0

2
0

文字

分享

0
2
0

大腦如何操控渴與餓的行動?小小果蠅來解密!

研之有物│中央研究院_96
・2020/03/14 ・4850字 ・閱讀時間約 10 分鐘 ・SR值 518 ・六年級

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

  • 採訪編輯|歐宇甜、美術編輯|林洵安

我們的動機是如何形成的?大腦如何操縱飢渴的行動?中研院分子生物研究所林書葦助研究員帶領研究團隊,發現果蠅腦中有一種名為 leucokinin 的神經傳導物質,它能調控不同的神經細胞,影響果蠅進行覓水或覓食的行為,更發現渴、餓的神經機制在果蠅腦中會交互作用,研究成果已於 2019 年 10 月登上《自然:神經科學》(Nature Neuroscience),跟著研之有物一起來了解。

看似「頭腦簡單」的小小果蠅,竟是揭開大腦電路的關鍵生物。圖片來源│iSock

為什麼要研究果蠅大腦?

「果蠅大腦雖然簡單,卻可以解決重大的問題。」林書葦一語道破。如果不是果蠅大腦,我們對於複雜的人類大腦將更加束手無策!

果蠅大腦只有 10 萬顆神經細胞,人類大腦有 1000 億顆神經細胞,宛如早期的 286 電腦對上如今的超級電腦。但果蠅的腦雖然簡單,功能卻一應俱全,有各種感覺,也能學習與記憶。如果能找出果蠅大腦的各類運作機制,將有助於了解其他更複雜的動物腦,甚至人腦。2017 年的諾貝爾生理醫學獎,即是頒給三位研究果蠅生理時鐘的科學家。

-----廣告,請繼續往下閱讀-----

林書葦研究團隊此次的發現,則是揭開果蠅大腦關於「動機」的秘密:渴和餓的神經迴路。

「動機是種內在的驅力,影響我們的行動、感受、做決定的過程,還有學習和記憶,也與憂鬱症、厭食症、成癮症相關。」林書葦解釋:「餓與渴,即是非常基本且普遍的動機。我們想知道果蠅怎麼知道自己渴了、餓了?又是哪些神經細胞負責操控找水、覓食等行為。」

訓練果蠅大作戰

實驗目標很明確,但一開始,研究員得先訓練果蠅學會按照特定訊號找水、覓食,建立行為系統,才能觀察過程中的大腦變化。

幫果蠅「上課」,聽起來簡直匪夷所思,怎麼辦到的?研究員運用一種 T 字狀迷宮「T-maze」,先讓果蠅渴八個小時,然後進入 T-maze ,通入氣味 A、不給水,接下來再通入氣味 B 、給水喝,訓練果蠅將氣味 B 與水連結起來,產生與水有關的嗅覺記憶。

研究員運用一種 T 字狀迷宮「T-maze」,先讓果蠅渴 8 個小時,然後進入 T-maze ,通入氣味 A、不給水 (放置乾燥的濾紙),持續 2 分鐘。間隔 1 分鐘後,再通入氣味 B 、給水喝 (放置潮濕的濾紙),持續 2 分鐘,訓練果蠅將氣味 B 與水連結起來,訓練就完成了。訓練完成 6 小時之後,將渴的果蠅放入 T-maze,大多數乖乖進入 B 氣味通道。資料來源│林書葦 圖說設計│黃曉君、林洵安

覓食的嗅覺記憶也使用 T-maze 訓練:

-----廣告,請繼續往下閱讀-----

但實驗沒多久,研究團隊即發現果蠅只會產生短期記憶,訓練完半小時就統統忘個乾淨。他們不斷思考改進並反覆測試:如何延長果蠅的記憶?

