0

0
1

文字

分享

0
0
1

脊髓神經受損不再是一輩子的事了!能使脊髓神經軸突再生的人工合成醣類

研之有物│中央研究院_96
・2019/09/18 ・4519字 ・閱讀時間約 9 分鐘 ・SR值 552 ・八年級

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

  • 採訪編輯|林承勳。美術編輯|林洵安。

在同學坐下時將椅子移開、站立時直接彎腰搬重物,這些動作看似無關緊要,其實非同小可,很容易傷到脊髓神經。更嚴重的是,脊髓神經受損後無法修復,一旦造成傷害,可能半身不遂。好消息是,中研院基因體研究中心主任洪上程與日本名古屋大學合作,近日發現:人工合成的「硫酸乙醯肝素」八醣體,能讓小鼠受損的脊髓神經軸突再生,或許在未來某一天,可以成功修復人類受損的脊髓神經。

人類的神經系統與神經元細胞

人類的神經系統分成兩個部分:包含腦和脊髓的中樞神經,以及遍布全身的周圍神經。

圖片來源|iStock
圖說設計|黃曉君、林洵安

但不管哪個部位的神經,基本單位都是神經元細胞。所有的神經元都有三個基本構造:細胞核所在的細胞體 ,負責接收訊息的樹狀突起─樹突 ,還有將神經訊息向外傳送、一條細長管狀突起─軸突。

神經元細胞傳送訊息的方法是:細胞體的神經衝動,先由軸突傳到末端的突觸,再由下一個神經元細胞的樹突接收、軸突傳出,就這樣一個傳一個,宛如接力賽般把訊息傳出去,直到目的部位。

第一個神經元細胞將神經衝動傳到軸突末端的突觸,然後釋放神經傳導物質到下一個神經元細胞的樹突突觸,藉此將神經衝動傳給下一個神經元……就這樣把訊息接力傳到目的地。神經元軸突長度相差很大,有的僅分布在細胞周圍;有的很長,像是成人的坐骨神經,長度能超過1.5公尺。
圖片來源|iStock
圖說設計|黃曉君、林洵安

反過來說,如果軸突受損、斷裂,無法再生,就會阻斷神經訊息傳遞,嚴重將導致癱瘓。洪上程、門松健治跨國團隊的研究故事,就從這裡開始⋯⋯

軸突再生的關鍵:蛋白質 Cortactin

由洪上程、門松健治組成的跨國研究團隊發布、刊登於國際期刊《自然-化學生物學》(Nature Chemical Biology)的研究論文中,日本團隊從小鼠身上取得的背根神經節作為研究材料,背根神經節屬於上述的周圍神經。

結果發現: 當神經元的軸突受損或斷裂時,軸突末端會形成球狀凸起物,以避免神經元細胞質持續流失,但在此同時,也阻礙了軸突生長,導致軸突受傷後無法修復。

所幸,日本研究團隊又發現:神經元軸突能否再生,關鍵在細胞內一種名為 Cortactin 的蛋白質。當 Cortactin 被磷酸根化,就會促使細胞進行自噬作用,讓軸突末端的球狀凸起物分解。如此一來,斷裂的軸突就可以重新生長、產生連結。

當 Cortactin 被磷酸根化,就會促使軸突末端的球狀凸起物分解,讓斷裂的軸突可以重新生長。
資料來源|洪上程
圖說重製|黃曉君、林洵安

可惜的是,在神經元軸突受損的情況下,Cortactin 是沒有被磷酸根化,處於沒有活性的狀態。

洪上程指出,洪上程指出,原因在於細胞表面的硫酸軟骨素(Chondroitin Sulfate,以下簡稱 CS)和細胞膜上的磷酸根移除酶(Protein Tyrosine Phosphatase Receptor σ,以下簡稱 PTPRσ)。

CS 分子會在受傷的神經軸突附近聚集,並和神經元細胞表面的 PTPRσ 結合,使它活化。一旦 PTPRσ 被活化,會移除 Cortactin 的磷酸根。沒有磷酸根、沒有活性的 Cortactin 就無法促成細胞進行自噬作用,受損的軸突就無法修復。

第一個新發現: CS 分子結合受器 PTPRσ,會移除 Cortactin 的磷酸根,阻礙神經元軸突再生。
資料來源|洪上程
圖說重製|黃曉君、林洵安

人工合成八醣體,促成神經元軸突再生

好消息是,洪上程發現,阻礙軸突修復的 CS 分子,跟他實驗室合成的八醣體─硫酸乙醯肝素(Heparan Sulfate, 以下簡稱 HS)同屬 Glycosaminoglycans 家族,結構都含有多個硫酸根。

洪上程便將自己實驗室合成的十六種 HS 八醣分子,提供給門松健治團隊,讓 HS 分子跟受損的神經元作用,期待 HS 分子可以取代 CS 分子,並與 PTPRσ 結合後,不會移除 Cortactin 的磷酸根。

