0

0
0

文字

分享

0
0
0

關於癌症傳/感染性與科學是否加劇歧視的討論

PanSci_96
・2012/07/16 ・7376字 ・閱讀時間約 15 分鐘 ・SR值 557 ・八年級

前情提要:

兩天前在臉書上開始出現一張照片,內容是一張傳單,上面印著台北市大安區錦安里「全體里民」不惜流血抗爭反對麥當勞叔叔之家在該里租用樓層作為癌症重症兒童中途之家。傳單中流露出的歧視跟不成理由的理由(如巷弄太小、為行政院長官邸所在、或是隱藏的擔心房價下跌因素),讓大多數網友都感到憤怒以及不解,然而隨後新聞媒體的報導中更有當地人表示「癌症不會傳染是騙人的」,所以堅持反對。

在多數大眾(包括絕大部份錦安里居民)都支持癌症兒童中途之家成立的情形下,隨著個別極有影響力的公眾人物跟意見領袖介入,事件卻有愈來愈偏激、趨向對立、網路上對該里少數反對興建者的猛烈批判跟人肉搜索也讓人擔心是否會反而造成難以處理的局面。

在此前提下,PanSci秉持以科學理性討論社會大小事的原則,在7/16下午於臉書專頁上進行了一場熱烈且多元的討論。以下是討論摘錄:

PanSci:

我想不用多說,各位PanSci的伙伴都知道,直到目前為止的醫學證據告訴我們,癌症是不會傳染的疾病(遺傳跟傳染是不一樣的)。

但社會上對於生病或是與「正常人」略有不同外觀或表現的人的歧見,一直都是存在的。從樂生療養院的漢生病人、到關愛之家的愛滋病童、或是對遊民潑冷水,再到這次的事件。太多太多案例,無法一一列舉。

科學能夠如何改善這種生理歧視呢?又,科學會不會是加劇這種歧視的推手?例如,未來當基因疾病檢測普遍之後,對於有癌症基因的人(即使還未發病),會不會就受到歧視?企業會否因為認為這些人壽命不長,就不予栽培或是錄用?伴侶會否因為認為這些人壽命不長,甚至可能遺傳給下一代,就(被迫)切斷情緣?

在這個個人資料愈來愈透明的時代,難保基因資料不會變成臉書上可以分享的「狀態」之一。(P)

Lei Yao Chang:

-----廣告,請繼續往下閱讀-----

癌症不會傳染,但是造成癌症的因子可能會傳染,即使機率非常非常非常的低,在正常狀態下,低到可以忽視。(資料來源:What causes cancer? : Cancer Research UK : CancerHelp UKHow virus causes cancer)

Emil Wu:

造成癌症的因子可以被傳染,例如… HPV?這些人是想對癌症病童作啥…

黃丸子:

同性戀不會傳染,癌症不會傳染,聾啞不會傳染,這很難懂嗎?

Lei Yao Chang:

@Emil Wu HPV只是其中一種,還有其他種。以正常的狀態下,癌症不會因為正常接觸而傳染,但是不表示癌症不會經由其它的能經由散播的方式增加發生的機會,比如胃癌可以經由細菌增加機會。我順便提一個東西,科學家目前很難解決,就是當我們對於瘦肉精要求0風險的時候,對於其他已經有證據即使風險度極極極低的時候,卻採取了另一個認知模式,這是社會心理學家該注意的部分,這像是著名的演唱會門票遺失問題一樣。

Tzu-ching Wu:

-----廣告,請繼續往下閱讀-----

嚴格說起來, 癌症是會傳染的. 當然遺傳佔癌症起因很大因素, 但很多最新研究顯示多重因子引發癌症, 其中就包括細菌.

PanSci 科學新聞網:

@‎Tzu-ching Wu 這樣的說法似乎將傳染的定義過度擴張了?

楊阿布:

會傳染又如何?歧視本身就不應存在。

Lei Yao Chang:

當年胃潰瘍被說是細菌造成的,也被認為愚蠢。以實際程度論證就可以,不需要額外的東西。多少年前第一次出現肥胖細菌時,其結果推翻並打了當年說肥胖不會傳染的一群人,實驗發現,肥胖的人帶有類似的細菌群,而今年的華人遺傳年會中討論的其中一樣就是腸道細菌對於增重的影響。

蘇家誼:

-----廣告,請繼續往下閱讀-----

就算是會傳染 你有辦法控制自己生活其他致癌因子嗎? 為什麼不見這些人大力反對吸煙 反對空氣汙染 把自己用太空衣隔離起來 當你說著風險問題時 為什麼又對原本環境飲食與生活習慣中就已經含有的各式致癌風險視若無睹

Felix Chan:

有癌症基因如何了? 治得好就行.
還不要說有的癌症後天因素比先天傾向大.

