Loading [MathJax]/extensions/tex2jax.js

0

4
3

文字

分享

0
4
3

沒有颱風的七月!颱風為何銷聲匿跡?——《科學月刊》

科學月刊_96
・2020/09/11 ・1882字 ・閱讀時間約 3 分鐘 ・SR值 515 ・六年級

-----廣告,請繼續往下閱讀-----

〈本文選自《科學月刊》2020年9月號〉

  • 賈新興/臺灣大學大氣科學系博士,前中央氣象局長期預報課課長,現職為天氣風險管理公司總監。

夏季是颱風出現的季節,往年的 7 月平均會有 3~4 個颱風生成。但今(2020)年 7 月卻罕見地無颱風生成,主要原因是季風槽受太平洋高壓,以及較大的垂直風切所導致。

夏天是颱風的好發季節。圖:Pexels

颱風消失了?生成條件大盤點

每年的 7 月是颱風開始活躍的月份,平均而言,7 月都有 3~4 個颱風生成,從 1951 年以來的颱風生成資料顯示,歷年 7 月最少都有 1 個颱風生成,最多則有 8 個颱風生成,分別是 1971 年 7 月和 2017 年 7 月。

然而今年的 7 月,整個西北太平洋海域卻靜悄悄的,沒有半個颱風生成,到底是發生了什麼事,讓 7 月颱風銷聲匿跡了呢?就讓我們一一檢視颱風生成的條件。

-----廣告,請繼續往下閱讀-----

生成條件一:溫暖的洋面

颱風生成在海面上,廣大的洋面能提供足夠水氣,當水氣蒸發釋放潛熱時,就可以讓颱風有足夠的能量成長。

一般來說,當海水溫度超過 26°C 時,才會產生足夠的水氣。而西北太平洋地區,每月氣候平均的海溫都在 27°C 以上,其中 2 月的平均海水溫度也有 27°C(圖一)。

圖為東經120度~160度,與北緯5度~20度之間的區域,即西北太平洋區域平均每月海溫值。通常海水溫度高於26℃時可以產生足夠的水氣,而往年7月的平均海溫都超過27℃,是颱風形成的重要條件之一。

因此,西北太平洋溫暖的海域,時時刻刻都有足夠的水氣提供颱風生成所需的能量。從西北太平洋區域今年 7 月平均的海水溫度分布圖發現,整個西北太平洋的海溫至少都超過 29°C(圖二)。

溫暖的洋面,雖然提供了足夠的能量,但為什麼颱風仍舊長不出來呢?讓我們再檢視其它颱風生成的動力條件!

-----廣告,請繼續往下閱讀-----

條件二:活躍的季風槽

颱風是個逆時針旋轉的低壓中心。夏季時,當北半球的西南季風,和太平洋高壓所帶來的東風或東北風相遇,兩者所造成的輻合作用,會使低氣壓的漩渦繼續加深,讓風速增強。

當低氣壓的近地面最大風速到達或超過每小時 62 公里或每秒 17.2 公尺時,我們就將它稱為颱風。這個伴隨西南季風和太平洋高壓南側的東風或東北風相遇的地方,通常稱作季風槽,或是俗稱颱風生長的故鄉。

從 7 月大氣低空風場的氣候平均圖,可以看到西南季風和太平洋高壓南側的東風形成的季風槽,從東經 120 度往東南方向延伸至東經 160 度。比較今年 7 月的大氣低空風場(圖三)可以發現,整個季風槽不見了,原來應該是季風槽所在的區域,一整個都被太平洋高壓的東風所佔據了。

而太平洋高壓是個穩定且下沉的空氣,但颱風是個垂直發展的低氣壓,因此,偏強的太平洋高壓讓今年的西南季風無法深入至西北太平洋區域,剷平了颱風的家,也就讓颱風長不起來了。

-----廣告,請繼續往下閱讀-----

條件三:垂直風切不能太大

另外,颱風垂直發展的高度至少可以達到對流層頂的高度,因此當高空風和低空風的風向差異太大時,也就是一般我們所說的垂直風切太大時,就無法讓水氣凝結所釋放出的潛熱更有效地提供颱風發展,造成颱風的垂直發展不好,颱風就不容易生成。

根據7月氣候上的垂直風切分布顯示,在西北太平洋區域的風切平均介於 -10~5之間。但今年 7 月的垂直風切,則介於 -10~10 之間,明顯比氣候平均值高,因此不利於颱風的垂直發展。

都是高壓和垂直風切惹的禍!