結果顯示:在成鼠受損神經元,施以大量 HS 分子之後,神經元果然開始重生。

這個實驗證實了硫酸根較多的幾種 HS 分子,果真成功消除 PTPRσ 活性,造成 PTPRσ 無法移除 Cortactin 的磷酸根,讓神經軸突得以再生。

第二個新發現:HS 分子取代 CS 分子,搶先與 PTPRσ 結合, 讓 Cortactin 又可被磷酸根化, 使神經軸突順利再生。
資料來源|洪上程
圖說重製|黃曉君、林洵安

日本學者推測原因:原本 CS 分子的 PTPRσ 結合是一對一,一個 CS 分子結合一個 PTPRσ。但 HS 分子的結構比較長,所以一個 HS 分子跟好幾個 PTPRσ 集結,形成低聚合物,可能因此遮住了 PTPRσ 的活性位置,使它們無法發揮去除磷酸根的功能。

另一個可能解釋是,HS 分子跟 PTPRσ 結合後, 蛋白質 PTPRσ 本身結構發生變化,連帶影響活性,失去了移除磷酸根的能力。

細胞實驗成功後,下一個要克服量產問題

目前神經軸突再生實驗,已經完成了細胞測試階段,下一步就是以活體動物作為實驗對象。

不過直接在小鼠體內組織進行實驗,比起之前將小鼠脊髓神經細胞取出、放在培養皿操作,難度不可同日而語,光是 HS 分子的劑量就是一大考驗。

因為細胞實驗只需要幾毫克 HS 分子 ,但動物實驗劑量勢必需要幾公克。雖然目前八醣體的合成步驟已有標準流程,但是要大量合成,條件絕對不會一樣。

「不僅是原料濃度要增加,容器大小、環境溫度,都有可能影響產率。」洪上程解釋。操作人員熟悉標準流程的步驟後,想要達到量產目標,估計可能要再花費一年時間。

至於何時應用到人體?這次周圍神經元軸突再生機制,能否應用到中樞神經元?這些問題都需要更進一步的研究。

HS 分子在這次發現中扮演關鍵角色。您是怎麼開始研究 HS 分子?

HS 分子,可說是我二十年研究經驗的累積。當初會研究人工合成 HS 分子,源自中研院基因體研究中心,肩負著對抗傳染性疾病、癌症和神經退化性疾病的重責大任。

傳染性疾病與癌症,看似與基因沒有強烈的關聯,但實際上,經由人體遺傳物質 DNA 轉錄、轉譯製作出來的蛋白質,在後續修飾的過程,會影響人體是否容易感染疾病,或是出現癌細胞。基因體研究中心著手的蛋白質後轉譯修飾(Post-translational modification, PTM)研究,在近年來神經退化疾病醫療中,也越顯重要性。

中研院基因體研究中心肩負著對抗傳染性疾病、癌症和神經退化性疾病的重責大任。

至於我一開始想解決的問題,其實是登革熱。研究發現,登革熱病毒在感染細胞的時候,會跟細胞表面的 HS 分子結合,促使細胞進行吞噬作用,讓病毒進入細胞,利用細胞裡的資源增殖、再擴散。

因此我構想,針對病毒本身或細胞表面的醣類進行研究,應該可以找出阻隔病毒入侵細胞的有效方法。因為病毒突變太快,但不論如何變異,目標都是跟細胞表面的醣類結合。換句話說,如果能夠模擬、人工合成細胞表面的醣類,讓它和病毒作用,也許可以避免病毒進入細胞。

但僅僅是合成細胞表面相關的醣類,就必須花費龐大的心力。。

為什麼人工合成醣類很困難呢?

醣類,主要是由數個葡萄醣(醣的最基本單位)組合,但是在合成時需要注意「異構物」的問題。

所謂的異構物,即是分子式相同的醣類,從立體的角度來看,還會有官能基朝向方位不同的狀況。如同物體與其鏡像,對稱卻無法完全重疊,稱為「鏡像異構物」。

兩個異構物可根據分子對偏振光的反應—-使光向左或右邊旋轉,分成左旋與右旋。左旋與右旋的化合物,雖然具有相同的化學與物理性質,但與其他物質作用時卻可能產生完全不同的效果。

除了分辨、純化所需要的醣類之外,在著手合成時還有官能基區分、選擇等等難題。

官能基,是分子裡一群有特定結構與化學性質的原子團。一個葡萄醣上有五個 OH(氫氧根)官能基,每個扮演的角色都不同。在人工合成醣類時,確認哪個是應該作用的目標官能基之後,還要想辦法保護其他不應該進行反應的官能基。

人工合成醣類需要注意異構物、旋光性的篩選,還有官能基作用選擇,統統需要耗費大量時間分析。

後來我的實驗室發明了合成醣的「一鍋化」方法。原本一個反應瓶只能一次進行一個反應,反應終止後要純化、分離,再進行下一個步驟。「一鍋化」方法能省略很多步驟、節省溶劑與化學廢棄物,並製作出許多不同的衍生物。

