Loading [MathJax]/extensions/tex2jax.js

0

4
2

文字

分享

0
4
2

跨國遷徙的動物該如何研究及保育?從八色鳥、鸕鶿與青斑蝶的故事談起

活躍星系核_96
・2020/01/25 ・4038字 ・閱讀時間約 8 分鐘 ・SR值 570 ・九年級

  • 文/彭維維

進行動物保育時,除了設立保護區外,對區內的動物進行長期生態監測,更深入的研究牠們才是根本之道。然而,如果要監測的動物會遷徙,總是跨國飛來飛去,那該怎麼辦呢?快來看看專家到底用了哪些方法突破困境!

臺灣野生動植物資源豐富,為保存珍稀物種或特殊地質景觀與環境,棲地保育是最常見的手段之一。臺灣目前有許多根據不同法源而設立的保護區,例如依據國家公園法設立的國家公園、國家自然公園,依文化資產保存法設立的自然保留區,依野生動物保育法成立的野生動物保護區、野生動物重要棲息環境,依據森林法劃設的自然保護區,以及依溼地保育法成立的國家重要溼地等。

各類自然保護區域劃設後,後續必須進行長期生態監測工作,才能掌握當地的生態狀態,釐清這些保護區是否遭受潛在的威脅,危害到區內的生物多樣性。研究人員與管理人員可藉由分析這些監測資料與趨勢變化,做出適當的檢討,以改善自然保護區的狀態。

生態監測的重點項目,其中之一是針對特有、稀有性物種或保育類動物,調查牠們出現的數量和空間分布位置。進行這些生物資源監測時,往往必須先了解特定物種的基本生態習性,例如食性、生活範圍、棲地特徵、繁殖特性等。在估算物種族群數量時,由於遷徙性物種會大範圍遷徙,時空變化複雜,所以估算工作也較複雜,需要投入更多心力,設計出一套適用且完善的調查方式。

本文將介紹三種遷徙性物種,以及臺灣的研究人員過去如何針對這些物種的生態習性,設計出適合的研究方法,來了解特定的保育問題。

-----廣告,請繼續往下閱讀-----

從八色鳥看遷徙性物種的調查困境

八色鳥(Pitta nympha)是東亞遷徙性鳥種,在臺灣為夏候鳥,也是珍貴稀有保育類。臺灣是八色鳥的重要繁殖地之一,每年約四五月抵達臺灣進行繁殖,其他已知的繁殖地為中國東南方、日本、南韓本島和濟州島等,九十月遷離臺灣再次前往度冬地婆羅洲,也是目前已知唯一的度冬地。

八色鳥棲息於低海拔闊葉林,體色共有八色,鮮豔繽紛。數量稀少,全世界族群量只有大約一萬隻,是全球性易危(Vulnerable)鳥種。攝/張俊德

八色鳥是臺灣少數具有較完整族群監測資料的物種,自 2001 年開始至 2017 年,特有生物研究保育中心使用定點調查法(point count)與回播反應法(playback),在八色鳥對叫聲反應最高的四月底及五月間進行八色鳥全臺數量普查。

根據族群趨勢分析結果,八色鳥 2001~2017 年間在臺繁殖族群整體數量呈現下降趨勢,約下降了 30~40%。若將臺灣本島分為四區(北部、中部、西南部、東部)來看,分區呈現的趨勢各不相同,其中以北部下降程度最明顯,2001~2017 年的族群量下降了約 70%4

臺灣八色鳥歷年族群指標值變化圖。圖/參考資料 4

八色鳥在臺灣數量的下降,引發了許多的疑問。明明八色鳥在臺灣的棲地狀態變化並不多,為什麼在這種情況下,八色鳥的數量會有如此明顯的下降趨勢呢?這就要從八色鳥的度冬地談起。