後來發現,適合學習與記憶訓練的果蠅必須滿足一些條件。一般果蠅壽命約一到兩個月,年紀太輕的果蠅大腦尚未發育成熟,年紀大的果蠅學習與記憶力跟人類一樣會降低,所以必須挑選出生 5~7 天的「不太小不太老」的果蠅做實驗。

花了快半年時間,研究團隊又發現「讓果蠅渴得剛剛好」這件事很重要。早期他們讓果蠅渴大約 16 個小時,結果果蠅學習力很差,研究團隊猜測,長時間的缺水,可能讓果蠅身體變得太虛弱,大腦功能降低。後來他們嘗試放入乾燥劑,讓果蠅更快感覺渴,但身體狀態較好,果真產生比較穩定的長期記憶。

歷時半年多,終於訓練成功!以口渴的果蠅為例,訓練完成 6 小時(以上)之後,再將牠們放入 T-maze,大多數會乖乖進入 B 氣味通道,而且果蠅只在渴的時候才會尋找 B 氣味。

-----廣告,請繼續往下閱讀-----

接下來,研究員即可準備觀察在果蠅大腦中,哪些神經細胞和找水、覓食有關。簡言之,他們會分別抑制果蠅大腦中不同位置的神經細胞,觀察哪些神經細胞被抑制時,將影響果蠅找水、覓食的行為。

找到與渴相關的神經細胞

結果發現,果蠅大腦有一些神經細胞會分泌神經傳導物質「leucokinin」,是負責渴的訊號;Leucokinin 是一種短的蛋白質鏈,稱為神經胜肽,過去只知道它在其他昆蟲體內與維持體內水分平衡有關,但作用的細節並不清楚。當果蠅口渴時,leucokinin 會在腦中釋放, 促使果蠅去找水。

但果蠅大腦有三群會表現 Leucokinin 的神經細胞,到底哪一群才是跟渴有關呢?由於生物體內水變少了,滲透壓會上升,這通常是渴的第一個訊號。因此研究團隊將果蠅大腦「取出來」,給予不同的滲透壓溶液,看看那些細胞會根據滲透壓變化起反應。

研究員將取出的果蠅大腦固定在顯微鏡開口,放入緩衝液讓腦不會乾掉,以觀察神經細胞活動。當滲透壓升高,只有一群名為 LHLK 神經細胞活性會上升,並釋放 Leucokinin;當滲透壓降低,LHLK 神經細胞的活性就恢復正常,宛如「滲透壓偵測器」,應該與渴的訊號有關。

-----廣告,請繼續往下閱讀-----
果蠅大腦固定在顯微鏡下,給予不同滲透壓的緩衝液,並觀察神經細胞活動。當滲透壓升高,只有一群名為 LHLK 神經細胞的鈣離子訊號會增強,表示神經活性上升。資料提供│林書葦 圖說美化│林洵安

渴與餓訊號的神秘交織

更精彩的還在後頭!當他們繼續追查 LHLK 神經細胞的運作機制,竟然發現 LHLK 神經細胞並不是專一性的,它同時和渴與餓的訊號有關,而且呈現有趣的交互作用!

當果蠅口渴時,LHLK 神經細胞會釋放 leucokinin 前去抑制兩群渴神經元 (PPL1-γ2α′1、PAM-β′2a)。因為這兩群渴神經元 (PPL1-γ2α′1、PAM-β′2a) 屬於抑制性的神經細胞,就像一道關閉的門,會抑制覓水行為,但 leucokinin 能抑制它們活性,產生負負得正的效果,讓果蠅出現覓水的行為。

果蠅腦中的渴迴路。當果蠅口渴的時候,LHLK 神經元 (綠色) 會釋放 leucokinin,抑制 PPL1-γ2α′1 (洋紅色) 和 PAM-β′2a (橘黃色) 神經元,讓果蠅產生覓水行為。圖片來源│林書葦

當果蠅餓的時候,LHLK 神經細胞也會釋放 leucokinin,卻是活化另一群餓神經元 (PAM-β′2mp),讓果蠅出現覓食行為。在此同時,大腦竟會釋放另外兩種神經傳導物質 serotonin、dNPF,抵銷 leucokinin 對渴神經元的抑制,讓果蠅不想找水。