目前實驗室已經製造出兩條八醣骨架(下圖骨架 A 和骨架 B),每條骨架加裝不同官能基可以生成八種衍生物,就是這次研究使用的十六種 HS 分子。

從一個共同的八醣骨架 A ,分別進行 8或 9 項反應步驟,可以衍生出 8 種 HS 分子。
資料來源|洪上程
圖說設計|黃曉君、林洵安
從一個共同的八醣骨架 B ,分別進行 8或 9 項反應步驟,可以衍生出 8 種 HS 分子。
資料來源|洪上程
圖說設計|黃曉君、林洵安

經過二十年的經驗累積,目前可用五、六十個步驟製造出十六個八醣體。但我的最終目標,是合成十六個八醣骨架,製造出一百二十八種衍生物。

這次突破性發現是中日跨國合作的成果,您怎麼會想到跟名古屋大學合作呢?

這次的跨國合作,其實源自一場不經意的研討會談話。

有一次,我到歐洲參加兩年一度的蛋白聚醣國際研討會,在會議中認識這次的日方研究團隊。

因為都是亞洲人,臉孔比較熟悉,很自然的互相打招呼,交流彼此的研究領域。我的專長是化學合成,與名古屋大學的科學家不經意的聊起 PTPRσ,以及如何製造合成物來抑制蛋白質活性。

就這樣,原本不同國家、不同領域的研究者,透過一場輕鬆的交流,促成這次台日跨國研究計畫,最後讓原本用來對付傳染病的八醣體,成為促進神經修復的關鍵。

所以不論是研究或是學習,都應該要把握機會認識不同領域的朋友。不一定都要出國開會,也可以是不同部門、樓層,甚至是隔壁研究室。瞭解彼此在做些甚麼,才有辦法合作,找出新發現。

中研院基因體研究中心主任洪上程,以本次跨國合作經驗勉勵研究者:「走出門外交流,或許是新發現的開始!」
攝影|林洵安

延伸閱讀:

本文轉載自中央研究院研之有物,原文為癱瘓者的福音!人工合成八醣體,促使脊髓神經軸突再生,泛科學為宣傳推廣執行單位

___________
你是國中生或家有國中生或正在教國中生?
科學生跟著課程進度每週更新科學文章並搭配測驗。來科學生陪你一起唸科學!

文章難易度
研之有物│中央研究院_96
255 篇文章 ・ 2467 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

4
1

文字

分享

0
4
1
阿 Q 的彈跳甲魚湯為什麼會凝固?膠原蛋白吃了可以美容嗎?
Evelyn 食品技師_96
・2023/03/01 ・3013字 ・閱讀時間約 6 分鐘

彈跳甲魚湯。圖 / YouTube

阿 Q 為了救回被黑暗料理界綁架的父親,與小當家一行人前往樓麟艦,接受黑暗料理界所下的戰帖,展開四回合的宴席料理戰。第一回合的對決主題是「湯」,自告奮勇擔任先鋒的阿 Q,以「彈跳甲魚湯」這道料理,漂亮地戰勝錦毛虎駱可的頂級雞湯。

彈跳甲魚湯因為凝固成魚凍不會灑出來,評審們紛紛驚嘆這是需要嚼的湯?為什麼會變成這樣呢[1]

彈跳甲魚湯。圖 / YouTube

甲魚即是鱉,在亞洲經濟、營養價值皆高

甲魚其實就是鱉,又名圓魚、團魚或王八,是一種高經濟價值的水產養殖物種,其肉、 血、膽、脂肪,甚至是甲殼皆可以被利用。

中華鱉(Pelodiscus sinensisTrionyx sinensis)目前是亞洲最普遍的品種,主要分布於中國大陸,其次為日本、臺灣、韓國、馬來西亞和泰國等,估計阿 Q 就是拿中華鱉去料理的。

鱉在部分亞洲國家已經有很長的食用歷史,大多是當作食物或傳統藥材使用,中國明朝《本草綱目》中記載「鱉甲乃厥陰肝經血分之藥,肝主血也。試常思之,龜鱉之屬,功各有所主。鱉色青入肝,故所主者,瘧勞寒熱,痃瘕驚癇,經水癰腫陰瘡,緣厥陰血分之病也。」,說明鱉具有滋陰潛陽、清熱消淤等多種漢方保健效果。

當然,鱉肉營養價值的確很高,其肉質細嫩、味道鮮美、營養豐富,是蛋白質、膠原蛋白和礦物質良好的來源。成分包含 20 種必需胺基酸、EPA、DHA 和其它不飽和脂肪酸,豐富的微量元素包含鋅、錳、鐵、銅、鈣、磷、維生素 A、B1、B2 及 D 等[2]

中華鱉(Pelodiscus sinensisTrionyx sinensis)目前是亞洲最普遍的品種。圖 / 參考資料 2

凝膠性是蛋白質重要的功能特性之一

這就不得不說明,蛋白質的功能特性。

蛋白質是細胞重要的組成分,人類從食物中攝取蛋白質,不外乎就是為了補充營養上所需的必需胺基酸。

但是蛋白質在食品的應用上,具有一些功能特性,例如凝膠性(gelation)、黏彈性(viscoelasticity)、乳化性(emulsification)或起泡性(foaming)等,這些特性在生活中隨處可見,舉例來說:

做麵包時,將麵粉(小麥蛋白)加水攪打成具有彈性的麵團,就是黏彈性;製作蛋黃醬時,將蛋黃跟醋酸、沙拉油這兩樣油水不溶的材料均勻混合在一起,就是乳化性;做蛋糕時,將蛋白打發成乾性發泡的蛋白霜,就是起泡性。

而彈跳甲魚湯所牽涉到的蛋白質功能特性,就是凝膠性。

蛋白質凝膠,是變性的蛋白質分子在一些作用力包括氫鍵、疏水交互作用或靜電斥力交互作用等影響下,蛋白質分子互相聚集、吸引或排斥達成平衡,以至於形成能保持大量水分的高度有序之三度網狀結構,是一個動態的過程[3]

彈跳甲魚湯會凝膠是因為明膠

鱉所富含的「膠原蛋白」是彈跳甲魚湯「凝膠」的關鍵,鱉肉經過長時間的熬煮,膠原蛋白轉變成「明膠」,靜置冷卻後便凝固成果凍狀,是一種肉凍料理[4],像豬肉凍、水晶肴肉都是類似的料理。

P.S. 鱉的脂肪也有可能影響到這道料理的形成,但並非主因,本文為避免複雜,就不再探討脂肪的食品化學。

明膠(gelatin)為膠原蛋白(collagen)熱變性後的產物,大量存在脊椎動物中,動物性蛋白質約有 30% 是由膠原蛋白構成,含量會隨著年紀及季節的不同而改變,存在腱、皮膚、骨、血管、結締組織等[5]

膠原蛋白係由三條多胜肽鏈 (polypeptide chain) 相互纏繞而成的三股螺旋結構,多胜肽鏈上以甘胺酸(glycine, Gly)為最豐富的胺基酸,約佔 33%,其次為 13% 羥脯胺酸(hydroxproline, Hyp)、 12% 脯胺酸(proline, Pro)、11% 丙胺酸(alanine, Ala),以及稀有之 1% 羥離胺酸(hydrolysine,Hyl)等[4]

這三條多胜肽鏈相互以氫鍵緊密纏繞連結,如同堅韌的繩索一般,所以肉的膠原蛋白含量愈多時,肉質就較硬。不過當以攝氏 40 度以上加熱時,膠原蛋白分子間的氫鍵被打斷,破壞三股螺旋結構,即轉化為水溶性之明膠[5]

而明膠冷卻後,分子間再度以氫鍵鍵結而「凝膠」形成果凍狀,這個凝膠只要再加熱破壞分子間氫鍵,又會恢復成流動狀,是熱可逆反應。

膠原蛋白結構,具伸張性,由三條聚肽鏈間以氫鍵緊密結合而互相纏繞,每條聚肽鏈又扭曲呈左旋鏈。圖 / 參考資料 6

吃膠原蛋白不能補膠原蛋白?

膠原蛋白是維持人體肌膚彈性的要素之一,隨著年紀增長,皮膚真皮層的膠原蛋白含量減少,令愛美女性在意的皺紋就會出現。

那喝彈跳甲魚湯,或是香甜滑溜的銀耳湯,可以幫助我們補充膠原蛋白嗎?

事實上,膠原蛋白本來就是人體可自行合成的物質,以不同的形式存在於皮膚、骨骼、軟骨、韌帶、肌腱、血管壁和結締組織等部位,並不需要額外補充。

不管是從食物攝取,或是吃膠原蛋白補充品,一樣都會經過人體消化作用,變成小分子的胺基酸,未必能在體內重新合成膠原蛋白[7]

且豬腳、雞爪要是吃過量,反而容易攝取到過多的油脂與熱量,不但沒達到美容效果,還導致肥胖。

銀耳是植物,植物不含膠原蛋白

另外,許多女性喜愛的銀耳湯,其實是不含膠原蛋白的。

許多人以為,滑溜溜的銀耳含大量的膠原蛋白,事實上,膠原蛋白多存在於動物中,植物不含膠原蛋白。銀耳屬於蔬菜類中的菇類,那滑溜的口感是來自於「多醣體」。

銀耳含有豐富的多醣體,屬於水溶性纖維,能吸收水分、增加飽足感、延緩血糖上升,同時也是腸道好菌的食物來源。

銀耳滑溜的口感是來自於「多醣體」,而非膠原蛋白。圖/維基百科

只要均衡飲食、適量攝取蛋白質、少吃高油炸食物、補充維生素 C 或維生素 E 等抗氧化物質,並且生活作息正常,就能減少體內膠原蛋白的流失,達到維持肌膚彈性的目的[8]