我們對候鳥做族群數量監測研究時,必須考慮此物種的遷徙連結度(migratory connectivity)。遷徙連結度是指物種從同一繁殖地遷往相同度冬地的程度,繁殖地的好壞決定當年物種的繁殖率,度冬地則是決定物種的生存率。八色鳥會在年間循環時遷徙往返兩地,因此想了解八色鳥的數量變化,必定得考慮度冬地及繁殖地的情況。

-----廣告,請繼續往下閱讀-----

目前已知的度冬地點是婆羅洲,屬印尼、馬來西亞和汶萊的領土。印尼和馬來西亞近三十年來引入了油棕(Elaeis guineensis)作為經濟作物,主要用來生產棕櫚油。為了種植油棕,砍伐了大面積原始森林,造成八色鳥度冬棲地熱帶森林面積下降。研究推測,這也許是影響八色鳥在臺灣繁殖數量減少的原因之一。

馬來西亞和印尼是全球最主要種植油棕並出口棕櫚油的地方。為了大規模種植油棕,許多業者開墾了熱帶森林,也摧毀了許多野生動物的家。圖/wikimedia commons

近年來因氣候變遷,已有候鳥遷徙路徑改變的案例,八色鳥也有可能選擇遷至更高緯度的國家或更高海拔地區以適應環境。就八色鳥的繁殖地來說,比臺灣緯度更高的國家有日本、南韓、中國東部等地區,由於這些地區缺乏監測資料,目前還無法了解八色鳥出現在這些地區的個體是否增加。

目前研究推論,八色鳥族群數量下降與度冬地遭受破壞的可能性較大。八色鳥已知主要分布於婆羅洲沙巴、沙勞越兩地,近年全球油棕樹的收穫面積呈現逐年遞增走勢。2000~2001 年間,全球油棕樹的收穫面積為 1007.1 萬公頃,至 2017~2018 年時,面積增至 2262.8 萬公頃,增幅達 125%,同一時間,原始森林遭到大量砍伐,棲地減少對八色鳥造成威脅。

推測八色鳥的族群動態時,掌握八色鳥的遷徙路徑,才能確認是否因度冬棲地遭受破壞而影響數量變化,常見方法分為直接連結研究法(如:衛星定位法)或間接研究法(如:穩定性同位素、遺傳標誌)。

-----廣告,請繼續往下閱讀-----

目前在八色鳥研究上,最大的困境在於缺乏度冬地的證據。

被認為最有可能為度冬地的範圍,皆因當地缺乏研究觀測紀錄而無法釐清,而八色鳥其他繁殖地也因沒有正式的合作聯繫平臺,除了小規模的研究室間討論交流外,缺乏跨國性的整合機制,許多疑問仍待解決。

間接研究法與跨國研究:以金門國家公園鸕鶿調查為例

在探尋候鳥遷徙路徑的難題上,金門國家公園曾藉由大範圍比對各棲息地的鸕鶿(Phalacrocorax carbo)的羽毛穩定同位素(stable isotopes),累積了成功的經驗。

穩定同位素是一種天然標記物,是目前追蹤候鳥路徑時常用的方式之一。相較於衛星定位法,其優點在於較便宜、技術已發展相對成熟,但也會受某些環境條件影響準確度。穩定同位素在 1993 年首次應用於雪雁冬季棲地研究,現今已應用在許多鳥類研究中。

金門國家公園位於東亞候鳥遷移路徑上,每年皆記錄到許多候鳥及過境鳥,為推動保育研究、環境解說教育及環境生態監測等目的,過去研究人員曾對金門地區鸕鶿的生態習性進行研究。

