor necrosis factor, TNF) 為例,在實驗室裡腫瘤遇上 TNF 會立刻被殺死,TNF並且會刺激身體發燒,但是它的殺傷力不只是針對生病的細胞而已。它也會傷害健康細胞,甚至整個身體。TNF 本質是一種毒素,是主要中毒症狀的原因,但它還不是唯一有害人體的細胞素。

病毒與免疫系統的決一死戰——「免疫風暴」

通常身體對感冒病毒的對抗在病毒取得立足點之前就已經展開,但在一九一八年的流感,病毒不但能感染整個上呼吸道的上皮細胞,更能將感染的範圍深入到最裡層的肺泡,造成所謂的病毒性肺炎。

-----廣告,請繼續往下閱讀-----

免疫系統跟蹤病毒直到肺部深處,用上所有的手段,就地發動毫不保留的殊死戰。免疫系統派出殺手 T 細胞,它專門攻擊被病毒感染的人體細胞,有時還發動所謂的「免疫風暴」 (cytokine storm) ,致命武器傾囊而出展開全面攻擊。

在肺泡上輸送氧氣的微血管負責運送攻擊部隊。微血管會膨脹,釋出液體、白血球、抗體、細胞素、和各式各樣的免疫武器到肺部。這些細胞素和酵素其實也會消蝕微血管本身,讓更多的液體進入肺部。於是組成肺泡的細胞即使能熬過病毒肆虐,也被自家的免疫系統破壞了。

發燒也是免疫活動的一部份。圖/Andrea Piacquadio

組成肺泡內層的細胞是種粉紅色的玻璃狀黏膜,叫作玻璃樣膜 (hyaline membranes) ,它能產生界面活性劑的效果,讓肺泡表面平滑像肥皂泡般,減少表面張力,讓氧氣更容易進入紅血球。

一旦這些玻璃樣膜在肺泡中消失之後,會使更多的血液流入肺部,身體會製造纖維狀的結締組織,於是肺部局部堆滿細胞殘骸、纖維蛋白、膠原質和各種其他物質。蛋白質和液體則充塞細胞間的間隙。

-----廣告,請繼續往下閱讀-----

諾貝爾獎得主法蘭克.麥法蘭.伯內特描述肺部發生的事情:「急性發炎充血⋯⋯整個氣管結構,特別是細支氣管上皮細胞快速壞死⋯⋯尤其肺泡壁受到毒素損害,滲出血液和其他液體⋯⋯持續滲出的液體阻塞細支氣管,最後造成局部組織沒有空氣。」

激烈的免疫戰爭

免疫系統的反應隨年齡而不同。年輕人體內發動的免疫戰爭最強烈,免疫系統通常讓他們的健康狀況處於巔峰,可是有時候卻反而成為致命的弱點。

一九一八年年輕人對病毒發動的免疫戰爭規模最強,使得他們的肺部充滿液體和各種雜質,阻礙正常氧氣交換,他們變成免疫系統的受害者。一九九七年香港發生的禽流感是病毒直接從雞跳到人體,造成七人喪生,但是病毒本身並沒有變化成人類病毒。那次有上百萬隻雞被銷毀以避免發生病毒變異,同時那次流感也被深入研究。

病理學家在病人遺體的解剖中,發現他們體內的細胞素含量非常高,也發現他們和免疫有關的骨髓、淋巴、脾臟等組織,及其他器官也都成為殺紅了眼的免疫系統攻擊目標。他們以為這是前所未見的症狀,其實一九一八年的人們已經見識過同樣的情形。

-----廣告,請繼續往下閱讀-----

而這只不過是流行性感冒而已。

——本文摘自《大流感:致命的瘟疫史》,台灣商務出版,2020 年 10 月5日。
文章難易度
所有討論 1
臺灣商務印書館
5 篇文章 ・ 2 位粉絲
1897年於上海成立,由出身印刷業的夏瑞芳等四位先生創辦,原意只做印刷商業文件的生意,故以「商務」為名。1948 年臺北分館開業,隔年商務臺灣分館改名為「臺灣商務印書館」,開始獨立經營。商務印書館的靈魂人物王雲五先生,於 1921 入館擔任編譯所所長至 1929 年,1930 年受邀回館任總經理至 1946 年;王雲五先生 1951 年自香港抵臺定居,以股東資格對臺灣商務印書館提供業務諮詢;1964 年由王雲五先生擔任董事長,直到 1979 年,對於商務印書館能夠成為當今華文世界最早的現代出版社,有著畫時代的意義。 商務印書館出版超過萬種好書,既有經典叢書如萬有文庫、人人文庫、古籍今註今譯等,近年更開創新系列叢書,包括 OPEN、Ciel、新萬有文庫、VOICE、U 小說、Alinea 等,極獲好評,為臺灣出版界重要的老字號出版社之一。