參考資料

  1. Muse木棉花,2021。中華一番(舊版小當家) 第36話【阿Q特製!冷卻煮凝湯】
  2. 陳思宇,2008。甲魚 (中華鱉) 蛋理化特性之探討。輔仁大學食品科學系碩士論文。新北。
  3. 劉展冏、韓建國、劉冠汝、李嘉展、虞積凱、孫芳明、蘇敏昇、馮惠萍、謝秋蘭、饒家麟、梁弘人、林聖敦、江伯源、李政達、盧更煌、周志輝,2020。最新食品化學(最新修訂版)。於陳建元修編,顏國欽總校閱。臺中市:華格那出版有限公司。
  4. 唐嘉憶,2006。明膠作為配料利用添加於肉凍製品之研究。國立屏東科技大學食品科學系碩士學位論文。屏東。
  5. 黃鈺茹、蕭泉源,2011。不同水生生物來源所得之膠原蛋白物理與生物化學相關特性。海大漁推 41,17-52。
  6. Woodhead-Gallowy J. 1980. Collagen: the Anatomy of a Protein. Journal of Anatomy 132: 3 433-437.
  7. 衛生福利部食品藥物管理署,2015。市面上有許多含膠原蛋白的保養品,請問真的能有效維持肌膚彈性嗎?。食藥闢謠專區。
  8. 衛生福利部食品藥物管理署,2022。滑溜溜的銀耳湯,真的能補到妳的膠原蛋白嗎?。藥物食品安全週報 876:7

Evelyn 食品技師_96
19 篇文章 ・ 15 位粉絲
一名食品技師兼研發專員,對食品科學充滿熱忱。有鑒於近年發生許多食安風暴,大眾對於食品安全的關注越來越高,網路上卻充斥著不實資訊或謠言。希望能貢獻微薄之力寫些文章,讓更多人有機會認識食品科學的正確知識!想獲得更多食品營養資訊可追蹤作者的粉絲專頁喔!https://www.facebook.com/profile.php?id=100066016756421

0

2
2

文字

分享

0
2
2
臺灣發展地熱發電到底可不可行?(上)
PanSci_96
・2023/01/29 ・3490字 ・閱讀時間約 7 分鐘

2022 年 3 月臺灣政府正式公布了「台灣 2050 年淨零排放路徑藍圖」,我們在先前的影片也有聊到,2050 淨零排放就是要讓台灣的總碳排放量,再扣掉人為捕捉移除的量之後歸零。

直觀來說,極低碳排放的再生能源電業,在淨零排放上勢必扮演重要角色。這次我們要來聊聊除了太陽光電和離岸風電之外,大家也非常期待的綠色能源——地熱發電,談談地熱發電究竟是什麼?有發展的可能嗎?

什麼是地熱發電?

大家學過地科都知道,地球內部處於極高溫狀態,而這股地熱能,會隨著地函對流和熔岩,被帶至地表附近。

地函對流。 圖/wikimedia

人類很早就懂得利用地熱資源,例如你我曾經泡過的溫泉,就源自於被地熱加熱的地下水。換言之,地熱能是地球自然產生、乾淨的再生能源。若拿來發電,就是所謂的地熱發電。

地熱發電擁有不少優點,包括使用腹地小、碳排放低、低污染、抗天災等,更沒有目前太陽能發電和風力發電最為人詬病的不穩定問題,可以 24 小時全天候提供電力。若能妥善開發和利用,不失為未來全球再生能源供給的重要選項。

臺灣地熱潛力為何?

說得再理想,還是要先回答一個關鍵:臺灣的地熱潛能到底有多少?這邊要介紹一個名詞:地溫梯度(geothermal gradient),它指的是地球內部隨深度增加而使得溫度升高的變化率。

地球內部的溫度曲線示意圖。 圖/wikimedia

一般來說,在地表附近,每往下一公里,溫度就上升約攝氏 25 到 30 度;但是,在靠近地球構造板塊邊界處,溫度梯度較高;也就是說,往下同樣的深度,會得到比較高的溫度。在這些地區,要進行地熱發電明顯比較有利。

而臺灣正好位於菲律賓海板塊和歐亞大陸板塊的交界,因為兩個板塊的互相擠壓,使得地殼隆起而形成。

因此,臺灣不但多地震,就先天條件來說,似乎也是地熱潛力值得期待的區域。

可惜的是,根據上個世紀的地熱評估文獻,臺灣的地熱發電潛能最多不會超過 1000MW,這個數字是多少?我們作個對照,核四兩部機組的總裝置容量是 2700MW。

若再考慮這些地熱的位置和環境,不見得都適合開發,所以可實際運用的地熱就又更少了。對此,工研院甚至曾推估,其中真正能拿來發電的地熱,只有 150MW。

這麼說來,我們大概不用指望地熱發電,只能洗洗溫泉睡了,或頂多只能有小型的發電規模。

不過,代誌(tāi-tsì)不是那麼簡單。當談到地熱資源多寡的時候,就跟為人處世一樣,我們至少必需要留意兩個要素:溫度和深度。很顯然地,當溫度不夠高,地熱發電就沒效率;另一方面,既然地底越深處溫度越高,我們只要一直挖、一直挖、挖得夠深,總是可以得到足以發電的高溫。