-----廣告,請繼續往下閱讀-----
鸕鶿又稱魚鷹,每年十月下旬會南下飛到長江以南的湖泊和金門度冬,直到隔年三四月再遷徙到北方繁殖。攝/張添財

鸕鶿於每年約十月至隔年四月間至金門度冬,因為在不同棲地間進行遷徙時(如繁殖地與度冬地),食物來源不同,鸕鶿體內組織中的穩定同位素特徵也不盡相同。當遷移到當下棲地時,動物一方面攝取新棲地的食物穩定同位素,另一方面原棲地食物的穩定同位素特徵仍會在體內維持一段時間,因此,動物體內的穩定同位素組成會呈現動態漸變的過程,比較不同棲地鸕鶿的這個漸變過程,就可了解鸕鶿的活動範圍及遷徙路徑。

研究人員藉由偵測鸕鶿體內的穩定同位素,得以推測這些鸕鶿的繁殖地。

此方法需要各地區鸕鶿的血液、羽毛樣本來進行穩定同位素數值比對。研究人員於 2006 年七八月期間前往中國黑龍江省札龍自然保護區、洪河自然保護區、三江自然保護區、烏蘇里江流域、興凱湖自然保護區、內蒙古自治區呼倫湖、青海省青海湖自然保護區、鄂陵湖,以及日本等地進行採集,終於獲得較充足的數據,釐清金門的鸕鶿遷徙路徑。

穩定同位素分析技術已逐漸成熟,目前有多國研究都採用這個方法,但在材料取得時常面臨困境,如血液樣本、羽毛樣本,往往需仰賴繫放團隊自行收集,或需透過跨國合作關係,從各地儲存的標本中獲取,如博物館、各研究室等。因此,在遷徙性物種研究上,需增加跨國合作的計畫,才得以促進輔佐資料的搜集。

鸕鶿通常成群結隊遷徙。夏季繁殖期間,鸕鶿的頭頸部會換上白色絲狀繁殖羽,下脅部會出現大白斑。攝/劉其祥

臺灣與日本跨國合作進行青斑蝶標放

每年春末於陽明山國家公園大屯山區,可觀察到青斑蝶(Parantica sita niphonica)有大發生(outbreak)和島內移動行為。為了研究青斑蝶生態習性,以及與日本之間是否有青斑蝶族群交流的現象發生,從 1997 年開始,臺灣蝴蝶研究人員與日本專家合作,利用青斑蝶的標識再捕法(Mark-Release-Recapture)進行研究。

-----廣告,請繼續往下閱讀-----

青斑蝶會隨著季風移動,每年春夏季隨西南季風朝北飛,秋冬季則利用東北季風往南飛。一開始由於資料不多,科學家無法確定這兩群蝴蝶是否為同一族群。經過多年標記研究後,目前已有多筆臺灣地區標放個體在日本被發現,在日本的標放個體也有在臺灣再補獲的紀錄,可以確認青斑蝶確實在兩國之間有遷移擴散的情形。

青斑蝶又稱大絹斑蝶,具有長距離遷徙能力。攝/林家弘

自 2003 年起,每年五六月間,陽明山國家公園管理處都會舉辦蝴蝶季活動,帶動相關觀光與環境教育,與日本之間也因資訊交流頻繁快速,不僅提升學術進步,對青斑蝶的行蹤也更加了解。

目前已知青斑蝶主要分布於臺灣、日本、中國沿海、泰國及韓國等地。藉由遺傳差異分析,可得知臺灣的遺傳標記組成和日本的相似,而和中國則有很大的差異。這種擴大地區的合作,可以更清楚釐清青斑蝶的遷移動態和生態資訊。

跨域及跨國合作研究的必要

從以上案例可知,由於遷移性物種的跨國性或跨域性(例如紫斑蝶的島內遷徙),均需要有更廣大區域的合作研究,才能更便於了解這些物種的生態,也讓我們更能擁有充分清楚的資訊來保育珍貴的物種多樣性。