0

2
0

文字

分享

0
2
0
人體吸收新突破:SEDDS 的魔力
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/03 ・1194字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

本文由 紐崔萊 委託,泛科學企劃執行。 

營養品的吸收率如何?

藥物和營養補充品,似乎每天都在我們的生活中扮演著越來越重要的角色。但你有沒有想過,這些關鍵分子,可能無法全部被人體吸收?那該怎麼辦呢?答案或許就在於吸收率!讓我們一起來揭開這個謎團吧!

你吃下去的營養品,可以有效地被吸收嗎?圖/envato

當我們吞下一顆膠囊時,這個小小的丸子就開始了一場奇妙的旅程。從口進入消化道,與胃液混合,然後被推送到小腸,最後透過腸道被吸收進入血液。這個過程看似簡單,但其實充滿了挑戰。

首先,我們要面對的挑戰是藥物的溶解度。有些成分很難在水中溶解,這意味著它們在進入人體後可能無法被有效吸收。特別是對於脂溶性成分,它們需要透過油脂的介入才能被吸收,而這個過程相對複雜,吸收率也較低。

-----廣告,請繼續往下閱讀-----

你有聽過「藥物遞送系統」嗎?

為了解決這個問題,科學家們開發了許多藥物遞送系統,其中最引人注目的就是自乳化藥物遞送系統(Self-Emulsifying Drug Delivery Systems,簡稱 SEDDS),也被稱作吸收提升科技。這項科技的核心概念是利用遞送系統中的油脂、界面活性劑和輔助界面活性劑,讓藥物與營養補充品一進到腸道,就形成微細的乳糜微粒,從而提高藥物的吸收率。

自乳化藥物遞送系統,也被稱作吸收提升科技。 圖/envato

還有一點,這些經過 SEDDS 科技處理過的脂溶性藥物,在腸道中形成乳糜微粒之後,會經由腸道的淋巴系統吸收,因此可以繞過肝臟的首渡效應,減少損耗,同時保留了更多的藥物活性。這使得原本難以吸收的藥物,如用於愛滋病或新冠病毒療程的抗反轉錄病毒藥利托那韋(Ritonavir),以及緩解心絞痛的硝苯地平(Nifedipine),能夠更有效地發揮作用。

除了在藥物治療中的應用,SEDDS 科技還廣泛運用於營養補充品領域。許多脂溶性營養素,如維生素 A、D、E、K 和魚油中的 EPA、DHA,都可以通過 SEDDS 科技提高其吸收效率,從而更好地滿足人體的營養需求。

隨著科技的進步,藥品能打破過往的限制,發揮更大的療效,也就相當於有更高的 CP 值。SEDDS 科技的出現,便是增加藥物和營養補充品吸收率的解決方案之一。未來,隨著科學科技的不斷進步,相信會有更多藥物遞送系統 DDS(Drug Delivery System)問世,為人類健康帶來更多的好處。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

0
1

文字

分享

1
0
1
如何有效預防食媒性疾病 A 型肝炎病毒?
衛生福利部食品藥物管理署_96
・2023/10/10 ・2338字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自食藥好文網

圖/envato
  • 文/黃育琳 食品技師

民以食為天,你吃的食物是安全的嗎?

中國大陸上海市在 1988 年曾因毛蚶貝類污染而爆發 A 型肝炎疫情,造成約 30 萬人感染,其中 47 人死亡 [1]

我國於 2014 年 10 月至 11 月期間,急性病毒性 A 型肝炎本土病例達 30 人(其中 25 人住院),經衛生福利部疾病管制署(以下簡稱疾管署)與衛生局調查發現,多數病例於潛伏期間有生食蠔類(牡蠣)、文蛤或蛤蜊等貝類水產品 [2]

-----廣告,請繼續往下閱讀-----

這起事件極有可能是所謂的「食媒性疾病」。

何謂食媒性疾病?