果蠅腦中的餓迴路。當果蠅飢餓的時候,LHLK 神經元 (綠色) 會釋放 leucokinin,活化 PAM-β′2mp (紅色) 神經元,讓果蠅產生覓食行為。在此同時,大腦也會釋放另外兩種神經傳導物質 serotonin、dNPF,抵銷 leucokinin 對渴神經元的抑制 (上圖洋紅色和橘黃色處),讓果蠅不想找水。圖片來源│林書葦

 

原來,大腦並非單純只用一群神經細胞負責渴訊號,另一群神經細胞負責餓訊號,彼此之間還有複雜的交互作用!為何會如此?林書葦認為,LHLK 神經細胞可能是演化上較為古老的一群細胞,果蠅祖先的生活環境或許相對單純,水與食物往往並存,所以覓食尋水只需要由一個單一訊號 (leucokinin) 來調控。

-----廣告,請繼續往下閱讀-----

後來生活環境越來越複雜,有時比較容易找到水、有時比較容易找到食物,大腦漸漸發展出比較複雜的路徑,透過多種神經傳導物質的合作、競爭,去調控不同的神經細胞,讓果蠅能在更複雜的環境中,按照生理需求做出最有效率的選擇,比方說當牠們渴了又餓,會選擇去找食物而非水。

資料來源│林書葦 圖說重製│林洵安

大腦電路,解碼中……

故事還沒完!林書葦仍有更多問題想追究:當果蠅渴的時候,是不是也會抑制覓食的行為?是不是還有別的渴訊號?這些渴、餓神經細胞的下游是什麼?「雖然神經細胞最後是要傳送訊息到運動神經元、肌肉,但在這中間還有些複雜的東西,畢竟生物要面臨的事情往往不是那麼單純,像在一個危險環境中有食物,要不要過去找呢?大腦必須統合所有訊息,才能做出最好的決定。」 林書葦解釋。

沒料到一隻小小的果蠅,大腦卻比人類想像得還要複雜許多!目前大腦科學家積極想破解果蠅大腦的神經迴路機制與神經傳導物質等,一旦可以解開,「就像拿到習題的解答本,當我們碰到類似的問題,就可以去找到答案。」林書葦總結。大腦與神經的運作充滿奧祕,如同一間密室,而透過研究果蠅的大腦,一扇扇知識之窗正逐漸被開啟。

果蠅個頭小、腦袋更迷你,科學家如何觀察牠們的大腦變化?

問得好!如果把果蠅大腦想像成一塊電路板、每條神經都像一條電路的話,科學家想知道哪條電路是負責哪個功能,最好能幫每條電路做上不同的標記。

-----廣告,請繼續往下閱讀-----

過去科學家想做神經細胞研究,通常是電極探針去測量細胞內外的電流變化,測量後再把染劑打進細胞裡,看看到底是刺激了哪一些細胞,比較複雜。後來因為遺傳學工具的大幅進展,目前可以標定出果蠅大腦的每顆神經細胞——讓細胞發光、在顯微鏡下無所遁形,研究起來簡單許多,稱為 GAL4-UAS 系統。

簡言之,GAL4(蛋白質)是從酵母菌而來的一種轉錄因子 (transcription factor ),科學家把 GAL4 的基因放到果蠅體內,並藉由改變 GAL4 基因的上游 DNA 序列,讓 GAL4 能在果蠅大腦不同的神經細胞中表現。這樣所產生的基因轉殖果蠅株,稱為 GAL4 line。UAS 則是一種特殊基因序列,當 GAL4 和 UAS 結合之後,它們可以驅動 UAS 下游基因的表現,比方說表現綠色螢光蛋白