劉勁麟:

印象中有一些心理學實驗, 已經實證歧視以及分群是人類的天性, 而我猜想歧視在演化上, 應該也有一定的作用 (演化不一定會是往永續的地方走), 但是在目前高度講究人權的時代, 有付諸行動的歧視, 在很多國家都是法律所不允許的, 但是台灣還是時常在發生, 很多甚至於是發生在所謂的民意代表身上

黃丸子:

拼命抽煙喝酒,然後認為會得癌症是因為鄰居傳染

蔡宛君:

-----廣告,請繼續往下閱讀-----

我想說的是,與某種病毒或細菌高度相關的癌症很多,但不能把病毒或細菌是為癌症的延伸,因為沒有一篇研究可以證實只要感染某種細菌或病毒就一定會發生癌症

魯豆斯:

別見獵心喜看到黑影就開槍,那都是一種可能性,就算我們有能力屏除一兩個,你能保證其他的方式就不會讓你得病嗎?況且在文獻發表的都是極端值的狀況,要長期處在極端值的人才會有比較大的可能性會發生病症,那試問你?如果因為本身基因缺陷有可能致癌的人,在得到癌症後,發現有這樣的病毒或細菌在他身上,你要說是基因的問題還是病毒和細菌才造成這個人得到癌症?!

蘇家誼:

所以這些人講的”可以傳染” 與你們提的最新研究成果有相關嗎? 還只是製造出自己行為合理化的一個藉口 我認為他們對癌症與癌症因子根本無概念 有的僅是利益再背後推動 當你們很認真的提供可能性時只是讓他們的藉口多些力道 我也不太認為在自然的情況下這些病童對於當地癌症因子的背景值能造成什麼顯著偏差 這只會助長新的”電磁波恐慌”

劉千義:

癌症會不會傳染? 其實是有可能的,不過並不是那些人想的那樣! (這種政治不正確的話,是不是又要被打了呢?) 這是噗浪上的討論

Lei Yao Chang:

-----廣告,請繼續往下閱讀-----

基因造成的或是外因造成的,比例各自為何和問題本身可以分開討論,所以我說在正常情況底下,可以忽略傳染的可能,但是也必須提醒,不是完全沒有傳染造成癌症這樣的事情。

另外這種因子是否會誘發癌症,這就像有人抽了一輩子菸也沒得肺癌,有的人抽了沒兩年甚至沒抽菸就得肺癌一樣,每個人的基本體質不同,感受性不同,這邊要提醒的是是不是絕對不會,如果台灣還沒有離開瘦肉精的疑慮的話,應該全國很多人對於如果有一個人出事誰負責的說法應該不陌生吧,我這邊要說的不是要說會出事喔,而是正常來說不會出事,但是對待問題上,社會群體會因為道德因素,同理心…等等,出現很多不同的判斷標準。

Tzu-ching Wu:

How Infection Can Lead to Cancer « Bel Marra Nutritionals | Health Advice | Natural Health Products

我想在新聞或其他地方我並不會特別指出來, 但再以學術研究為主的Pansci, 我希望大家看到其實這方面的研究也是有的, 也可以找到很多文獻. 如文中所述今年六月份PNAS.

至於傳染的定義過度擴大, 就像流行性感冒一樣也是由傳染性病毒或細菌在人體間傳播. 我想應該不至於過度擴大.

PanSci 科學新聞網:

基因體分析幫助塔斯馬尼亞惡魔(Tasmanian Devil) « PanSci 泛科學,這個算是「可以傳染的腫瘤」。
@Tzu-ching Wu 所以,如果以「多重因子(包括細菌、病毒)造成的疾病」來定義傳染疾病的話,那大概沒有什麼不是傳染疾病了?是這樣嗎?

Tzu-ching Wu:

在1995年就有相關的研究: “Bacterial infection as a cause of cancer”並指出兩種引發癌症機制: induction of chronic inflammation and production of carcinogenic bacterial metabolites.