食媒性疾病或稱食源性疾病(foodborne illness or foodborne disease)是指經由吃進被污染的食物或飲水等所致的疾病,常見症狀包含噁心、嘔吐、腹痛及腹瀉等。

依世界衛生組織的資料顯示,全球每年約有 6 億人因食用受到污染的食物或飲水而生病,其中 42 萬人死亡,又以兒童占多數。學童在校園中常暴露於共同的飲食及水源,人與人之間接觸密切,傳染病原很容易透過飛沫、糞口與接觸途徑傳播,易造成校園群聚感染事件發生 ​​[3]

但追溯污染源並不容易,食物在種植(或養殖)、採收、儲存、運送、製造、加工、包裝及烹調等任一階段都有可能被污染。且旅行和國際貿易頻繁更是提高被污染食品跨國散播的可能性 ​​[3],使農場到餐桌的食安管理顯得十分重要。

-----廣告,請繼續往下閱讀-----

A 肝病毒之分布

一開始提到因吃下受 A 型肝炎病毒(Hepatitis A virus,以下簡稱 A 肝病毒)污染的食物而感染 A 型肝炎,就是很典型病毒型食媒性疾病的例子。

A 肝病毒的流行主要與當地的衛生環境有關,主要流行地區包括亞洲、非洲與中南美洲等地區,尤以東南亞、印度、中國大陸等地區較為嚴重。

在開發中國家,人民多半在嬰幼兒時期,常因攝入受 A 肝病毒污染的水或食物而感染(通常 6 歲以下兒童感染約有 70% 無臨床症狀或症狀輕微),成年後多半已具有免疫力。

然而在已開發國家,衛生環境大致較佳,很多年輕人並未感染過 A 肝病毒而不具免疫力。臺灣便是如此,大部份的兒童及青少年(尤其是都會地區)都未具 A 型肝炎抗體,使爆發流行的風險增加 [1]

-----廣告,請繼續往下閱讀-----

A 肝病毒之特性與感染症狀

A 肝病毒是一種無套膜,直徑約為 27 nm 的 RNA 病毒,潛伏期約 15~50 天,其所引起的 A 型肝炎,屬第二類法定傳染病 ​​[1]

患者臨床症狀包含發燒、肌肉酸痛、疲倦、食慾不振、腹部不適、噁心、甚至嘔吐等,持續幾天後,病人會出現有茶色尿或併有眼白變黃(即黃疸)的徵兆,急性 A 型肝炎並無特殊療法,通常採一般的支持性療法即可痊癒 ​​[1]

而 A 肝病毒主要是透過糞口途徑傳播,最可能被污染的食品或飲料如水果、蔬菜、貝類、冰和水(包括冷凍或未經澈底加熱),感染者沒有確實洗手並接觸其他東西也會造成病毒傳播 [1]

不過 A 肝病毒的生命力頑強,對胃腸道極端的 pH 值和酶之耐受性高,能在不利條件下存活,被污染的食物需加熱超過攝氏 85 度且持續至少一分鐘才足以使 A 肝病毒失去活性。

-----廣告,請繼續往下閱讀-----

再加上只要有極少量病毒顆粒存在便足以使人致病,所以即使食品所含的病毒量很低,仍具有食品中毒之風險 [4]

透過電子顯微鏡所拍攝的 A 型肝炎病毒。圖 / 美國疾病管制與預防中心
透過電子顯微鏡所拍攝的 A 型肝炎病毒。圖 / 美國疾病管制與預防中心

食品從業人員基本要求《食品良好衛生規範》

為了避免食品受到病毒污染,食品從業人員的「衛生管理」就非常重要,我國行政院衛生福利部為了確保食品業者之衛生管理,已制定《食品良好衛生規範準則》(The Regulations on Good Hygiene Practice for Food, GHP)。

GHP 是食品業者確保其食品在製造、加工、調配、包裝、運送、儲存、販賣、輸入、輸出等過程中的安全衛生與品質,是最基本要求,所有食品業者皆應實施 GHP,在 GHP 附表二即說明:

食品從業人員經醫師診斷罹患或感染 A 型肝炎、手部皮膚病 、出疹、膿瘡、外傷、結核病、傷寒或其他可能造成食品污染之疾病,其罹患或感染期間,應主動告知現場負責人,不得從事與食品接觸之工作。