從以上颱風的生成條件來看,今年 7 月雖然有足夠的水氣提供的能量來源,但要讓颱風旋轉起來的季風槽,因為太平洋高壓太強,使得季風槽無法向東推進到西北太平洋區域;偏強的太平洋高壓帶來穩定的下沉空氣,連帶的也讓垂直風切太大,颱風更是長不起來!

今年 7 月的太平洋高壓太強,不但讓颱風長不起來,連帶的也是造成臺北創下自 1897 年以來的最高溫紀錄 39.7°C 的原因之一!至於為什麼今年的太平洋高壓如此強大,就是另一篇故事了。

-----廣告,請繼續往下閱讀-----
圖二(上):以往的7月氣候平均海溫分布和大氣 850 百帕(hPa)流線圖,圖中粗黑線為季風槽,此在正常的氣候條件下是有利於颱風生成的。圖三(下):今年7月平均海溫分布和大氣850百帕流線圖。讀者可以發現,今年的海溫分布雖較以往高,有利於颱風出現,但原先的季風槽位置卻被太平洋高壓所佔據,造成颱風無法生成。

〈本文選自《科學月刊》2020年9月號〉

科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3738 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
深海發現大型礦場和「暗氧」!是能源危機的希望還是潘朵拉之盒?
PanSci_96
・2024/09/21 ・2334字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

深海的暗氧:無光環境中的神秘氧氣生成

深海,被譽為地球最後的未開發疆域,隱藏著許多不為人知的奧秘。數千公尺深的海底沉積了數量龐大的多金屬結核,這些礦物因含有大量珍貴金屬,對現代技術,尤其是能源轉型,至關重要。然而,科學家在探索這些結核的過程中意外地發現了一種神秘的現象:暗氧,即在無光的深海環境中生成氧氣的過程。這一發現不僅可能改變我們對海洋生態系統的理解,還可能重新定義地球早期生命起源的故事。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

長期以來,科學界普遍認為氧氣的生成依賴於光合作用。光合作用是植物、藻類及一些細菌透過陽光將水和二氧化碳轉化為有機物並釋放氧氣的過程。這一過程主要發生在地球表層和淺水區域,是維持大氣和海洋中氧氣含量的核心機制。根據這一觀點,只有在陽光能夠到達的區域,氧氣才能被生成。因此,對於深達數千公尺的深海區域,我們的認識是,氧氣主要來自於表層水透過洋流輸送到深處。

然而,深海中缺乏光源,光合作用無法進行,這意味著氧氣在深海中的供應受到限制。雖然洋流能夠在一定程度上將氧氣輸送到深海,但這一過程極其緩慢,往往需要數百年甚至上千年才能完成一次循環。因此,科學家一直認為深海是一個缺氧的環境。

多金屬結核的發現,是新能源的關鍵,還是海洋生態的災難?

在這樣的背景下,科學家對深海進行了更深入的探索,並發現了錳結核(英語:Manganese nodules),又被稱為多金屬結核這一珍貴資源。多金屬結核是富含金屬的岩石,其主要成分包括鈷、錳和鎳等金屬。這些結核廣泛分佈於全球深海區域,尤其是太平洋海域,儲量高達數兆噸。這些金屬對綠色能源技術,如電池生產,具有極高的價值,吸引了全球各國的關注。

-----廣告,請繼續往下閱讀-----

然而,這些結核不僅是地球資源的寶藏,它們還隱藏著另一個重要的發現。2013 年,科學家安德魯·斯威特曼(Andrew Sweetman)在太平洋克拉里昂-克里珀頓區域進行深海研究時,意外地發現,在封閉的深海水域中,氧氣濃度竟然有所增加。這一現象引發了科學界的極大關注。