-----廣告,請繼續往下閱讀-----
  1. 丁宗蘇。2005。鸕鶿生態習性調查。金門國家公園管理處。金門。
  2. 林唯潁。2003。青斑蝶族群遺傳結構之研究。國立臺灣大學。臺北。
  3. 林瑞興。2005。臺灣低海拔地區八色鳥分布及巨觀棲地分析。水利署中區水資源局,臺中。
  4. 林瑞興。2017。湖山水庫及斗六丘陵以外地區八色鳥族群數量調查。特有生物研究保育中心。南投。
  5. 李文玉。2011。八色鳥(Pitta nympha)潛在繁殖地與度冬地分布預測。臺灣大學。臺北。
  6. 唐錦淇。2012。青斑蝶生物學與生殖發育之研究。臺北市立教育大學。臺北。
  7. Bowen, G. J., Wassenaar, L. I., & Hobson, K. A. 2005. Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia, 143(3), 337-348.
  8. Webster, M. S., et al. 2002. Links between worlds: unraveling migratory connectivity. Trends in Ecology & Evolution, 17(2), 76-83.

本文亦刊登於臺灣國家公園生物多樣性資料庫

  • 責任編輯/竹蜻蜓
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
深海發現大型礦場和「暗氧」!是能源危機的希望還是潘朵拉之盒?
PanSci_96
・2024/09/21 ・2334字 ・閱讀時間約 4 分鐘

深海的暗氧:無光環境中的神秘氧氣生成

深海,被譽為地球最後的未開發疆域,隱藏著許多不為人知的奧秘。數千公尺深的海底沉積了數量龐大的多金屬結核,這些礦物因含有大量珍貴金屬,對現代技術,尤其是能源轉型,至關重要。然而,科學家在探索這些結核的過程中意外地發現了一種神秘的現象:暗氧,即在無光的深海環境中生成氧氣的過程。這一發現不僅可能改變我們對海洋生態系統的理解,還可能重新定義地球早期生命起源的故事。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

長期以來,科學界普遍認為氧氣的生成依賴於光合作用。光合作用是植物、藻類及一些細菌透過陽光將水和二氧化碳轉化為有機物並釋放氧氣的過程。這一過程主要發生在地球表層和淺水區域,是維持大氣和海洋中氧氣含量的核心機制。根據這一觀點,只有在陽光能夠到達的區域,氧氣才能被生成。因此,對於深達數千公尺的深海區域,我們的認識是,氧氣主要來自於表層水透過洋流輸送到深處。

然而,深海中缺乏光源,光合作用無法進行,這意味著氧氣在深海中的供應受到限制。雖然洋流能夠在一定程度上將氧氣輸送到深海,但這一過程極其緩慢,往往需要數百年甚至上千年才能完成一次循環。因此,科學家一直認為深海是一個缺氧的環境。

多金屬結核的發現,是新能源的關鍵,還是海洋生態的災難?

在這樣的背景下,科學家對深海進行了更深入的探索,並發現了錳結核(英語:Manganese nodules),又被稱為多金屬結核這一珍貴資源。多金屬結核是富含金屬的岩石,其主要成分包括鈷、錳和鎳等金屬。這些結核廣泛分佈於全球深海區域,尤其是太平洋海域,儲量高達數兆噸。這些金屬對綠色能源技術,如電池生產,具有極高的價值,吸引了全球各國的關注。

-----廣告,請繼續往下閱讀-----

然而,這些結核不僅是地球資源的寶藏,它們還隱藏著另一個重要的發現。2013 年,科學家安德魯·斯威特曼(Andrew Sweetman)在太平洋克拉里昂-克里珀頓區域進行深海研究時,意外地發現,在封閉的深海水域中,氧氣濃度竟然有所增加。這一現象引發了科學界的極大關注。

科學家探索深海的多金屬結核時,意外發現「暗氧」的存在。 圖/envato

暗氧的生成機制

斯威特曼的研究團隊推測,深海中的多金屬結核可能在某些化學條件下,充當了天然電池。這些結核通過電化學反應將水分解為氧氣和氫氣,從而在無光的環境中產生了氧氣。為了驗證這一假設,團隊在實驗室中模擬了深海環境,並確實觀察到氧氣從結核生成的現象。