綠色螢光蛋白 (Green Fluorescent Protein,縮寫 GFP) ,是一種很方便進行基因追蹤與標記的工具,可以用來標記果蠅的神經細胞。舉例來說,如果公果蠅身上帶有標號 A1-GAL4 的基因,讓牠和帶 UAS-GFP 基因的母果蠅交配之後,子代同時帶有 A1-GAL4 和 UAS-GFP ,於是大腦中可以表現 A1-GAL4 的神經細胞,即可發出綠色螢光。

如果公果蠅身上帶有 A1-GAL41 的基因,讓牠和帶有 UAS-GFP 基因的母果蠅交配之後,子代同時帶有 A1-GAL4 和 UAS-GFP ,於是大腦中可以表現 A1-GAL4 的神經細胞,即可發出綠色螢光。圖說設計│黃曉君、林洵安

以此類推,帶有 A2-GAL4 的公果蠅和母果蠅交配之後,子代大腦中可以表現 A2-GAL4 的神經細胞會發光……。科學家透過不同種類的 GAL4 line、UAS 和螢光蛋白,將果蠅大腦的神經細胞全都做出標記。

-----廣告,請繼續往下閱讀-----

目前科學家已經建立一萬多種 GAL4 line,每種 GAL4 line 都有它的名字,就像每個神經細胞都有代號,而且全球通用。如果我們跟人家說這個是 R58E02-GAL4 ,所有人都知道被標定的是哪些神經細胞。

果蠅大腦不同神經細胞的標記,每一張圖 (綠色螢光部分) 代表現被某一種 GAL4 line 所標定的一群神經細胞。圖片來源│林書葦、FlyLight

幫大腦標好分區後,只要果蠅一行動,就能知道是哪些腦細胞控制嗎?

還沒還沒!在觀察每條神經負責什麼功能之前,科學家還需要一些其他的「工具」,能夠人為啟動或關閉特定神經細胞,才能確定這些神經細胞對於果蠅行為的影響。

例如:當表現 leucokinin 的神經細胞受到人為抑制、失去活性,果蠅的行為就會出現變化,即使是渴,也不會去找水;相反的,如果人為活化、刺激這些神經細胞,果蠅的行為會出現異常,明明已經喝很多水,還是會去找水,如此我們才能確認這些神經細胞與渴有關。

這類工具很多,如 Shibire 、TrpA 蛋白質, 它們對於溫度很敏感,Shibire 會抑制神經傳導物質的釋放、TrpA 則會刺激神經傳導物質的釋放。如果把 Shibire 接在 Gal4-UAS 系統的序列後面,然後將溫度升高,即可讓神經細胞失去作用;如果接上的是 TrpA ,將溫度升高時反而活化神經細胞。

還有像 CsChrimson、GtACR 蛋白質。CsChrimson 是一種陽離子通道,照射紅光時會打開,讓鈣離子等正電離子進入,造成神經細胞的膜電位上升,使細胞被活化。GtACR 蛋白質則是一種氯離子通道,照射綠光時會打開,讓帶負電的氯離子進入,造成神經細胞的膜電位下降,使細胞被抑制。

科學史上的重大突破,工具的進展往往是成功的關鍵。GAL4-UAS 系統等工具原理看似單純,但對於果蠅大腦研究影響甚鉅,足以促成當代大腦科學飛躍性的進展!

本次發現的研究團隊,包括中研院分生所林書葦助研究員 (左)、第一作者芭雅希博士生 (中) 以及曹昌暉博士後研究 (右)。圖片來源│中研院秘書處

延伸閱讀:

本文轉載自中央研究院研之有物,原文為大腦如何操控渴與餓的行動?小小果蠅來解密!,泛科學為宣傳推廣執行單位

-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3857 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

0
0

文字

分享

0
0
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3286字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
242 篇文章 ・ 318 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
跨越百年障礙 擴張蠅腦的魔術
顯微觀點_96
・2025/06/23 ・1783字 ・閱讀時間約 3 分鐘