-----廣告,請繼續往下閱讀-----

雖然是安全衛生品質的基本要求,卻還是有不少業者會疏忽,導致感染事件重蹈覆徹。

最佳預防方式就是注重衛生管理

除了 A 肝病毒之外,諾羅病毒、E 型肝炎病毒及沙波病毒皆是常見的病毒型食媒性疾病,這些病毒感染均無特效藥物可治療,僅能採用良好的支持性療法幫助病人痊癒。

因此最佳的預防感染方式就是做好衛生管理,包含:

  1. 個人衛生:準備食品前及進食前,還有如廁後皆要確實洗手。
  2. 在飲食衛生:飲水要煮沸再飲用,所有食品都應清洗乾淨並澈底加熱,不生食。
  3. 環境衛生:維護廁所環境清潔,廚房及飲食用具要保持清潔。
圖/envato

參考資料

  1. 衛生福利部疾病管制署,2018。急性病毒性 A 型肝炎  疾病介紹。
  2. 衛生福利部食品藥物管理署,2023。A 型肝炎病毒(Hepatitis A virus)。
  3. 衛生福利部疾病管制署、國立臺北教育大學,2016。食媒性疾病防治 教師指引手冊。臺北市:衛生福利部疾病管制署。
  4. Bozkurt, H., Phan-Thien, K. Y., van Ogtrop, F., Bell, T. and McConchie, R. 2021. Outbreaks, occurrence, and control of norovirus and hepatitis a virus contamination in berries: A review. Critical Reviews in Food Science and Nutrition 61:1 116-138.
所有討論 1
衛生福利部食品藥物管理署_96
65 篇文章 ・ 22 位粉絲
衛生福利部食品藥物管理署依衛生福利部組織法第五條第二款規定成立,職司範疇包含食品、西藥、管制藥品、醫療器材、化粧品管理、政策及法規研擬等。 網站:http://www.fda.gov.tw/TC/index.aspx

0

1
2

文字

分享

0
1
2
對腫瘤最終兵器!癌症療法新選擇,基改溶瘤病毒為何備受期待?
PanSci_96
・2023/09/04 ・5575字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

我們先前詳細介紹過用細菌以毒攻毒對付癌細胞的新進展,另一種我們也很熟悉但是避之惟恐不及的微生物,現在居然也華麗轉身,成了抗癌新利器,那就是——病毒。

科學家已經製造出基因改造病毒,注射到癌症患者體內,讓病毒感染癌細胞,把惡性腫瘤像一坨冰淇淋般溶化。這些超微型對癌必殺兵器是怎麼打造出來的呢?而且這樣做,就像開大門放一群餓狼進來咬老虎,難道不會害死正常細胞嗎?

能殺死癌細胞的病毒是什麼?請叫我「溶瘤病毒」!

很多病毒能感染人體,造成各種不舒服和損害,舉個例子,疱疹病毒讓人長出一片又熱又痛的水泡,腺病毒害人發燒、眼睛佈滿血絲或腹瀉。更具體地說,病毒有鑽進活細胞的特殊能力,接著搶走細胞裡面製造各種生物分子的生產線,用來組裝和複製它自己,最後一窩蜂的病毒再一起打破或鑽出細胞,繼續向四面八方擄掠燒殺。經歷過 covid-19,大家應該都很清楚了。 

從另一個角度看,病毒就像是一群強行入侵人體的超微型機器人,準確鎖定攻擊目標,把細胞的物資掠奪個精光,臨走前還從內部爆破活細胞,手段可說相當的惡劣。

-----廣告,請繼續往下閱讀-----

然而病毒這種高效率的惡劣,就如同其他危險且糟糕的事物一樣,吸引了科學家的好奇心,激發了他們的創意,有科學家就問啦:那有沒有辦法挑選出病毒煉成新藥,去爆破癌細胞呢?打一針兇惡的病毒去獵殺狡詐的癌細胞,使腫瘤崩潰溶解,以毒攻毒,豈不是一等巧招。