前面說到臺灣地熱發電潛能最多不到 1000MW,事實上考慮的是溫泉地區中,離地表比較近、最容易開發的地熱。若往更深的地方探勘,又是另一番風景。

地熱發電,除了考慮溫度還要考慮深度。 圖/envato.elements

在習慣上,國際常分別用淺層地熱(shallow geothermal)和深層地熱(deep geothermal)的稱呼來區別深度不同的地熱能。但要值得留意的是,要多淺才叫淺層、多深才叫深層,並沒有全球一致的定義,反而依各國情況而定。

近年來,在國科會的能源國家型科技計畫支持下,臺灣大學的研究團隊分析了大屯火山群、宜蘭地區、廬山地區和花東地區共四個區域的資料,發現海拔高度 1000 公尺以下、地底深度 4000 公尺以內,且地溫高於攝氏 175 度的地熱蘊藏發電容量,可達 33640MW。換句話說,約等於 12 座核四。

既然臺灣蘊藏了這麼高的發電容量,那我們還不趕快開發開個爆嗎?

地熱發電原理與技術

這就會牽涉到現實中,地熱發電技術的發展。

理想狀況下,地熱資源的構造,大致可以用這張圖來表示。最下方是熱源,熱源之上稱為儲集層(reservoir),再上方則是由緻密岩石組成的蓋層(caprock)。

地下水會經由地層裂縫進入儲集層而受到加熱。因為蓋層的阻擋,大部分熱水或水蒸氣會在儲集層進行熱對流,而少部分的水或蒸氣則可能會透過蓋層的裂縫,從地表竄出,成為溫泉或是噴氣孔。

就傳統的地熱發電來說,地底需要三個條件,豐富的熱源、充足的地下水,和良好的滲透率,讓水可以在其中流動,這三者缺一不可。在具備這些條件的地方,汲取地熱能量相對容易。

如果從地底出來的水是蒸汽型態,我們可以直接利用,讓蒸汽通過渦輪機,產生電力,稱為乾蒸汽(Dry Steam)發電,這也是最古老的地熱發電方式。只不過,這麼好的條件可遇不可求。

若存在地底的是攝氏 180 度以上的高溫熱水,當這些熱水從高壓環境抵達地表的低壓貯存槽,因為壓力降低,會迅速轉變成氣體,推動渦輪發電機,這稱為閃發蒸汽(Flash Steam)發電,同時也是目前最普遍的地熱發電方式。

要是地熱資源的條件沒那麼好,比如說,世界上大部分地方,地溫梯度並不高,就算挖得很深,地下水溫就是不熱,怎麼辦呢?就像教授在課堂上講笑話,大學生托著腮毫無反應一樣,那就找批笑點很低、又很有精神的小學生來吧!

近來,許多的新建地熱發電廠採用所謂雙循環(Binary-Cycle)發電方式,當溫度沒那麼高的地下水到達地表後,會在熱交換器(heat exchanger)與另一種流體交換熱能,像是正戊烷(Pentane)或丁烷(Butane);它們因為沸點很低,所以在接收到地下水的熱能後,會轉變成氣態並推動渦輪,產生電力。雙循環系統的好處是適用更廣大的區域,而且對溫度的要求不高,甚至有攝氏 57 度就成功發電的紀錄,但缺點就是發電效率較低。

目前世界上的地熱發電廠,主要都是用以上三種方式進行發電,深度約在 1.5 公里到 2.5 公里左右。然而,正是地熱發電技術的瓶頸,成為臺灣大規模開發地熱資源的難處之一。但這些難處,其實也有技術可以破解!

臺灣地熱的先天條件、侷限、破解之道

上述的地熱發電方式,至少都需要有充足的地下水或地下流體,和良好的滲透率;就算溫度不夠高,也還可以用雙循環系統來彌補。

但在臺灣,深度較淺、容易探勘與利用的地熱資源,發電潛能最多也不過前面提及的 1000MW,而且還得再扣除不適合開發的地區。如果想大規模進行地熱發電,就勢必要往更深處的地熱資源著手。

然而,我們卻沒辦法保證潛在的地熱資源,都具備充足的地下水跟良好的滲透率。有很大可能是,地底深處儘管溫度夠高,卻沒有水也沒有適當的裂隙。這也是全球地熱發電發展腳步緩慢的原因之一。

為了克服此一問題,這些年來陸續有不同的提案出現。而國際上最常被提及的解方,就是所謂的增強型地熱系統(Enhanced Geothermal System),簡稱 EGS。

EGS 在嚴謹控制的環境下,以高壓朝地下深處注入冷水,迫使岩石原本既有的裂隙擴大,人為創造良好的滲透率。

這些冷水在吸收地底的高溫之後,又會回到地表作為發電之用。一旦發電完畢,這些冷卻下來的水又會被注入地底,如此往復循環。有如開了二檔的魯夫。

整套方法在 1:05 有動畫呈現。

這樣聽起來,增強型地熱系統似乎很不錯,降低了地熱發電的環境限制門檻。但是,它也存在一些問題。

首先,往地下注入的水,其流動取決於人為擴大的裂縫,但我們並沒有辦法保證裂縫方向符合需求,所以會有很多水是沒辦法回收的;二來,它也有引發地震活動的可能性。這些都是使用 EGS 進行地熱發電時,要實際考慮的問題。