蘇家誼:

-----廣告,請繼續往下閱讀-----

我覺得在說出個可能性時 他的正常發生機率是不是應該要一起列出來 跟其他的可能性一起比看看 而不是只給出個結論說會 這樣比較像是種恐嚇 既然是討論科學的地方就不應該學媒體的用法 不然假如今天辦的到拿自己細胞出去培養再用”某種特定方式”誘發成癌後 移殖回自體是不是就能下結論說這個過程有接近100%的”癌症傳染性”

Lei Yao Chang:

機率是該被提出來,不過目前來看是不會有準確的數字,不過從正常的接觸可能推估,機率不會太高,不過說是不會發生目前的資訊不這樣認為,而因為細菌病毒導致的癌症機會有多少,這部分,上面網友提供了一個資訊,裡面第一段有提到。

Ethan Yet:

聽說這叫做鄰避效應,就是說很多人都覺得做這件事不錯,但沒有人希望這件事在他家隔壁做!要談傳染,宜先定義傳染,如果傳染本身可以有多種途徑,就把所有途徑列出,把不會傳染的列出。但即使如此,也說服不了人心中的恐懼!人都怕死,就是這麼簡單!

Sherry Tsai:

不管會不會傳染,因為對方生病就歧視排斥這件事本身就是錯的
愛滋病會傳染,難道就可以歧視愛滋病患?

鄭紹鈺:

-----廣告,請繼續往下閱讀-----

科學無法解決一切事情吧…

Lei Yao Chang:

我想這邊沒人歧視病患,我自己也生過病阿,這邊如果跟蘋果或是yahoo或是ettoday新聞雲下面的網友模式相同的話,就沒什麼地方可以討論問題了。

Tzu-ching Wu:

1. 單純回歸到標題: 癌症是不會傳染的疾病, 我只想說的是這說法是錯誤的. 而且有研究[1]說明的確細菌傳染是機制之一 2. 前面我已提及癌症是多重誘發, 當然其中各種因子都可能導致癌症, 有各自的機率, 且mechanism尚在研究 3. 至於我說癌症是會傳染的, 我並無意指出它的反向命題: 傳染就一定會得癌症. 4. 新聞是另一層面的問題. 在此也呼籲勿以一般媒體勿捕風捉影, 並提出正確reference以資參考. [1] http://www.pnas.org/content/109/27/E1820.short

劉千義:

你如果是要討論: 癌症會不會傳染或者是癌症病患需不需要隔離…這兩個命題是完全不一樣的!
‎”不是完全沒有傳染造成癌症這樣的事情。”傳染癌症,跟誘發癌症的因子會傳染是不太一樣的東西!

PanSci 科學新聞網:

是的,我相信在這裡討論的人並非帶有任何歧視,只是針對 1) 癌症可不可能傳染,機率,以及傳染的途徑 2) 科學發展是否會造成疾病污名化更加嚴重?要如何改善? 兩個命題在討論。(P)

Lei Yao Chang:

@劉千義 我想說的Tzu-ching Wu都說了,而我自己想說的也說了,癌症是不會傳染這部分對一般讀者來說是沒有問題的,但是對於比較”龜毛”的還想拿科學結果角度看事情的,就不是那樣的100%絕對,因此當我們說,癌症不會傳染是個常識時,過往有很多常識後來都被修正了,作為科學討論區,應該可以包容這樣的討論,也應該可以理解這樣的說法。不過很不好意思的是,我首先歪了版主的樓,沒討論科學發展是否造成疾病汙名化問題,這比較抱歉。

張家誠:

我覺得「細菌是造成癌症的原因之一→細菌會傳染→故得證癌症(民眾應該泛指所有癌症)會傳染」的邏輯很奇怪….

Lei Yao Chang:

@張家誠 我想Tzu-ching Wu已經給你答案了。”3. 至於我說癌症是會傳染的, 我並無意指出它的反向命題: 傳染就一定會得癌症.”

劉千義:

@Tzu-ching Wu: 我們是怎麼定義傳染病?你所說的癌症傳染能符合Koch’s postulates嗎?

PanSci 科學新聞網:

@‎Tzu-ching Wu 感謝,但看了文獻,覺得應該說「細菌感染是誘發癌症的因子之一」,但一個癌症患者要如何再將癌症傳給另一個人呢?