不過,這一過程並非如想像中簡單。根據實驗數據,某些海底結核表面的電壓僅為 0.95 伏特,卻能夠生成氧氣,這與理論上需要的 1.6 伏特電壓不符。研究團隊進一步推測,這可能與結核的成分有關,例如含鎳的錳氧化物可能起到了催化作用,降低了反應所需的能量。此外,結核表面的不規則排列及空隙可能也促進了電子轉移和水的分解。

暗氧的發現挑戰了我們對氧氣生成的傳統理解。過去我們認為,地球上的氧氣主要來自於光合作用,但這一現象表明,甚至在無光的深海環境中,氧氣也能通過無機物的電化學反應生成。這意味著,我們對於地球早期氧氣循環及生命演化的認識可能存在重大疏漏。

-----廣告,請繼續往下閱讀-----

尤其值得注意的是,多金屬結核的形成需要氧氣,而這些結核大量出現在深海中,是否表明早期地球上就已經存在非光合作用的氧氣生成機制?如果是這樣,暗氧是否可能推動了地球上生命的起源?這一問題仍然未有定論,但暗氧的發現無疑為生命起源的研究開闢了一條新的途徑。

未來的挑戰:開採深海資源還是守護地球最後的「淨土」?

除了科學研究的價值,多金屬結核也吸引了全球對於深海資源開採的興趣。這些結核富含稀有金屬,特別是對電池生產至關重要的鎳和鈷。然而,大規模的深海開採可能會對海洋生態系統造成嚴重破壞。

對於發現的深海資源,是要開採?還是選擇守護海洋生態? 圖/envato

首先,深海採礦可能導致噪音和光污染,破壞深海生物的棲息地。此外,採礦過程中產生的懸浮物可能對海洋生物,尤其是水母等生物造成生理負擔。研究顯示,水母在模擬的採礦環境中會因應對懸浮物而消耗大量能量,這可能削弱其免疫系統並降低生存率。

因此,雖然深海資源的開採看似能解決當前的能源危機,但國際間對此議題的爭議仍然持續。全球已有32個國家支持暫停或禁止深海採礦,呼籲進行更多的生態影響研究以確保環境保護。

-----廣告,請繼續往下閱讀-----

暗氧的發現,不僅為科學研究帶來新的挑戰,也為深海資源的開採提出了更高的要求。在能源危機與生態保護之間,我們需要尋找平衡點。未來的技術或許能夠在不破壞環境的情況下,模擬自然過程生成多金屬結核,從而實現可持續的資源開採。

此外,暗氧現象的發現也為探索外星生命提供了新的思路。當我們在其他行星上發現氧氣時,不一定意味著那裡存在光合作用生物,可能是類似多金屬結核的無機反應在默默進行。這一發現或許將改變我們對地外生命的定義與尋找方式。

深海的秘密仍在不斷被揭開。從暗氧的發現到多金屬結核的開採,這片未開發的疆域將在未來的科學探索與資源爭奪中扮演至關重要的角色。無論是能源危機的解決還是生態系統的保護,我們都應以謹慎且負責任的態度面對這一未知的領域,避免打開潘朵拉之盒。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
0

文字

分享

0
1
0
誰在馬丘比丘終老?來自印加帝國各地,還有遙遠的亞馬遜
寒波_96
・2023/09/13 ・3774字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

馬丘比丘(Machu Picchu)可謂世界知名的遺跡,觀光客前仆後繼。後世外人神秘的想像下,這兒其實是印加帝國王室冬季渡假的離宮,平時有一批工作人員長住。公元 2023 年發表的論文,透過古代 DNA 分析,證實這群人來自南美洲各地。

