0

6
6

文字

分享

0
6
6

貓頭鷹為什麼可以左右轉頭270度,血管不會扭曲炸裂嗎?

曾 文宣
・2020/09/04 ・2328字 ・閱讀時間約 4 分鐘 ・SR值 491 ・五年級

-----廣告,請繼續往下閱讀-----

說到貓頭鷹,生物學家眼裡牠們是寂靜夜裡倏地出擊的出色獵人,小孩子眼裡可能是森林中專門化解糾紛、睿智無比的博士,一般大眾眼裡大多停留在討喜賣萌、偶爾幫幫哈利波特送信的角色。

不過,近幾年,貓頭鷹可是做為各大迷因圖的主角,活絡在你我的社群網路之中。像是與外觀上相去甚遠的九頭身長腿,或是角鴞禦敵時貼齊全身羽毛展露超奇葩的樣貌,相信還沒看過的各位朋友們,底下這兩張迷因圖也能深深烙印在你心中。

貓頭鷹的長腿,平時都被身體的羽毛給遮住囉。事實上,右圖露出來的也只是小腿而已,大腿的部分藏在身子裡。Source: Imgur

 

在日本節目裡帶來「變形」橋段的白臉角鴞,當遭遇體型差距太多的敵人時,白臉角鴞會縮起羽毛、挺直身體、瞇起眼睛,變形成如樹枝般的偽裝姿態。Source: Pinterest

在各種跌破大家眼鏡的貓頭鷹超日常過後,這可能是最讓人津津樂道的例子:貓頭鷹的頭可以轉360度!不對,我們修正一下:貓頭鷹的頭可以往左往右各轉 270 度!然後能夠上下翻轉 180 度!

圖片嵌入自primogif

 

或是另外一個卡通探員系列:咱們英勇無比的老虎探員,一氣呵成扭頭幹掉鬣狗先生後,在貓頭鷹這關吃了閉門羹。從前面扭到後面這樣 180 度的頭轉,對於貓頭鷹來說根本家常便飯。這可糟了,很抱歉,老虎探員,下次請學好鳥類學再來。

-----廣告,請繼續往下閱讀-----

對於一般動物來說,像圖中這樣忽然將頭扭轉的狀況,就算扭轉的力道沒有造成頸椎的損傷,頸椎裡血管也會因為扭轉打結而卡死,造成顱內缺氧而迅速休克。那貓頭鷹究竟是怎麼辦到的呢?

祕訣一:貓頭鷹頸椎數量是你的兩倍多

是的,各位摸一摸你的脖子,從下巴基部到鎖骨的位子應該可以很清楚地數到有七節頸椎(沒有啦,怎麼可能摸得到 (笑))。在哺乳類動物裡頭,除了少數的例外(例如海牛與樹懶),幾乎都是七節的頸椎,這表示我們源於幾億年前一個共有的祖先。無論是脖子兩、三公尺長的長頸鹿,或是適應大海、看起來沒脖子的鯨豚(牠們的頸椎短且癒合),身為哺乳動物就有 7 節的頸椎。

絕大多數哺乳動物都是七節頸椎。A圖是長頸鹿的七節長長頸椎,B圖是鬚鯨類的七節超短頸椎,C圖是瑞氏海豚癒合在一塊的頸椎,D圖是放大看弓頭鯨癒合在一起的七節頸椎。Source: Narita & Kuratani (2005). Evolution of the vertebral formulae in mammals: a perspective on developmental constraints.

反觀鳥類,牠們的頸椎數量多出了許多,而且變異還不小,從 13 節到 25 節不等,提供鳥類脖子相當大的靈活性。以貓頭鷹來說,牠們有 14 節的頸椎,這是頭轉 270 度的一個先要條件。你可以合理想像,在一樣的長度之下,如果有越多層的積木堆疊在一塊,在扭轉時每一塊積木所轉動的角度就越小,因此較能緩衝扭轉頸部帶來的傷害。

當然,頸椎裡還有非常重要的脊髓,以及各種血管與肌肉組織,並非頸椎多就一定能夠有頭轉 270 度的能力。

-----廣告,請繼續往下閱讀-----

Ps. 世界上頸椎最多的動物,可能當屬中生代的薄板龍(Elasmosaurus)莫屬了,一共有 72 節呢!