這集,我們討論了地熱發電的原理,以及臺灣是否適合地熱發電,下一集將討論地熱發電的成本,與開發上需要考量的細節,並回顧台灣地熱發電的發展歷史。

PanSci_96
1035 篇文章 ・ 1347 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
0

文字

分享

0
3
0
鱸魚精有抗疲勞的健康食品認證!累了可以依靠它嗎?自己在家也可以做嗎?
Evelyn 食品技師_96
・2023/01/18 ・3215字 ・閱讀時間約 6 分鐘

有沒有聽過開刀手術、懷孕生產過後要喝一碗鱸魚湯補身體呢?每當有親友開完手術時,通常會燉煮一鍋鮮美的鱸魚湯,期望讓術後的患者能快速癒合傷口,恢復元氣[1]

不過現在市面上已經有「鱸魚精」這樣方便又營養的產品,讓消費者免去熬煮魚湯的麻煩,即開即飲,這跟一般在家做的滴魚精有什麼不同呢?

金目鱸魚,其體背與各鰭皆為褐色,腹部為淡褐色,尾鰭圓形不分叉,可用來製造鱸魚精。圖 / 農委會

在家做的滴魚精和工廠做的鱸魚精之差異

一般在家裡自製的滴魚精,不外乎就是將魚肉放進密閉容器中,以類似蒸箱的方式加熱,讓這些肉滴出具有營養價值的精華——蛋白質和少量支鏈胺基酸(branched-chain amino acid, BCAA)。

支鏈胺基酸包含纈胺酸(valine)、白胺酸(leucine)及異白胺酸(isoleucine),是骨骼肌主要胺基酸成分,也是重要的能量來源。補充支鏈胺基酸除了可延長肌肉耐力外,亦能促進肌蛋白合成並減少分解作用,有助於組織建構及修復[2]

魚肉雖然是優質的蛋白質來源,但大分子蛋白質還是必須經過胃腸道消化,分解成小分子胺基酸才能被身體吸收。

所以飲用魚精,能讓無法正常咀嚼、飲食,僅能飲用流質食物的人,或是對蛋白質、胺基酸有額外需求者(例如消化功能不良、大手術病患、懷孕等),得以迅速補充營養。

但其實滴魚精的支鏈胺基酸含量並不如一般市售的鱸魚精來得多。因一般市售的鱸魚精的加工方式更為嚴苛,能夠從肉中萃出更多的支鏈胺基酸及胜肽。

那麽鱸魚精是用什麼特殊加工技術製造的呢?

自家製與工廠製的鱸魚精,作法差在哪裡呢? 圖/GIPHY

超高壓加工所萃出的支鏈胺基酸含量可提高十倍

鱸魚精產品以「品純萃」為例,其採用「超高壓加工[註]輔助酵素水解法」,將處理好的鱸魚肉放入密閉的軟性包材中,加入蛋白分解酵素,同時對它施加 0.2~400 MPa 的壓力(近 4,000 大氣壓)。

如此極大的壓力,增加了酵素與蛋白質的作用及水解效果,使鱸魚精中游離支鏈胺基酸的含量提高至 279 mg / mL。

相較於傳統熱萃取的方式(也就是在家自製的方式)僅能萃出 21 mg / mL 的游離支鏈胺基酸,超高壓加工輔助酵素水解法約提高 10 倍的營養成分萃取,使原料的利用率與產率大幅提升[3, 4, 5]

而這項優秀的萃取技術已經完成了專利申請。

雞精也是似類似的道理,雖然沒有用到 HPP 技術,但它也是透過長達 10 小時「高溫高壓」的隔水蒸煮,將雞肉中長鏈的蛋白質,轉化為人體易吸收的支鏈胺基酸和小分子胜肽[6]

這些嚴苛的加工條件,不是在家自己 DIY 能夠輕易達成的。

白蘭氏有公開其製造加工雞精的流程影片,可點下方的影片直接觀看。

白蘭氏雞精製作過程。/ YouTube

鱸魚精和雞精的營養差異

所以喝魚精或雞精,主要就是在補充支鏈胺基酸,有助於減少運動所產生之身體疲勞。除了可延長肌肉耐力外,亦可降低運動後會造成疲勞的血液生化指標,如肌酸激酶活性、乳酸去氫酶活性及乳酸等,以維持較佳的運動表現[7]

當然上述兩項產品皆通過健康食品「抗疲勞」認證,擁有小綠人標章,筆者依衛生福利部審核通過之健康食品資料查詢,將擁有健康食品認證的鱸魚精與雞精做個比較。

其中雞精除了抗疲勞,還多了一項免疫調節的保健功效,研究發現,支鏈胺基酸也有助於促進免疫細胞增生的功能,或促進吞噬細胞及自然殺手細胞的活性[2]