科學家探索深海的多金屬結核時,意外發現「暗氧」的存在。 圖/envato

暗氧的生成機制

斯威特曼的研究團隊推測,深海中的多金屬結核可能在某些化學條件下,充當了天然電池。這些結核通過電化學反應將水分解為氧氣和氫氣,從而在無光的環境中產生了氧氣。為了驗證這一假設,團隊在實驗室中模擬了深海環境,並確實觀察到氧氣從結核生成的現象。

不過,這一過程並非如想像中簡單。根據實驗數據,某些海底結核表面的電壓僅為 0.95 伏特,卻能夠生成氧氣,這與理論上需要的 1.6 伏特電壓不符。研究團隊進一步推測,這可能與結核的成分有關,例如含鎳的錳氧化物可能起到了催化作用,降低了反應所需的能量。此外,結核表面的不規則排列及空隙可能也促進了電子轉移和水的分解。

暗氧的發現挑戰了我們對氧氣生成的傳統理解。過去我們認為,地球上的氧氣主要來自於光合作用,但這一現象表明,甚至在無光的深海環境中,氧氣也能通過無機物的電化學反應生成。這意味著,我們對於地球早期氧氣循環及生命演化的認識可能存在重大疏漏。

-----廣告,請繼續往下閱讀-----

尤其值得注意的是,多金屬結核的形成需要氧氣,而這些結核大量出現在深海中,是否表明早期地球上就已經存在非光合作用的氧氣生成機制?如果是這樣,暗氧是否可能推動了地球上生命的起源?這一問題仍然未有定論,但暗氧的發現無疑為生命起源的研究開闢了一條新的途徑。

未來的挑戰:開採深海資源還是守護地球最後的「淨土」?

除了科學研究的價值,多金屬結核也吸引了全球對於深海資源開採的興趣。這些結核富含稀有金屬,特別是對電池生產至關重要的鎳和鈷。然而,大規模的深海開採可能會對海洋生態系統造成嚴重破壞。

對於發現的深海資源,是要開採?還是選擇守護海洋生態? 圖/envato

首先,深海採礦可能導致噪音和光污染,破壞深海生物的棲息地。此外,採礦過程中產生的懸浮物可能對海洋生物,尤其是水母等生物造成生理負擔。研究顯示,水母在模擬的採礦環境中會因應對懸浮物而消耗大量能量,這可能削弱其免疫系統並降低生存率。

因此,雖然深海資源的開採看似能解決當前的能源危機,但國際間對此議題的爭議仍然持續。全球已有32個國家支持暫停或禁止深海採礦,呼籲進行更多的生態影響研究以確保環境保護。

-----廣告,請繼續往下閱讀-----

暗氧的發現,不僅為科學研究帶來新的挑戰,也為深海資源的開採提出了更高的要求。在能源危機與生態保護之間,我們需要尋找平衡點。未來的技術或許能夠在不破壞環境的情況下,模擬自然過程生成多金屬結核,從而實現可持續的資源開採。

此外,暗氧現象的發現也為探索外星生命提供了新的思路。當我們在其他行星上發現氧氣時,不一定意味著那裡存在光合作用生物,可能是類似多金屬結核的無機反應在默默進行。這一發現或許將改變我們對地外生命的定義與尋找方式。

深海的秘密仍在不斷被揭開。從暗氧的發現到多金屬結核的開採,這片未開發的疆域將在未來的科學探索與資源爭奪中扮演至關重要的角色。無論是能源危機的解決還是生態系統的保護,我們都應以謹慎且負責任的態度面對這一未知的領域,避免打開潘朵拉之盒。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

5
2

文字

分享

0
5
2
海洋盛宴——抹香鯨落
黑潮海洋文教基金會_96
・2023/11/05 ・3099字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

  • 文 胡潔曦|黑潮海洋文教基金會 鯨豚保育研究員
  • 本文轉載自黑潮海洋文化基金會《海洋盛宴——抹香鯨落》,歡迎喜歡這篇文章的朋友訂閱支持黑潮喔!
圖一、抹香鯨舉尾下潛