祕訣二:頸椎裡還有玄機

1. 橫突孔好寬敞呀

下圖是貓頭鷹第七節頸椎的橫切面俯看圖,牠們的椎動脈橫突孔 (transverse foramen) 之間仍有很大的空隙。孔徑比起椎動脈的直徑大上十倍呀,不像人類幾乎是血管壁貼著橫突孔壁的。所以貓頭鷹在頭部旋轉的時候,椎動脈有很大的緩衝空間。簡單來說,貓頭鷹的椎動脈只是被圈住,但是人類和多數動物是被握住的,頸椎一轉、血管就扭死、腦部就缺氧了。

貓頭鷹頸椎橫切面俯視圖,上方是前方。牠們的頸椎橫突孔相當寬敞,椎動脈好自由阿。Source: Science 339(6119):514-514.

2. 橫突孔消失了

而在貓頭鷹第十二至十四節頸椎,剛才提到的橫突孔消失了,橫突竟然沒有繞成一個封閉的圓圈,反而大大方方地呈板狀,讓頸子下方的椎動脈有更大的空間可以轉圜扭轉帶來的壓力。

3. 頸動脈就在旋轉的軸線上

在人類的頸椎前方一點點、氣管及食道後方兩側,有著一對飽含血液、血壓甚大的頸動脈,要是頸部遭受劇烈的扭轉,位於邊緣的頸動脈首當其衝會承受強大的扭力。然而,貓頭鷹的頸動脈卻不這麼回事,牠們的一對頸動脈位於頸椎前方的凹槽中。因此,頭部轉動時,頸動脈就位在旋轉的軸線上,承受的扭力相對地小很多;頸椎轉動,頸動脈可以跟著一起轉,就沒有血管打結的問題。

-----廣告,請繼續往下閱讀-----
粗大的頸動脈位於頸椎的兩側前緣,與貓頭鷹頸動脈的位置有別。另外,人類的橫突孔相當小,椎動脈幾乎是被握住的狀態。Source: Veins.

4. 腦袋下方天然的貯血袋

頸動脈往上將血液送至大腦,有趣的是,貓頭鷹的頸動脈在頭部下方三岔時,往顱內、上頷、下頷三條血管的基部都各自形成一個可漲縮的粗大管腔。換句話說,這個構造就像一個暫時的貯血袋,在劇烈旋轉導致頸部上來的血流供應不夠時,還可以繼續輸血進入腦部!

可漲縮的三對貯血袋,可於頭部旋轉造成腦部缺血時提供血液。Source: Science 339(6119):514-514.

各位別灰心,即便我們沒有貓頭鷹的頭轉能力,但是我們的眼球可以轉來轉去。貓頭鷹,如同所有的鳥類,眼球上是沒有肌肉牽引的,無法轉動牠們的眼球,因此辦不到那種頭不動、用眼睛偷瞄的本領。換句話說,當你把貓頭鷹的頭固定得死死的,這傢伙也就只能看向正前方了。

文章難易度
曾 文宣
22 篇文章 ・ 15 位粉絲
我是甩啊!畢業於臺灣師範大學生科系生態演化組|寫稿、審稿、審書被編輯們追殺是日常,經常到各學校或有關單位演講,寒暑假會客串帶小朋友到博物館學暴龍吼叫。癡迷鱷魚,守備領域從恐龍到哺乳動物,從陰莖到動物視覺,因此貴為「視覺系男孩」、或被稱呼「老二大大」。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