張家誠:

我剛剛想到”傷口被細菌感染→不幸得到了蜂窩性組織炎→細菌會傳染→所以蜂窩性組織炎會傳染”
差不多就是這樣的意思,不過沒有人會這麼講吧

Daniel Su:

Is Cancer Contagious?
No, cancer is NOT contagious.
Germs can be contagious.
Germs can affect cancer risk.

裡面有詳細說明一些病毒可經性行為(HPV)或血液傳染, 但不表示獨因此而致癌, 是伴隨其他因子..

These viruses may be passed from person to person (usually through blood or sex), but the viral infection alone usually does not lead to cancer. A weakened immune system, other infections, risk factors (such as smoking), and other health problems may allow cancer to develop more readily.

1 in 6 Cancers Are Caused by Infection

Most such cancers could be attributed to four infectious bugs: human papillomavirus (HPV), the stomach bacterium Helicobacter pylori, hepatitis B and hepatitis C.

Wayne Wu:

已經有證據指出癌症是會傳染的,不過目前只在動物上有實例,詳情請查discovery

Lei Yao Chang:

@劉千義 不會符合Koch’s postulates準則,更不會符合Koch’s postulates的追定版,因為細菌與病毒必須有可以相對應的受體才有作用機會,P=G+E+G.E,這是一個簡單的公式,已經可以解釋整件事情,但是這準則也不是唯一必須死守的東西,因為現有包含某些所謂的傳染病也不會全體都受感染,還是有特定個體具有抵抗性,如果按照往後的版本中必須在未發病者身上找不到該細菌才能確定是原因,但是實際上這不是全有全無的東西,這是一個機率,這也是為什麼基因組的研究被擔心被錯誤使用解讀的原因之一,一個人帶有被研究出來可能罹患a疾病的基因,這基因可以解釋60%,請問他會發病嗎? 但是對於一般人來說,只會理解到這是一個會得a疾病的基因,而我現在帶有這樣的基因,完了。

Tzu-ching Wu:

‎@劉千義 謝謝你的意見, 不過我目前不會把Koch’s postulates套用在Cancer上, 一來cancer這麼多種且機制尚未明瞭. 二來Koch’s postulates無法處理多重誘發, 而且我想目前沒有一個causal agent 適用在cancer上.

Lei Yao Chang:

@張家誠 這樣說吧,當年為幽門桿菌被提出和胃潰瘍有關的時候,被鄙視,如果只是如你說的模式做結論,你相信現在的科學界會接受幽門桿菌是真的因子嗎?

Hsinting Vicky Wu:

恩…癌症是多因造成,其中可能跟病毒或細菌有關(是沒錯),不過前面有個例子看起來像導因為果:
"多少年前第一次出現肥胖細菌時,其結果推翻並打了當年說肥胖不會傳染的一群人,實驗發現,肥胖的人帶有類似的細菌群,而今年的華人遺傳年會中討論的其中一樣就是腸道細菌對於增重的影響。"肥胖的人體內有類似的細菌群,跟體內有這類細菌群就會肥胖是兩回事;某種癌症的病患都有某種基因,跟有這種基因就會罹患這種癌症也是兩回事;這些都只能說有這種細菌群"可能"會肥胖或是有這種基因的人"可能"會罹患某種癌症。那麼如何傳染,那又是另一個問題。

劉千義:

那我們要如何正確的傳遞科學的知識,而不會被有心者雞毛當令箭誤用?

Hsueh-Yen Nieh:

這位受訪者講出這句話時,因為資訊不足並無法確判為勤學於一般民眾抑或只是衛教不足,但就此個案後者的可能性略高,也許衛生署該檢討一下。畢竟,就病原體觀點來說,EBV會傳染,但理論上不會因為常常和住隔壁的EBV病患聊天就染病,HPV亦然;但會傳染跟高傳染風險依然兩回事,僅提出前者為事實而無討論後者並沒有什麼說服力。

另外,倒楣的袋獾即是惡性腫瘤本身具有傳染性的例子,當然因為人類的個體間基因型差異較大,不太會有可以讓腫瘤細胞直接暢行無阻的機會,且人類(多數)也不會用互相咬臉的方式爭奪地盤,使腫瘤可直接傳播。

但就「癌症不會傳染是騙人的」這句話,我想嚴講來說並不能說錯,只是,就一般民眾衛教須知的水準來說,我想衛生署還是應該回去檢討一下。

Lei Yao Chang:

@Hsinting Vicky Wu 慢點慢點,可以先了解那些實驗,當腸道細菌對換後,體重就對換了,細菌的影響性是清楚的顯現,至於其它P=G+E+G.E會簡單明瞭些。

Zachariah KiLa Li:

不管微生物是導致細胞的DNA damage或是組織micro-environment改變而誘發Tumor,平常這種刺激都不是長期性的的,多半是DNA repair mechanism出現異常才比較有可能引發後續的病變,但要做出會傳染的假設還是必須先確定此微生物在已罹癌的病患身上是否還會存在;

另外同一種病原在不同個體所引發的症狀也不同,我不贊同用做出癌症有可能會傳染做為一個論述的title,不如用「有可能造成癌症的xxx病原體是具有傳染性的」比較不會造成誤解

蘇家誼:

要說癌症會傳染 必然表示他有個傳染的媒介 如果細菌或某個病毒要扮演這媒介 表示一個健康的人(或是某特定高風險族群)被感染後有很高的誘發癌症的機率 我相信幽門螺旋桿菌與胃潰瘍間存在有這樣的關係 但是其他細菌目前有被證實了嗎? 還是當一個因子? 一個微生物被定義成致癌物沒這麼簡單吧

Lei Yao Chang:

@蘇家誼 我換方式說吧,如果我們今天去查基因對癌症的影響度,也許會驚訝到,其實解釋度都不是多高,當我們知道癌症可能經由多種方式誘發的時候,就表示各因子所佔的比例不會太高,但是不表示它的因子會不會造成感染,這是兩碼事。

如果細菌的存在與否要當作絕對唯一證明是跟癌症有關,那攜帶同樣基因的人為何沒通通有一樣的疾病? 那科學界怎麼證明這些基因與疾病有關? 想想他們怎麼證明的。

發燒會傳染嗎? 拉肚子會傳染嗎? 是發燒本身會傳染還是造成發燒的因子會傳染? 當我們探討單一因子和多因子疾病時,與不同致病性的疾病時,對於一般讀者來說是不容易理解,但是對於從事科學的人來說,應該可以細分裡面的差異。

肥胖與肝病會因為與有肥胖與肝病的老鼠住在同一籠中而讓正常老鼠變的肥胖與發生肝病

劉千義:

伊麗莎白.默其森:對抗傳染性癌癥

饒益品:

除了科學事實的討論之外,我還是有點想要回到一開始 Pansci 在這裡想討論的問題:
不論癌症可不可以被認定為傳染病,
我們都還是得去回答「對於帶有傳染病的人,我們可不可以將其排除在生活圈和照護機構之外」
而這個就是非科學的問題了:科學知識有可能改善歧視,也有可能加深歧視,
但是改善歧視或加深歧視的結果,都不會自動從科學知識中迸出來,
而是媒體、教育、政策、以及民間團體都有可能發揮正面負面影響力的。
這個時候,科學社群要如何與這多個管道產生更有效結合就是至關重要的了。
我承認我自己也還沒有一個具體清楚的解答,不過我好奇大家的想法如何。

(當然也不是說關於「癌症是否可傳染」的討論不重要:
我覺得這串討論是很有趣的,也讓我們重新審視什麼是「傳染」,甚至什麼是「疾病」)

Lei Yao Chang:

歧視這件事情,科學只能從教育和心理疏導為主,但是對於疾病來說,與其說歧視,不如說是沒有安全感,我們的社會對於培林,基地台,高壓電塔,發電廠,變電所,焚化廠,殯儀館,垃圾掩埋場…等等,我覺得都有類似的思想出發點,但是不是歧視。我們都需要醫院,也都需要照顧,也需要各種我們不喜歡的公共設施,但是群體社會總是有其特性,一方面那就是我們,但是一方面我們又討厭我們自己的行為。

不過這已經有點扯遠了,純粹回事件看東西,當地人不是都反對,不過這不在這話題討論範圍就是了。

Hsinting Vicky Wu:

我一直以來都相信歧視是起源於不了解,無論是不曾了解、無從了解或是拒絕了解,正因為不了解而帶有自己的想像,然後造成了某種恐懼,可能就像 @Lei Yao Chang 說的沒有安全感,所以想逃避、歧視、遠離。而現在的人,一部份如同常出沒在泛科學的各位,是想了解、討論、尋求答案的,當然並不是說我們就比較不會出現歧視,但我們尋求真理與真實,我們不會單方面相信片面之詞;而另一部份,有非常多人並不是這麼在乎真實,貪圖方便,媒體給什麼,他們就接收什麼,他們只想知道結論,連懶人包也只看第一句和最後一句,甚至並不思考其中的真偽。資訊太多,每個都要思考,多累阿(苦笑),大家罵就跟著罵囉,跟隨著反對聲浪的里民也是,跟隨著謾罵的鄉民也是。在每每科學與政治與利益掛勾時,泛科學和各位科學人嘗試釐清與訴說,我相信確實傳達了一部份科學知識出去,只能說有傳遞就有希望啦(嘆),不過既然與政治和利益掛勾,科學就只能算很小一部份而已,這些牽連恐怕需要其他專長的人一起來分析了。至少,大眾的科學素養是需要培養的,如同我們一直以來培養著自己的科學素養及思考能力一樣。

重要延伸閱讀:淺談傳染的癌症 @ 千羽宗次郎

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2568 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
從「細胞機械力」解開癌症抗藥性之謎
顯微觀點_96
・2025/10/16 ・2830字 ・閱讀時間約 5 分鐘

本文轉載自顯微觀點

許多癌症患者在初期對藥物反應良好,腫瘤明顯縮小,但經過一段時間後因為癌細胞會適應治療,例如可能改變藥物的目標分子,使藥物無法再有效作用;或是繞過原本被切斷的「生存」路徑,變得對藥物不再敏感,使得原本的化療、標靶藥物失效。因此癌症治療的一大挑戰「抗藥性」。

為了解決這項難題,臨床治療上有些使用「雞尾酒療法」,也就是同時使用多種藥物攻擊癌細胞的不同弱點;有的則是積極開發新一代藥物,針對已知的抗藥性機制設計不同路徑;或是透過改變腫瘤微環境讓患者產生持久的免疫反應,延緩或克服抗藥性產生。

但癌症逐漸走向精準醫療,藥物是否能夠針對特定癌細胞甚至癌細胞的特定機轉、基因產生作用,是醫療界正努力研究的方向。而從中國醫藥大學生命科學院細胞生物學研究所助理教授徐昭業的觀點,細胞機械力便是一個可以切入的研究窗口。

-----廣告,請繼續往下閱讀-----

微小機械力 左右細胞表現力

過去,生物學多注重在基因、化學對對細胞的影響,而力學生物學(或稱機械生物學,Mechanobiology)則在近二十年迅速興起。因為科學家發現,不論是細胞要維持形狀、移動,或是回應微環境的變化,都受到力學影響。

徐昭業解釋,其實細胞的機械力在生命活動中非常重要,例如大多數細胞都需要貼附在周圍的環境中,無論是與其他細胞形成組織,或是與細胞外基質(ECM, Extracellular Matrix)連結。而這個「貼附」的行為就是一種機械力的展現。

另外,當細胞在分化時,機械力的影響尤其顯著。例如,將幹細胞培養在柔軟如果凍的基材上時,它們傾向分化為脂肪細胞或神經細胞。然而若是培養在像桌子一樣硬的表面時,則更可能分化為骨細胞。這顯示細胞對外在物理環境具有高度的「機械感知」能力。

這些細胞從外部環境(例如黏附表面、周遭組織)感受到的「機械訊號」,會透過細胞膜上的蛋白傳遞進入細胞內部,影響基因表達並調整行為,例如分化或增生。

-----廣告,請繼續往下閱讀-----

傳統上判定癌症藥效(或是是否出現抗藥性)多是透過測量細胞存活率,例如計算 IC50(半數抑制濃度)──也就是殺死 50% 細胞所需的藥物濃度。但徐昭業表示,這樣的測量方式存在著「非死即活」的二分法限制。例如:針對 100 顆細胞投藥,最後存活 50 顆,只知道存活率是 50%,但無法得知那剩下細胞的實際狀態;可能完全健康、也可能受到藥物影響變得半死不活。

不只管死活 力學訊號看抗藥性更精準

圖說:細胞機械力模型。徐昭業團隊便是將這樣密集奈米圓柱的結構裝置,放進微小的生物晶片。攝影/楊雅棠

透過細胞機械力的偵測則可以彌補這樣的空缺。徐昭業和研究團隊開發出一套生物力學量測系統,結合微結構與光學反射,成功簡化細胞力學的觀察與量化方式。

他們將細胞培養於表面覆有密集奈米圓柱的結構裝置上,當細胞貼附並施力於這些奈米圓柱時會導致彎曲,進而改變表面反射鏡的反射角度,影響光訊號的強度。藉由觀察反射光的衰減量,便可快速推估細胞的力學變化。