編按:本文主要內容與圖片摘錄、翻譯自文獻Three-year investigations into sperm whale-fall ecosystems in Japan,期望在頻繁目擊抹香鯨的 7 月,跟大家分享抹香鯨落的研究。

生存在深海中並非容易的事,由於深海裡缺乏陽光與有機物質,許多生物是藉著海水表層落入深海的有機物質維生。當鯨豚死亡後沉入海底,這段過程、遺體以及過程中所形成的生態系均可被稱為「鯨落」。鯨落可以說是生命的延續之源,而這些殞落至海底的鯨豚有如「金山銀山」,不僅能提供大量的有機物,同時也將許多硫化物帶入海底,造福許多海洋生命,因此也有一句話說:「鯨落,萬物生」。這篇文章透過閱讀國外文獻與整理,希望跟大家分享抹香鯨死亡之後的貢獻!

圖二、世界目前已知的鯨落位置,Implant=人工鯨落  Fossil=鯨落化石  Natural=自然鯨落(Li et al. 2022

故事的開始——集體擱淺在日本的抹香鯨

在 2002 年 1 月,日本的西南海岸發生了一起集體擱淺,共發現了 14 隻抹香鯨,而其中 12 隻抹香鯨被綁上水泥塊後,被當地政府沉入了 Nomamisaki 岬角周邊深度大約兩、三百公尺的海裡,形成了多座人工鯨落。當時有許多學者對於抹香鯨落感到好奇,究竟牠們會吸引來哪些生物?而抹香鯨龐大的遺體會需要花費多長時間分解呢?透過這項研究,或許能讓人們對大型齒鯨落的分解過程更加瞭解。

圖三、編號 12 之抹香鯨在 2003 年之手繪插圖(Fujiwara et al. 2007

事實上,在 2002 年以前,多數的鯨落研究出自於美國的加利福尼亞州外海,並以鬚鯨為主要研究對象,而這些鯨落的深度幾乎都落在一、兩千公尺深,比起這次抹香鯨落群的深度深了非常多。而這次大量出現在日本西南海域的多座人工鯨落有著種種獨特性,包含了:深度淺、是大型齒鯨的鯨落等等,也讓學者們充滿好奇心。

-----廣告,請繼續往下閱讀-----

究竟要如何長期觀察抹香鯨落呢?

閱讀至此,不知道讀者們是否有一項疑問?在兩三百公尺深的海裡,既缺乏可見光,同時也承受著數十倍的大氣壓,在這樣的條件下到底要如何觀察抹香鯨落呢?「ROV——水下探測載具」即是這個研究的一大助手,能夠幫助科學家們突破這些困難,不僅能在深海中蒐集珍貴的影像,也可以完成採集的工作。而在團隊耗費了 3 年運用水下載具追蹤其中的五隻抹香鯨後,他們也有了些有趣的收穫,透過圖四可以看到這段時間抹香鯨的外觀變化。

圖四、編號 12 之抹香鯨 a. 2003 年 7 月  b. 2004 年 7 月  c. 2005 年 7 月利用水下探測載具拍攝影像(Fujiwara et al. 2007

經過數年的追蹤後,研究團隊發現,抹香鯨落歷經分解的速度堪稱飛快!根據 2003 年的鯨落研究,學者將鯨豚分解的過程定義為下述四個階段(Smith and Baco 2003),而第一個階段到最後階段可能會歷時數年甚至到數十年,當鯨豚的遺體越大,可能耗時越長:

  1. 移動清道夫階段(Mobile-scavenger):生物會快速消耗掉鯨豚體表上的肉與脂肪。
  2. 機會主義者階段(Enrichment opportunist):生物開始進駐鯨豚裸露的骨頭及周邊富含營養的底層泥沙上。
  3. 化能自養階段(Sulphophilic):骨骼釋放硫化物,供養海洋中依靠硫化物維生的生物。
  4. 骨礁階段(Reef):在所有有機物質被消耗之後,即會進入骨礁的階段。