6
1

文字

分享

0
6
1
照過來!!!日常生活中三大超虐脊椎的地雷姿勢報你知!
careonline_96
・2022/02/10 ・654字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

脊椎是人體中軸,當身體傾斜或彎曲的角度愈大,脊椎便會承受愈大的壓力,也愈容易受傷,而造成腰酸背痛,甚至椎間盤突出、壓迫神經。

日常生活中,請避免這些超虐脊椎的地雷姿勢。

地雷一:低頭看手機

我們的頭顱具有相當重量,頸部越往前傾斜,就越傷頸椎。根據研究,當頭部前傾15度時,頸椎得承受12公斤的壓力;當頭部前傾60度時,頸椎得承受27公斤的壓力 !

使用手機時,請把手機拿到眼睛平視的高度。

-----廣告,請繼續往下閱讀-----

地雷二:彎腰搬重物

彎腰搬重物,對脊椎很傷。搬東西時,身體要先靠近,然後屈膝蹲下,盡量將背打直,腹部收緊,再站起身來。

提醒您,小孩也算是重物喔。

地雷三:斜躺靠椅背

無論是坐椅子或坐沙發,請將屁股靠近椅背,盡量坐好、坐滿,保持脊椎端正。
斜躺靠椅背感覺很舒服,卻使脊椎承受不當的壓力,而越坐越痠痛。

另外,體重過重也對脊椎不利,會在日積月累中形成傷害。

-----廣告,請繼續往下閱讀-----

脊椎出狀況,問題一籮筐,千萬別大意喔!

careonline_96
482 篇文章 ・ 273 位粉絲
台灣最大醫療入口網站

0

0
0

文字

分享

0
0
0
將受傷鳥兒送回天空的「猛禽救傷站」,平日裡面臨哪些挑戰?──「猛禽超日常」講座記錄
PanSci_96
・2019/07/11 ・3440字 ・閱讀時間約 7 分鐘 ・SR值 483 ・五年級

活動紀錄/文詠萱

當代的動物保育議題,無論是棲地保育或是野生動物復育,都與人類的行為選擇息息相關。本次《我們與野生動物的距離》專題,希望初窺這個龐大題目的一角:生而為人,遇上野生動物,我們可以做什麼?我們該怎麼做?

 

「猛禽獸醫超日常 有愛有淚還有什麼呢?」講座活動現場。攝影/文詠萱

由誠品書店敦南店、麥田出版主辦的「猛禽獸醫超日常 有愛有淚還有什麼呢?」講座活動於 6 月 14 日在誠品敦南店舉行,主講人為台灣猛禽研究會猛禽救傷站主任王齡敏,分享猛禽救傷經驗及過程中的小故事,以及從這些經驗中我們可以如何改變環境與做法。

-----廣告,請繼續往下閱讀-----

王齡敏畢業於中興大學獸醫系,畢業後曾於金門縣野生動物救援暨保育協會、特有生物研究保育中心野生動物急救站等地任職,並於 2013 年至美國明尼蘇達大學猛禽中心任獸醫師 2 年,累積許多野外動物救傷經驗。

專研「兇猛的禽類」,台灣猛禽研究會

台灣猛禽研究會成立於 1994 年,當時主要僅針對猛禽做研究調查,非營利組織要成立新的業務要考慮很多事項,所以當時並沒有救傷中心。直到 2017 年,才成立救傷站。

猛禽可以解釋為「兇猛的禽類」,可分為日行性與夜行性,日行性猛禽也就是泛指的「老鷹」,夜行性猛禽就是我們泛稱的「貓頭鷹」。牠們共同的特質是有尖銳的嘴與銳利的腳爪,而猛禽大部分是用腳爪獵捕食物。全世界大概有五百多種猛禽,台灣有五十種左右。