而且,溶瘤病毒可以引發後續一連串針對癌細胞的免疫反應,繼續擴大戰果。也因為病毒會激發免疫反應,所以溶瘤病毒也歸類為癌症免疫治療的一種。

我們在之前介紹免疫新藥的影片,有說明過癌細胞躲過免疫系統偵查的三大詭異功夫,這邊超快速回顧一下:第一招是癌細胞把身上的識別分子減少,使自己隱形;第二招是癌細胞戴上面具假裝成好細胞,矇騙過關;第三招是強行踩下免疫細胞的剎車板,中斷免疫攻擊。

癌細胞有躲過免疫系統偵查的三大詭異功夫。圖/PanSci YouTube

溶瘤病毒的根本原理,是只要癌細胞的細胞膜表面存在著病毒的受體,病毒就能強行突破防禦、攻進細胞,無視癌細胞的第一和第二招。這就好像癌細胞耍大刀耍得虎虎生風,病毒根本不管這些,直接先給它一槍就對了。

-----廣告,請繼續往下閱讀-----

2015 年,美國食品及藥物管理局(FDA)核准一款治療黑色素細胞瘤的 T-VEC 溶瘤病毒上市,使用的素材是第一型單純疱疹病毒(HSV-1),被視為是這個領域的里程碑。這種病毒其實我們很熟悉,它就是唇疱疹的病原體,感染後容易在嘴唇、鼻子、下巴這一帶長出一片水泡或潰瘍。

T-VEC 也是目前唯一一款世界多國普遍核可使用的溶瘤病毒。其他像是中國 2005 年核准治療鼻咽癌的 H101,或是日本 2021 年核准治療腦部惡性腫瘤的 Delytact,取得的都只有本國或少數幾個國家的許可證。

T-VEC 是目前唯一一款世界多國普遍核可使用的溶瘤病毒。圖/PanSci YouTube

病毒連續技,打得癌細胞難以招架

病毒為什麼能溶解摧毀腫瘤?大致來說,溶瘤病毒能以三連發的連續技來攻擊癌細胞。

第一擊,經過基因改造的病毒先感染癌細胞,侵入細胞內,開始繁殖,然後破壞癌細胞。這些病毒先經過人工移除掉一些致病基因,降低危險性,同時放入能增加治療效果的基因,例如常用的一種基因是顆粒單核球群落刺激生長因子,簡稱 GM-CSF,這種因子能活化和吸引更多免疫細胞來圍攻癌細胞,這個功效就和病毒的第二擊有關係。

第二擊,癌細胞死掉後散落出大量抗原和分子訊號,會吸引免疫系統的注意,將樹突細胞、T 細胞等多種免疫細胞從身體各處召喚過來。還有,病毒一進到人體,很短時間內樹突細胞就會辨識出病毒,接著釋放第一型干擾素。第一型干擾素是一種能刺激免疫系統的細胞激素,經過一連串下游反應,可以直接造成腫瘤損傷。同時,第一型干擾素也會促使 T 細胞聚集到腫瘤所在地,一起圍剿癌細胞。

接著是第三擊,病毒殺掉癌細胞以後也有機會連帶引發遠端效應(abscopal effect)。什麼是遠端效應呢?破掉的癌細胞散出抗原,身體借由這些抗原當作教材,培育出一群擁有辨識癌細胞能力的免疫細胞。這些免疫細胞順著血液循環,跑到遠方沒有感染病毒的腫瘤位置,把這些癌細胞一併消滅掉,這就叫做遠端效應,可說是「犯我免疫者,雖遠必誅」。

看到這裡,你應該會好奇,病毒會感染癌細胞,難道健康細胞就不會一同遭殃嗎?這就要回到剛剛提到的干擾素下游反應。正常情況下,第一型干擾素能啟動人體細胞內建的清除入侵病毒的機制,但是大多數癌細胞的干擾素反應路徑有缺陷,換句話說,同樣都會被病毒感染,健康細胞有能力排除掉病毒,癌細胞卻沒辦法,到最後矜不住,傷重斃命。這種效應是溶瘤病毒能瓦解腫瘤,同時減少傷害患者身體的重要關鍵。

-----廣告,請繼續往下閱讀-----
干擾素下游反應是溶瘤病毒能瓦解腫瘤,同時減少傷害患者身體的重要關鍵。圖/PanSci YouTube

但是,可不是每種病毒經過基因改造以後,都能像魔法少女般華麗變身。天底下病毒那麼多,怎麼樣才能找到合適的病毒來改造成抗癌的超微型機器人呢?