本文轉載自顯微觀點

圖 / 顯微觀點

平價嶄新技術 擴張毫微蠅腦

2023 Taiwan顯微攝影競賽銀獎 Wiring the Brain,題材為果蠅大腦的多巴胺神經網路。蠅腦中比頭髮纖細數千倍的神經纖維與突觸,放大印刷到超過人腦直徑,依然清晰可數。

由於果蠅具有與人類高同源性的基因,也能表現複雜的行為(求偶、覓食、打鬥等),精密解析其腦部構造與整體運作方式,是科學家探索人心智奧秘的重要里程。果蠅的大腦尺寸約為 0.59mm × 0.34mm × 0.12mm,比針尖更細小。其中的神經纖維與突觸更細小數千倍,僅有數百奈米,有時小於光學顯微鏡 200 奈米的繞射極限。即使透過最精密的轉盤式雷射共軛焦顯微鏡,科學家也難窺全像。

到了 21 世紀,在突觸等級分析果蠅大腦仍是相當困難的工程。以掃描式電子顯微鏡(SEM)逐步分析被切成薄片的蠅腦樣本,提供奈米等級解析度的同時,也是侵入性極高,而且可能破壞神經原貌的耗時作法。在AI協助下,2018 年首先問世的立體果蠅全腦圖譜就是由大量平面電子顯微影像重建而成。

-----廣告,請繼續往下閱讀-----

對於持續探索腦神經真實立體結構的科學家,除了鑽研更極致的光學放大效果(如螢光消去顯微術、晶格層光顯微術等足以達到超解析影像,也需要昂貴設備的技術),也有人另闢蹊徑,擴張樣本以浮現原本被繞射極限遮蔽的細節。

果蠅全腦連接體 by Flywire.ai
2023 年 8 月發表的果蠅全腦連接體圖,來自大量電子顯微圖片,由超過 200 位科學家與 AI 合力打造。而果蠅腦部的超解析螢光顯微影像,可以用於協助校正主要由平面電子顯微影像重建的模型,是持續理解果蠅全腦運作機制的重要資源。Courtesy of Flywire Project.

2015 年,麻省理工的波伊登(E. Boyden)提爾貝里(P. W. Tillberg)與陳飛等科學家發表擴張顯微術,以實驗室常見的水凝膠(Hydrogel)、蛋白質水解酶(Protease)等材料,就能將螢光染色的組織均勻(Isotropic, 各方向等量均質)放大,以傳統光學顯微鏡就能觀察原本相距數百奈米的微小構造。

即使有擴張顯微術的幫助,建立果蠅的連接體圖譜仍是一番繁複工程。取出果蠅大腦的顯微手術,需要數周到數月的時間才能熟練。成功擴張的樣本也必然遭遇螢光訊號被稀釋,影像解析度降低的問題。

聚合、分解與吸水 尿布材質推動腦科學

擴張顯微術的基本步驟包含

-----廣告,請繼續往下閱讀-----

錨定 / Anchoring:將樣本浸泡於水凝膠(常用丙烯酸鈉,與尿布吸水部位相同的材料分子),讓水凝膠單體分子滲入樣本,與樣本的蛋白質黏合固定。

聚合 / Polymerization:加入藥劑,讓水凝膠單體間形成聚合並交聯(Cross-link),形成一個緊密滲入、黏合樣本的立體網狀結構。

分解 / Digestion:以蛋白質水解酶分解樣本中的蛋白質骨架,除去擴張時來自樣本的抵抗,但盡量保留螢光蛋白。

擴張 / Expansion:將水凝膠與樣本的結合體加入水中,讓聚合水凝膠吸水擴張,使樣本隨之擴大,每個方向可均勻擴張4到5倍。反覆吸水,各維度最多可擴張近 20 倍。