由於《哈利波特》帶來的流行,貓頭鷹一度成為熱門寵物選項。圖/imdb

-----廣告,請繼續往下閱讀-----

而因為《哈利波特》電影及小說風潮,曾在國外當時引起養貓頭鷹的風潮。但其實,根據台灣野生動物保育法規定,禁止持有、飼養及販賣老鷹及貓頭鷹等猛禽,因此並不是想養就可以養的。救傷站從事猛禽救傷工作,則需要固定向地方政府申請救傷許可。王齡敏表示:「猛禽救傷站主要以北部地區,從桃園到宜蘭送來的傷鳥,除了猛禽外的鳥類比較沒有處理,大部分是由野鳥學會處理。雖然成立的時間沒有很長,救傷站已經收到超過一百多隻猛禽已經。」

抽絲剝繭推理「牠怎麼受傷的?」

在救傷的過程中,鳥兒沒法告訴你發生了什麼事,許多時候需要層層推測才能猜出一些狀況。

在捷運明德站附近撿到的大冠鷲「逼逼」就是個好例子。在剛開始收到的前兩週,「逼逼」並沒有什麼嚴重的外傷。這隻鳥看起來有點胖,照理說代表在野外吃得很好、求生的能力還不錯。除了發現尾巴有點折傷之外,真的看不出有什麼問題,但牠就是非常虛弱。

這隻大冠鷲在兩個月後肚子開始消去,皮膚出現傷口:「我們推測是慢性燙傷,又考慮了這隻大冠鷲的地緣位置(位於北投附近),進一步推測可能是因為泡了溫泉燙傷的,鳥的皮膚很薄,剛好受傷的位置是在肚子和腳。」

-----廣告,請繼續往下閱讀-----

他們照顧了「逼逼」四個月,在這段時間,都必須用鑷子餵食他,因為傷口會痛沒有辦法彎腰。在野放前,除了要讓「逼逼」重新練習飛行外,還有羽毛折斷需要處理。

 

飛羽是鳥類飛行很重要的工具,如果因意外而折斷等有可能會影響在野外的適應,雖受損一時不傷及性命卻需要積極處理。處置方式之一,是等待鳥兒自己換毛時長出新羽,但大型猛禽換一輪毛大概需要四年的時間,損害較大時等待期會太長。另外一種處置是拔毛刺激羽毛重新生長,但因為羽毛是猛禽的飛行重要工具,羽毛根部都很緊密,硬拔容易流血或甚至造成羽管阻塞畸形。王齡敏在美國時學到了「接羽」的處置方式,就像人類接髮一樣,為牠們接上羽毛,以此得以重回天空飛翔。

鳥類受傷的主要原因:車禍、窗殺、黏鼠板

由於鳥兒不會說話,救傷人員往往只能根據眼前的狀況、地區等因素來猜測猛禽受傷的原因。在都會區,常見的受傷原因包括車禍撞擊、窗殺(鳥兒飛行時撞上玻璃),還有很大一部分是因為黏鼠板。

黏鼠板上通常會黏著猛禽的食物,像是老鼠、壁虎、小鳥或昆蟲等,機會主義者的猛禽飛下去嘗試進食,就會跟著被黏住。黏鼠板對鳥類羽毛影響非常大,狀況輕微的可以利用接羽技術治療;但如果遇到全身上下連身體的小羽毛都被黏到,對救傷單位來說都會非常難處理。

-----廣告,請繼續往下閱讀-----

如果若遇上了被黏鼠板黏著的鳥類,對一般人千萬不要自己嘗試處理,因為拆黏鼠板的過程中很有可能會造成鳥類骨折。王齡敏表示,也遇過有人直接將羽毛剪掉,造成後續很大的麻煩。她建議若在臺北地區,可以將黏鼠板可以用紙蓋住黏的地方避免板上的膠到處亂黏,然後將整組黏鼠板(連同動物)送至救傷站。

反光或不反光,都影響鳥類飛行的玻璃窗戶

另外,窗殺是人類建築對鳥類的一大威脅,窗戶無論是透視或反射,都可能造成鳥類飛行視野誤判而撞上。根據數字統計,在美國一年約有1~10億隻鳥因為窗殺而死亡,佔野鳥死亡原因第一位。