馬丘比丘,鍵盤旅遊常見的俯視視角。圖/Eddie Kiszka/Pexels, CC BY-SA

印加王室專屬的服務團隊

馬丘比丘位於現今的秘魯南部,安地斯山區海拔 2450 公尺之處,距離印加帝國的首府庫斯科(Cusco)約 75 公里,只有幾天路程。此處當年是一片完整的園區,足以容納數百人,王室成員會在冬天造訪(南半球的冬天,就是台灣所屬北半球的夏季月份)。

即使是使用淡季,馬丘比丘也住著不少工作人員;從遺留至今的墓葬,可以見到他們的存在。園區由 15 世紀初開始營業,到印加帝國 16 世紀滅亡為止,此後與外界斷絕聯繫數百年,一直到 1912 年,美國調查隊再度「發現」這處世界奇觀。

馬丘比丘總共留下 107 座墓葬,174 位長眠者。這群人顯然不是印加王室,應該是歷代的服務團隊。以前有許多證據,根據不同手法與思維,支持馬丘比丘的工作員來歷很廣。例如這兒的陶器,各地風格都有。

-----廣告,請繼續往下閱讀-----

誰在馬丘比丘工作呢?發跡於庫斯科的印加帝國,後來成為廣大疆域的征服者,有一套「米塔(Mita)」制度調用各地的資源與人力。這套韭菜輪替,後來被西班牙殖民者沿用加改造,成為恐怖的剝削機器,也算是南美洲國家現今社會問題的一個根源。

然而,馬丘比丘的工作人員應該不是米塔制度的服役者,而是「亞納柯納(yanacona)」。他們是王室專屬的服務人員,來自帝國各地,小時候就離開家鄉,接受培育以服務王室。

印加帝國的地理格局。圖/參考資料1

來自印加各地,還有帝國以外的亞馬遜

這項研究由馬丘比丘的墓葬取得 34 個古代基因組,以及附近烏魯班巴谷(Urubamba Valley)的 34 位古代居民樣本,他們代表當地原本的鄉民。

分析發現,印加帝國能接觸到的地區,當地特色的血緣都能在馬丘比丘見到。唯一例外是帝國最南端,現今智利中部、阿根廷西部那一帶。這使得馬丘比丘,成為印加帝國 DNA 多樣性最高的地點。

-----廣告,請繼續往下閱讀-----

但是我不覺得,這等於馬丘比丘存在多樣性很高的「遺傳族群」。分析對象中只有一對母女,其他人都沒有血緣關係。這群人的 DNA 差異大,是因為持續有一位又一位孤立的人,從不同地方被帶進來,整群人只能算特殊個體的集合。

不過遠離家鄉,服務終生的亞納柯納們,彼此間還是可以結婚生小孩的。

性別方面有細微的差異。整體而言,男生具備較多安地斯高地的血緣,女生則配備更多高地以外族群的血緣。一個因素是,有些女生來自更遠的地方,例如文化有別的亞馬遜地區。

印加帝國對亞馬遜的政治勢力不是征服關係,似乎大致上對等。有些亞馬遜的女生大概出於交流目的,來到印加帝國。至少長眠於馬丘比丘的這幾位,生前受到的待遇看來不錯。

-----廣告,請繼續往下閱讀-----
馬丘比丘長眠者的年代與血緣組成。圖/參考資料1

山區到更高山區的情慾交流

對於更在地的族群調查,發現一件有趣的事。庫斯科附近的人群,以「秘魯南部高地」血緣為主,可以視為長居本地的血緣。一部分人卻也能偵測到,與更高山上之「的的喀喀湖(Titicaca)」的居民共享血緣。

庫斯科與的的喀喀湖,兩個地區有點距離,考古學證據指出,早於 2500 年前兩地間就存在交流。而遺傳學分析則支持,兩地存在情慾流動;可惜現有樣本,不太能精確判斷交流發生的年代。