-----廣告,請繼續往下閱讀-----
擴張顯微術
擴張顯微術示意圖。Courtesy of addgene

2023 Taiwan 顯微攝影競賽銀獎得主劉柏亨分享,其中的「分解」步驟最為關鍵。如何除去樣本內部的拉力,又盡量保持螢光蛋白的訊號,就是實驗的技巧所在。除了使用蛋白質水解酶分解細胞骨架,也能採替代方案,以藥物將蛋白質骨架「變性(Denature)」減少原有的拉力,保留全部螢光蛋白。但是殘存的拉力也會影響擴張過程,使其失去各向同性(Isotropic)的均衡性質,導致樣本扭曲。

他的訣竅是,結合兩種途徑,在過程中不斷調整實驗溫度等變項,並使用「生物素化(Biotinylation)」在擴張前放大螢光訊號;或是使用鍵擊化學(Click Chemistry)在樣本擴張後染上螢光,在每次嘗試中逐步接近理想的解析度與信號強度。

參考資料:

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
44 篇文章 ・ 10 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

2
1

文字

分享

0
2
1
從遺傳學角度剖析:女性能在體育場上超越男性嗎?——《運動基因》
行路出版_96
・2024/08/10 ・3722字 ・閱讀時間約 7 分鐘

科學期刊的預言:女性能追趕甚至超越男性?

我在 2002 年還在讀大四時,第一次看到兩位 UCLA 生理學家的論文〈不用多久女性就會跑得比男性快?〉,當時我覺得這個標題很荒謬。在那之前我花了五個賽季,進行 800 公尺中距離跑步訓練,成績已經超越世界女子紀錄。而且我還不是自己接力隊上跑最快的。

但那篇論文發表在《自然》(Nature)期刊上,這是世上極具聲望的科學期刊,所以一定有些道理。大眾就是這麼認為的。《美國新聞與世界報導》雜誌在 1996 年亞特蘭大奧運之前,對一千個美國人做了調查,結果其中有三分之二認為,「終有一天頂尖女運動員會勝過頂尖男運動員」。

1996 年亞特蘭大奧運前,一千位美國人中有三分之二認為,「終有一天頂尖女運動員會勝過頂尖男運動員」。 圖/envato

《自然》期刊上那篇論文的作者,把男子組和女子組從 200 公尺短跑到馬拉松各項賽事歷年的世界紀錄畫成圖表,發現女子組紀錄進步得遠比男子組急速。他們用外推法從曲線的趨勢推斷未來,確定到 21 世紀前半葉,女性就會在各個賽跑項目擊敗男性。兩名作者寫道:「正因進步速度的差異實在非常大,而使(兩者)差距逐漸縮小。」

2004 年,趁著雅典奧運成為新聞焦點之際,《自然》又特別刊出一篇同類型的文章〈2156 年奧運會場上的重要衝刺?〉(Momentous Sprint at the 2156 Olympics?)──標題所指的,正是女子選手會在 100 公尺短跑比賽中,勝過男子選手的預計時間。

-----廣告,請繼續往下閱讀-----

2005 年,三名運動科學家在《英國運動醫學期刊》發表了一篇論文,省去問號開門見山在標題宣稱:〈女性終將做到〉(Women Will Do It in the Long Run.)。

難道男性主導世界紀錄的情況,始終是歧視女性、把女性排除於競技場外的結果?

20 世紀上半葉,文化規範與偽科學嚴重限制了女性參與運動競技的機會。在 1928 年阿姆斯特丹奧運期間,有媒體(捏造)報導指稱,女性選手在 800 公尺賽跑後筋疲力竭地躺在地上,這讓一些醫生和體育記者十分反感,使得他們認為這個比賽項目會危害女性健康。《紐約時報》上有篇文章就寫:「這種距離太消耗女性的體力了。」〔1〕那幾屆奧運之後,在接下來的三十二年間,距離超過 200 公尺的所有女子項目,都突然遭禁,直到 2008 年奧運,男女運動員的徑賽項目才終於完全相同。但《自然》期刊上的那幾篇論文指出,隨著女性參賽人數增多,看起來她們的運動成績到最後可能會與男性並駕齊驅,甚至比男性更好。