這些奈米圓柱通常使用 PDMS(polydimethylsiloxane,聚二甲基矽氧烷)等彈性材料製成,直徑約為1至2微米,高度約 5 微米,排列間距也僅有 1 至 2 微米。

-----廣告,請繼續往下閱讀-----

徐昭業表示,過去這類「micropost array」(微柱陣列)主要透過螢光標記位移來計算細胞所施加的力量,但這樣一來不但需要仰賴高倍率顯微鏡,影像分析也較為繁複。

因此,研究團隊改以反射訊號的變化來替代位移量測。他們將金屬反射層鍍於奈米圓柱頂端形成靈敏的反射面。當細胞攤開在表面時,張力會造成圓柱微幅形變,反射光因此產生角度偏移與散射。通常光強度會下降至原始強度的 20% 至 30%,藉此就能反推出細胞所施加的實際力值,依此分析細胞活力。不僅能大幅簡化操作流程,同時提升訊號讀取的效率與數量。

徐昭業說,當細胞死亡或停止活動時,力學(光學)訊號會完全消失,但「活力下降」的細胞則有部分訊號,但弱於「完全未受影響」的細胞。而這樣分群概念在癌症抗藥性研究的重要性在於:即使多數癌細胞對藥物反應良好,仍可能潛伏少數「對藥無感」或「苟延殘喘」的細胞。這些細胞若存活下來,將來就可能演化出抗藥性的癌細胞。

為了驗證設計出的平台在癌細胞檢測上有效果,徐昭業也和中國醫藥大學從事肺癌研究的老師合作,利用對方既有現成的抗藥性細胞株資料庫和相對應生物標記,與力學檢測平台的標記結合進行確認。

-----廣告,請繼續往下閱讀-----

徐昭業表示,過去要確認癌細胞是否出現抗藥性需透過長時間持續給藥,並耗費三至六個月時間培養,看細胞是否出現變異。但一方面長時間持續投藥,訓練出的是「後天抗藥性」癌細胞,和在真實情境不同;人體中可能部分癌細胞一開始就有「先天抗藥性」,卻難以在一開始就揪出來。另一方面,長期、持續的投藥也不符合臨床投藥方式,且耗時過長。

團隊利用力學檢測平台比較抗藥細胞與敏感細胞,發現兩者之間存在顯著差異,且這些力學特徵與既有的生物標記完全對應,證明了這個檢測系統可以直接辨識抗藥性細胞。

研究到臨床 盼打造癌症抗藥性快篩

由於系統採用的是非螢光染色(label-free)設計,偵測的是光學訊號,大幅縮短樣本製備和觀察時間。一片約一平方公分的生物晶片能同時觀測十萬個細胞,儘管有些細胞會彼此黏連,無法進行單細胞分析,但通常仍能取得五萬筆單細胞的力學分布資料。團隊再把這些數據輸入AI模型進行辨識訓練,系統便能在活細胞上快速量測,約半天到一天即可完成分析。

徐昭業表示,癌症病人通常有幾種可選用的藥物,但每個人對藥物的反應不同,第一線有效的藥物不見得適合所有病人。臨床上,醫師通常根據經驗與基因表現推估藥物敏感性,仍難以預測抗藥性的發生;即使用單細胞基因定序也很昂貴且不容易操作。

-----廣告,請繼續往下閱讀-----

「雖然一開始仍需仰賴傳統細胞株去建立模型,但當這一系列流程建構完成,後續就能成為精準醫療的重要輔助工具」,徐昭業說,若是透過此平台,就能以「快篩」的概念檢驗不同病人檢體暴露於不同藥物,哪些藥物最容易產生抗藥性表現型(phenotype),進而提供臨床醫師一份建議清單,選擇不易產生抗藥性、最合適的治療策略。

目前團隊也致力於讓系統更具備高度規律性與可重複性,並易於製作母模再複製,以大幅降低成本與技術門檻。徐昭業期待這套系統除了加速細胞力學研究的量測過程,也能為生醫材料、藥物開發與細胞品質檢測等領域提供實用的解決方案。

參考資料:

延伸閱讀:

從材料到癌症研究 徐昭業的跨界探索

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
43 篇文章 ・ 10 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。