來自亞馬遜的媽媽,女兒,爸爸

這批調查對象中,我覺得長眠於馬丘比丘的那對母女最有意思,值得特別思考。這對母女都是百分之百的亞馬遜西北部血緣,長眠於同一墓穴,兩者的關係在當時有被強調。

「亞馬遜」的面積妖獸大,印加帝國最有機會接觸的,應該是距離安地斯東方不遠的區域,也就是亞馬遜的西部和西北部。不論如何,亞馬遜有自己的一套,印加帝國與其有所交流,不過始終無法將其納入統治。

-----廣告,請繼續往下閱讀-----

征服到山與海的盡頭!以及雨林的邊緣……

馬丘比丘長眠者的鍶穩定同位素比值。圖/參考資料1

根據牙齒中鍶的穩定同位素,可以判斷一個人小時候在哪兒長大。媽媽 MP4b 成長於亞馬遜地區,表示她在長出恆齒後才抵達安地斯。

她的女兒 MP4f 則無法判斷具體地點,不過應該位於安地斯山區。兩人後來都在馬丘比丘服務,去世後長眠於此。

女兒沒有其餘地區血緣的特色,意謂女兒的爸,也配備百分之百的亞馬遜西北部 DNA,只是在馬丘比丘墓葬中看不到他。

-----廣告,請繼續往下閱讀-----

印加帝國興起,亞馬遜扮演什麼角色?

年代方面,媽媽算是長眠於馬丘比丘最早的一批人,處於印加建國的初期,甚至有可能早於開國之日。

依照歷史敘事,印加帝國始於「印加太祖」帕查庫特克(Pachacuti)擊敗昌卡人(Chanka)。印加勢力征服烏魯班巴谷以後,才有機會建設其上方的馬丘比丘。而印加太祖登基的年份為 1438 年。

然而,針對馬丘比丘遺骸的放射性碳同位素定年(碳14),指出兩人的年代或許早於 1420 年。考古學家因此懷疑,印加帝國建國的實際年代比 1438 年更早,也許早在 1420 年已經完成建國大業。

馬丘比丘最早長眠者的年代,似乎比歷史敘事中,印加帝國建國的 1438 年更早。圖/參考資料4

亞馬遜西北部長大的媽媽 MP4b 之年代,剛好介於這段時期。不論如何,這都是明確的證據,支持印加帝國建國之初,和亞馬遜之間有一定程度的正面交流。而女兒的爸,身份也引人好奇。

-----廣告,請繼續往下閱讀-----

他是當時亞馬遜政權派往印加的政治代表,或是軍事團助拳人嗎?還是替印加王室服務的商人,或是作戰的傭兵?他是在哪個地方,什麼情境下,與來自家鄉的女性生下女兒?最後,他本人最終的命運如何?

馬丘比丘在這對母女以後,至少還有四位純亞馬遜西北部血緣的女性長眠,延續到印加帝國的最後時期,當中至少兩位是在安地斯山區長大,和前輩女兒 MP4f 一樣。印加王室與亞馬遜的人口交流,貫串整段帝國時光。

古代 DNA 的分析,有相當客觀的套路,但是從中能牽引出的主觀議題千變萬化,非常有意思。

延伸閱讀

參考資料

  1. Salazar, L., Burger, R., Forst, J., Barquera, R., Nesbitt, J., Calero, J., … & Fehren-Schmitz, L. (2023). Insights into the genetic histories and lifeways of Machu Picchu’s occupants. Science Advances, 9(30), eadg3377.
  2. Who lived at Machu Picchu? DNA analysis shows surprising diversity at the ancient Inca palace
  3. Ancient DNA reveals diverse community in ‘Lost City of the Incas’
  4. Burger, R. L., Salazar, L. C., Nesbitt, J., Washburn, E., & Fehren-Schmitz, L. (2021). New AMS dates for Machu Picchu: results and implications. Antiquity, 95(383), 1265-1279.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
寒波_96
193 篇文章 ・ 1090 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。