運動能力的基因密碼:性別差異的生物學根源

我去拜訪約克大學的運動心理學家喬.貝克時,我們談論到運動表現的男女差異,尤其是投擲項目的差異。在科學實驗裡證實過的所有性別差異中,投擲項目一直名列前茅。用統計學術語來說的話,男女運動員的平均投擲速度相差了三個標準差,大約是男女身高差距的兩倍。這代表如果你從街上拉一千個男子,其中 997 人擲球的力氣會比普通女性大。

-----廣告,請繼續往下閱讀-----

不過貝克提到,這種情形可能是反映女性缺乏訓練。他的太太是打棒球長大的,輕輕鬆鬆就能贏過他。他打趣說:「她會發出一束雷射光。」那麼這是生物學上的差異嗎?

男性和女性的 DNA 差異極小,僅限於在女性身上為X或男性為Y的那單一染色體。姊弟或兄妹從完全相同的來源取得基因,透過重組母親和父親的 DNA,確保兄弟姊妹絕對不會相近到變成複製人。

性別分化過程大部分要歸結到 Y 染色體上的「SRY 基因」,它的全名是「Y 染色體性別決定區基因」。若要說有「運動能力基因」,那就非 SRY 基因莫屬了。人類生物學的安排,就是讓同樣的雙親能夠同時生育出男性的兒子和女性的女兒,即使傳遞的是相同的基因。SRY 基因是一把 DNA 萬能鑰匙,會選擇性地啟動發育成男性的基因。

我們在生命初期都是女性──每個人類胚胎在形成的前六週都是女性。由於哺乳動物的胎兒會接觸到來自母親的大量雌激素,因此預設性別為女性是比較合算的。在男性身上,SRY 基因到第六週時會暗示睪丸及萊氏細胞(Leydig cell)該準備形成了;萊氏細胞是睪丸內負責合成睪固酮的細胞。睪固酮在一個月之內會不斷湧出,啟動特定基因,關閉其他基因,兩性投擲差距不用多久就會出現。

-----廣告,請繼續往下閱讀-----

男孩還在子宮時,就開始發育出比較長的前臂,這使得他們日後投擲時會做出更有力的揮臂動作。儘管男孩和女孩在投擲技能方面的差異,不如成年男性和女性之間那麼顯著,但這種差異在兩歲幼童身上已經很明顯了。

性別分化過程大部分要歸結到 Y 染色體上的「SRY 基因」,會選擇性地啟動發育成男性的基因。 圖/envato

文化與訓練的影響:投擲項目中的性別差距

為了確定孩童之間的投擲差距有多少與文化有關,北德州大學和西澳大學的科學家組成團隊,共同測試美國孩童與澳洲原住民孩童的投擲技能。澳洲原住民沒有發展出農業,仍過著狩獵採集生活,他們教導女孩丟擲戰鬥及狩獵用武器,就像教導男孩一樣。這項研究確實發現,美國男孩和女孩在投擲技能上的差異,比澳洲原住民男孩和女孩之間的差異顯著許多。不過儘管女孩因為較早發育長得較高較壯,男孩仍比女孩擲得更遠。

普遍來說,男孩不僅比女孩更善於投擲,視覺追蹤攔截飛行物的能力往往也出色許多;87% 的男孩在目標鎖定能力的測試上,表現得比一般女孩好。另外,導致差異的部分原因,至少看起來是因為在子宮的時期接觸到了睪固酮。由於先天性腎上腺增生症,而在子宮裡接觸到高濃度睪固酮的女孩,上述項目的表現會像男孩一樣,而不像女孩;患有這種遺傳疾病的胎兒,腎上腺會過度分泌男性荷爾蒙。