哪些「人選之毒」能變身對癌細胞特攻兵器?

病毒萬萬種,要從裡面挑到合適的素材,簡直像大海撈針。不過,以目前的醫療技術,還是有一些路徑可循。

一般來說,基因體比較大的病毒相對於基因體小的病毒,有更大的空間能加入其他基因來修飾病毒,因此在製造過程上,大病毒比小病毒容易操作。

除此之外,DNA 病毒比較容易透過重組 DNA 的分子工程技術來改造,例如治療黑色素細胞瘤的 T-VEC 溶瘤病毒就是 DNA 病毒,改造 RNA 病毒所需的技術相對比較困難。

-----廣告,請繼續往下閱讀-----

不過臨床上的真實需求比技術層面的考量複雜得多,像是基因體較大的病毒雖然容易操作,但是病毒的體積也大,很難通過血腦障壁。血腦障壁是一層包圍在腦部外面的緊密組織,就好像城牆一樣,是身體對腦的保護措施,只有小尺寸的物質才能通過牆上的孔隙。

大病毒過不去,小病毒卻有機會藉由一些特殊的生化機制潛入,因此想要治療腦部惡性腫瘤,或是其他血液或淋巴系統擴散到腦內落地生根的癌細胞,選擇小病毒就比較有利。

另一個臨床上的考量是,DNA 病毒雖然技術門檻相對低,但因為天然環境裡很多種 DNA 病毒容易感染人類,許多人的血液裡已經存在抗體,病毒注射進患者體內後很快被抗體中和,還來不及抵達腫瘤就沒力了。

在這種情況下,通常會考慮不把病毒輸注進靜脈血管,而是直接注射到病灶位置,避免病毒在血液循環過程中被清除。或者是,不使用 DNA 病毒,改用更容易在體內自行複製的 RNA 病毒,而且一般來說,人體帶著有效的 RNA 病毒抗體的機率比較低,就有機會減少這一類問題。

-----廣告,請繼續往下閱讀-----

還有最關鍵的一點,就是癌細胞表面一定要有病毒的受體,病毒才能鑽進癌細胞,否則就算病毒的殺傷力再厲害,也無用武之地,所以癌細胞的種類和性質會直接決定能選擇哪些病毒來製成藥物。

最後還有一些實務上的環節要克服,像是製作、儲存、搬運到醫院和注射的過程中,病毒必須能保持穩定,不因為熱、光線、酸鹼度等因素而分解。這難度可不低啊。

這樣一關一關篩選下來,目前只有少數的病毒能滿足這些需求。根據 2023 年 1 月《Nature Reviews Clinical Oncology》和 4 月《Nature》旗下子刊《訊息傳遞與標靶治療》的回顧性文章,現在用來開發溶瘤療法的病毒有疱疹病毒、腺病毒、麻疹病毒、克沙奇病毒和水疱性口炎病毒等等。

現在用來開發溶瘤療法的病毒中,疱疹病毒和腺病毒是 DNA 病毒,麻疹、克沙奇和水疱性口炎病毒是 RNA 病毒。圖/PanSci YouTube

溶瘤病毒還要突破哪些關卡?

溶瘤病毒雖然吸引全球許多的關注,一批批科學家和企業投入大筆時間金錢往這個方向衝刺,不過,擋在前面等待突破的難關一點也不比其他癌症新療法少。

-----廣告,請繼續往下閱讀-----

一個很骨感的現實是,雖然溶瘤病毒已經發展超過 20 年,截至 2023 年 6 月為止,各國核准的溶瘤病毒只有四款而已,可見得把病毒煉成抗癌藥這條路並不好走。

截至 2023 年 6 月,各國核准的溶瘤病毒只有四款而已。圖/PanSci YouTube

大致來說,溶瘤病毒療法需要通過三關的考驗。第一個關卡是腫瘤異質性。腫瘤來自身體細胞突變誕生的壞細胞,腫瘤在長大過程中,內部各處的細胞也會繼續發生突變和複製,因此會演變成一顆腫瘤是由一小群一小群帶有不同基因突變的癌細胞聚集起來的情況,這種現象叫做異質性。