一般透明玻璃在某些角度會有鏡子的效果,貼有隔熱紙反光則會更加嚴重。除了會反射的玻璃之外,透明狀玻璃也是野鳥的殺手。「在韓國國道通常設有高度相當高的透明玻璃隔音牆,常常會有野鳥撞上去。韓國環境署現在相當重視此一問題,對此做了大規模宣導教育。」王齡敏說道。

有些人會在透明玻璃貼防撞紙,讓野鳥知道那邊有玻璃。但後來發現,貼紙以外的透明部分野鳥還是會撞上。實驗發現到貼紙間隔需要密至 5×10 公分,才能防止 90% 的窗殺事件。因此,降低鳥類窗殺需要使用較為密集的貼紙,像是國外有針對窗殺推出窗殺點點陣圖貼紙,或是可以用菱形網貼在窗戶四個角,視覺效果也不錯;另外也可以在窗外掛些垂墜物,像是藤蔓,窗簾等。

-----廣告,請繼續往下閱讀-----

編按:如遇野鳥窗殺可將相關資訊通報 FB社團 野鳥撞玻璃回報 (Reports on Bird-Glass Collisions)路殺社(選擇窗殺),協助蒐集相關資訊。

 

學飛的小鳥別亂撿

另外,救傷站還常常收到沒有受傷的鳥,這常見於學飛中的幼鳥。雖然是出於一片好心,但有些時候這樣的干擾是沒有必要的。

王齡敏分享:「想像一下,人學會走路、跑步就是一個漸進的過程;小鳥雖然有飛行本能,也是需要學習才能讓自己越飛越好。小鳥在學飛時於如果再山林野地落地,不會被人看到,過一會就會再飛起來;但在都會區學飛的小鳥,落地如果被行人看見,往往會被誤送救傷。」

學飛的幼鳥並不會時時待在鳥巢中,鳥巢只有在鳥很小的時候才有休息或窩著的用途。在學飛時,鳥巢對幼鳥而言比較像是廚房,會在附近學飛一陣子,再回去吃飯。又再長大一陣子,親鳥會將食物放在幼鳥附近,連巢都不回了。因此如果確認鳥兒很有活力沒有受傷,就讓牠在安全的地方學飛、接受爸媽的照顧吧。

而如果撿到幼鳥,最後後送相關單位,也要注意記錄拾獲的時間與地點,並拍照記錄附近的環境。救傷站對於幼鳥的處置,主要也會先檢查健康狀況,如果健康的話會傾向盡可能放回原位,讓牠們親子相聚。對救傷站來說,比較大的困擾是鳥兒常是經過好幾次轉手如常見先送到消防隊或警察局,才抵達救傷站,這種情況下時常缺乏地點、時間等資料,要送回鳥兒的老家就變得不可能。

-----廣告,請繼續往下閱讀-----

這些沒辦法放回原始拾獲點,但身體健康的幼鳥,有個可能處置方法是替牠找「養母」,將幼鳥放入同類正在繁殖的巢之中。「要這樣做是有條件的,首先要是同種,再來放的數量不能超過母鳥先天可以哺育的數量,像鳳頭蒼鷹只能哺育兩隻、稜角鴞則可以到五隻,這些母鳥不太會算自己的小鳥,但如果放超過就會失敗,這樣的做法也不是所有物種都可行。」

除了救傷外,猛禽救傷站也會藉機進行保育教育的工作。救傷固有生老病死,而到達救傷站的鳥兒,最好的結局就是野放重回天空的懷抱。因此台灣猛禽研究會尋找野放地點附近適合的國中、小等學校合作,讓學生參與其中的過程,藉機傳播鳥類保育觀念。也希望未來有越來越多的人關心參與,營造出更友善的環境。