不過,根據 110 年「超高壓輔助鱸魚副產物之發酵水解物對調節血壓功能性與產品開發的評估」報告,超高壓加工輔助商業酵素水解發酵鱸魚副產物經動物試驗及體外試驗的結果顯示,具有調節高血壓的效果[8]

所以這些蛋白質水解物不只可抗疲勞,還具有免疫調節或調節高血壓的功效,說不定鱸魚精未來還會再多一項「輔助調節血壓功能」的健康認證。

品純萃鱸魚精(左)和白蘭氏雞精(右)的營養標示,兩者皆標示出保健功效之相關成份含量。圖 / 品純萃大買家

哪些人不適合喝魚/雞精?

魚 / 雞精雖然是健康食品,可以補充營養和體力,但衛生福利部食品藥物管理署不建議以下 4 類族群天天飲用:

  1. 慢性腎臟病患者:魚/雞精內含豐富鉀離子與蛋白質,可能加重腎臟負擔。
  2. 高血壓患者:魚/雞精的鈉含量可能偏高,易造成血壓升高。
  3. 痛風患者:魚/雞精屬普林類食品,可能易導致尿酸升高,不利於痛風控制。
  4. 楓糖尿症患者:此種罕見疾病無法代謝支鏈胺基酸,魚/雞精內所含胺基酸可能導致疾病惡化[9]

我有需要喝魚/雞精嗎?

對於健康的人來說,吃魚/雞肉當然比喝魚/雞精更營養。

以蛋白質為例,鱸魚每 100 克有 20 克的蛋白質,魚精則約含有 2.5 克左右;而去皮的雞胸肉每 100 克有 22 克的蛋白質,雞精則約含有 8 克左右,肉的蛋白質含量會比「魚/雞精」高得多。

且吃魚/雞肉可攝取到更多元的胺基酸、維生素 B 群和鐵等更多成分,營養會更完整且更美味。

若覺得疲累,喝「魚/雞精」或許有助於改善疲勞,但如果是長期工作壓力累積的的疲勞,喝「魚/雞精」只能治標,不治本,還是得改變不良的生活習慣才能有效改善疲勞喔!

註解

超高壓加工(high pressure processing, HPP):包括動態高壓加工(High Dynamic Pressure Processing, HDPP)與高靜水壓加工(high hydrostatic pressure processing, HSPP)技術。

前者是運用衝擊波使加工原料更為均勻細碎化;後者是以水作壓力介質對原料進行加壓作用。屬非熱加工技術,優點在於食品風味不會受到高溫破壞,與新鮮原料較為相近,也具殺菌的效果。

目前全球已開發應用的產品包括肉製品、果汁和飲料、蔬菜製品、水產品等種類,但因高壓加工的成本遠高於熱加工技術,故在商業化應用的進展較為緩慢[10]

參考資料

  1. 行政院農業委員會,2009。追溯鱸魚補身的秘密。食農教育資訊整合平臺
  2. 黃桂英、洪可珎、田宛容,2019。雞精~真「滴」營養嗎?。國泰綜合醫院營養通訊 108,1-4
  3. 食力 foodNEXT,2021。【食聞】什麼是「HPP」技術?用來製作鱸魚精,竟能保存更多營養?
  4. 林雨欣、李季樺、林家驊、顏薏貞、莊曜陽、陳冠文,2017。水產食品中超高壓加工技術的應用與發展現況。海大漁推 47,17-32。
  5. 金利食安科技股份有限公司,2017。專利編號 TW I600379 B。臺北市:經濟部智慧財產局。
  6. 白蘭氏,雞精製作過程
  7. Coombes, J. S. and McNaughton, L. S. 2000. Effects of branched-chain amino acid supplementation on serum creatine kinase and lactate dehydrogenase after prolonged exercise. Journal of sport medicine and physical fitness 40: 3 240.
  8. 陳冠文,2022。超高壓輔助鱸魚副產物之發酵水解物對調節血壓功能性與產品開發的評估。計畫編號 MOST 108-2221-E-019-040-MY3。臺北市:國家科學及技術委員會。
  9. 衛生福利部食品藥物管理署,2018。送長輩滴雞精,真能讓他們「補身體」嗎?。食藥好文網。
  10. 吳思節、劉育姍、徐源泰,2021。新型態高壓加工技術-蔬果產品加值應用之新契機。農業科技決策資訊平台
Evelyn 食品技師_96
19 篇文章 ・ 15 位粉絲
一名食品技師兼研發專員,對食品科學充滿熱忱。有鑒於近年發生許多食安風暴,大眾對於食品安全的關注越來越高,網路上卻充斥著不實資訊或謠言。希望能貢獻微薄之力寫些文章,讓更多人有機會認識食品科學的正確知識!想獲得更多食品營養資訊可追蹤作者的粉絲專頁喔!https://www.facebook.com/profile.php?id=100066016756421