打一針病毒瓦解了一部分腫瘤,但其他帶有不同突變的癌細胞因此訓練出抗藥性,下一針再打同樣的病毒可能效果就變差了,這是臨床治療的一個難題。

可能的解套辦法之一,是注射了幾次病毒以後,換成其他病毒,就好比替換抗生素使感染身體的細菌來不及適應,因而遭到殲滅。

-----廣告,請繼續往下閱讀-----

第二個關卡是腫瘤微環境,腫瘤內部這個狹窄空間是一個大魔境,免疫細胞攻進來以後,面對的是一個會壓抑免疫活性的嚴苛環境。打個比方,就像是特種部隊好不容易攻進恐怖分子大本營,結果發現房間裡布滿催眠瓦斯和詭雷。病毒雖然能滲透進腫瘤內部進行破壞,但是接到消息趕來增援的免疫細胞很快變得疲軟無力,因此能獲得的戰果就少了。

結合不同免疫療法,多拳出擊!

現在科學家認為,結合溶瘤病毒和免疫檢查點抑制劑(immune checkpoint inhibitor),是一種有希望的做法。我們先前詳細介紹過免疫檢查點抑制劑,這一群新藥能活化免疫系統,用病毒先打頭陣,摧毀一部分癌細胞,吸引免疫細胞參戰,接著藥物強化免疫細胞戰力,好像補師給戰士上 BUFF,一擁而上擊垮癌細胞。有興趣可以點這支影片來看。

像是 2023 年 5 月,一款使用腺病毒搭配免疫檢查點抑制劑 Pembrolizumab 的新療法,用來治療腦部膠質母細胞瘤,初步臨床試驗結果刊登在《Nature Medicine》,成功延長部分患者的存活時間。

另一方面,先前在 2022 年 8 月《Cancer Cell》的一項研究也顯示,溶瘤病毒加上 CAR-T 或 TCR-T 這類免疫 T 細胞療法,有機會產生加乘效果,甚至可能突破以往 CAR-T 只用於治療血液和淋巴癌症的侷限,讓 CAR-T 也能破壞實體腫瘤。

還沒大顯身手就衰弱了?溶瘤病毒護送計劃!

第三個關卡是病毒在長途行軍到病灶的過程中減弱。這是什麼意思呢?前面有說到,如果在注射前,患者血液裡已經有自然環境中同類病毒誘發產生的抗體,病毒部隊在還沒趕到目的地之前就潰敗了。再加上血管和器官的內皮細胞會擋住病毒,還有體內的其他多種免疫反應也會快速清除病毒,因此遞送病毒的效率低落,是現階段溶瘤療法的一個關鍵瓶頸。

雖然可以嘗試把病毒直接打進腫瘤病灶,但是如果腫瘤長在內臟,會需要特別的注射技術。要是患者已經到了晚期,癌細胞轉移到遠處器官,就還是必須把病毒輸注到靜脈血管,讓血液循環把病毒送到全身。

或是假如腫瘤分布在腦室、肋膜腔、膀胱或脊髓腔等腔室,也可以用特殊技術注射進這些位置。尤其是針對腦部惡性腫瘤和腦轉移的癌細胞,因為大多數病毒通不過血腦障壁,經常需要採用這種方式。

不過這些方法還是相對屬於高侵入性,對病人傷害可能比較大,因此科學家研發了另一種聰明的方法,那就是用活細胞當做載體,等於讓病毒搭便車兼提供一層保護殼,運送病毒抵達腫瘤。

2021 年《Molecular Therapy Oncolytics》的一項動物研究使用自然殺手細胞(natural killer cell)來搭載病毒,自然殺手細胞是免疫系統的一員,可以繞過身體的阻擋機制,好像一架漆著友軍識別標誌的運輸機穿過我方領土,把空降部隊載到敵人陣地上方。同年 12 月底《Pharmaceutics》一篇回顧報告列出研發中的載體細胞,還包括了 T 細胞、巨噬細胞和樹突細胞等。

整體看來,溶瘤病毒正方興未艾,讓人類又多了一種剋制癌細胞的手段,不過擋在前面的困難也不少,確切會在何時變成一種真正普及的療法還很難說,但可能就在接下來幾年。也想問問你,如果用病毒煉成的神奇藥水、藥丸或針劑真的上市了,你會怎麼做呢?

  1.  什麼也不做,因為相信自己肯定用不著。
  2.  聯絡一下保險公司,看有沒有給付。
  3.  這都不重要,重要的是泛科學到底是不是保護傘公司的行銷部門。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!