受過良好投擲訓練的女性,能輕易勝過未受訓練的男性,但受過良好訓練的男性,表現會大幅超越受過良好訓練的女性。男子奧運標槍選手擲出的距離,比女子奧運選手遠大約三成,儘管女子組使用的標槍比較輕。此外,女性投出的最快棒球球速的金氏世界紀錄是 65 mph(相當於時速 105 公里),表現不錯的高中男生的球速經常比這還要快,有些男子職業球員可以投出超過 100 mph(相當於時速 160 公里)的球速。

-----廣告,請繼續往下閱讀-----

在跑步方面,從 100 公尺到 1 萬公尺,經驗法則是把菁英級表現差距定在 11%。從短跑到超級馬拉松,不管任何距離的賽跑,男子組的前十名都比女子組的前十名快大約 11%。〔2〕在職業等級,那就是個鴻溝。女子組的 100 公尺世界紀錄,跟 2012 年奧運男子組的參賽資格還差了四分之一秒;而在一萬公尺長跑,女子組的世界紀錄成績,與達到奧運參賽資格最低標準的男選手相比落後了一圈。

不論距離,男子組前十名的跑步速度普遍比女子組快約 11%。圖/enavato

投擲項目與純爆發力型運動項目的差距更大。在跳遠方面,女子選手落後男子 19%。差距最小的是長距離游泳競賽;在 800 公尺自由式比賽中,排名前面的女子選手,與排名前面的男子選手差距不到 6%。

預言女性運動員將超越男性的那幾篇論文暗示,從 1950 年代到 1980 年代,女性表現的進展遵循一條會持續下去的穩定軌跡,但在現實中是有一段短暫爆發,隨後趨於平穩──這是女子運動員,而非男子運動員進入的平穩期。儘管到 1980 年代,女性在 100 公尺到 1 英里各項賽跑的最快速度,都開始趨於穩定,但男子運動員仍繼續緩慢進步,雖然只進步一點點。

數字很明確。菁英女子選手並未趕上菁英男子選手,也沒有保持住狀況,男性運動員則在非常慢地進步。生物學上的差距在擴大。但為什麼原本就有差距存在?

-----廣告,請繼續往下閱讀-----

註釋

  1.  各報上氣不接下氣地報導 800 公尺女子選手紛紛倒在跑道上。正如運動雜誌《跑步時代》(Running Times)2012 年的一篇文章指出的,實情是只有一個女子選手在終點線倒下,其餘三名都打破了先前的世界紀錄。據稱人在現場的《紐約郵報》記者寫道,「11 位淒慘的女性」當中有 5 人沒有跑完,5 人在跑過終點線後倒下。《跑步時代》報導說,參賽的女運動員只有 9 個,而且全部跑完。
  2. 過去普遍認為,隨著比賽距離拉長,女子賽跑選手會超越男子選手。這是克里斯多福.麥杜格(Christopher McDougall)在《天生就會跑》這本很吸引人的書裡談到的主題,但不完全正確。成績非常優秀的跑者之間的 11% 差距,在最長距離和最短距離同樣穩固存在。儘管如此,南非生理學家卻發現,當一男一女的馬拉松完賽時間不相上下,那個男士在距離短於馬拉松的比賽中通常會贏過那個女士,但如果競賽距離加長到 64 公里,女士就會跑贏。他們報告說,這是因為男性通常比較高又比較重,比賽距離越長,這就會變成很大的缺點。然而在世界頂尖超馬選手當中,男女體型差異比一般群體中的差異小,而 11% 的成績差距,也存在於超級長距離的最優秀男女選手之間。

——本文摘自 大衛・艾普斯坦(David Epstein)運動基因:頂尖運動表現背後的科學》,2020 年 12 月,行路出版,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

行路出版_96
21 篇文章 ・ 8 位粉絲
行路為「讀書共和國」出版集團旗下新創的出版社,出版知識類且富科普或哲普內涵的書籍,科學類中尤其將長期耕耘「心理學+腦科學」領域重要、具時代意義,足以當教材的出版品。 行路臉書專頁:https://www.facebook.com/WalkPublishing