註解:上述中文名詞翻譯參考自國家地理頻道及國立海洋科技博物館 鯨落展區。

鯨落最快被消耗掉的部分是身上的肉跟脂肪,而這份文獻研究的 5 座抹香鯨落,肉跟脂肪在經過 1 年之後已幾乎被消耗殆盡;經過 1.5 年之後,抹香鯨落已進入化能自養階段,骨骼開始釋放硫化物質;有些大型鯨落從化能自養階段轉為骨礁期要歷經數十年,根據這項研究發現,部分抹香鯨落竟在 3 年後就能夠進入骨礁期,身上所有的有機質都被消耗殆盡,而這樣的進度相較於過去鬚鯨落的研究是非常快的!研究人員初步推測,可能是因為此處的平均水溫相較其他鯨落研究的海域高,生物分解的速度比較快。

-----廣告,請繼續往下閱讀-----

抹香鯨落上意想不到的生物多樣性

這次的研究共有發現超過百種生物聚集在抹香鯨落周邊,包含軟體動物門、多毛綱與甲殼綱的生物等,在 1.5 年後,貽貝是抹香鯨骨骼上最為豐富的生物類群(圖五)。而抹香鯨落整體的生物多樣性在到達 3.5 年時來到高峰,紀錄中共有八十多種生物出現。

圖五、位在抹香鯨脊椎骨的貽貝(Fujiwara et al. 2007

除了確認抹香鯨的腐化速度之外,研究人員也會在探測載具每次下海時採集底部的泥沙,經分析發現,抹香鯨身體下方泥沙中的硫化物濃度,隨著鯨落分解的時間越久,濃度也會逐漸提高,並吸引來大量仰賴硫化物生存的生物。為了進一步確認周遭環境的生物是否與抹香鯨身上的有差異,研究人員也將抹香鯨 10 米以內與外的生物做了比較,發現鯨落 10 米以外的物種與鯨落上的生物完全沒有重疊,也證明了鯨落的出現確實吸引來許多的生物。

鯨落,萬物生

鯨落的各個分解階段吸引了許多生物造訪,肉與脂肪等在幾個月內快速地被消耗掉,有機碎屑也能讓周邊海底的富含養分,而抹香鯨骨能釋放硫化物數年,部分大型鯨甚至可能長達數十年。「鯨落,萬物生」,在鯨豚生命的最後一章,牠們的身體緩緩沉入海底,成為了大量生物的食物來源。至 2022 年為止,目前世界已知鯨落共有約 160 座,也希望隨科技進步,人們能更深入認識鯨落為環境帶來的影響。

影片分享:美國於2019年在NOAA保護區發現的深海鯨落

-----廣告,請繼續往下閱讀-----
  1. Fujiwara, Y., Kawato, M., Yamamoto, T., Yamanaka, T., Sato-Okoshi, W., Noda, C., Tsuchida, S., Komai, T., Cubelio, S.S., Sasaki, T., Jacobsen, K., Kubokawa, K., Fujikura, K., Maruyama, T., Furushima, Y., Okoshi, K., Miyake, H., Miyazaki, M., Nogi, Y., Yatabe, A. and Okutani, T. (2007), Three-year investigations into sperm whale-fall ecosystems in Japan. Marine Ecology, 28: 219-232.
    https://doi.org/10.1111/j.1439-0485.2007.00150.x
  2. Li Q, Liu Y, Li G, Wang Z, Zheng Z, Sun Y, Lei N, Li Q and Zhang W (2022) Review of the Impact of Whale Fall on Biodiversity in Deep-Sea Ecosystems. Front. Ecol. Evol. 10:885572. doi: 10.3389/fevo.2022.885572
  3. https://oceanservice.noaa.gov/facts/whale-fall.html
  4. https://natgeomedia.com/environment/article/content-6001.html
  5. https://www.soest.hawaii.edu/oceanography/faculty/csmith/Files/Smith%20and%20Baco%202003.pdf
  6. http://hi.people.com.cn/BIG5/n2/2020/0409/c228872-33936490.html
-----廣告,請繼續往下閱讀-----
黑潮海洋文教基金會_96
5 篇文章 ・ 2 位粉絲
  黑潮海洋文教基金會,1998年於花蓮成立,是臺灣第一個為「鯨豚與海洋」發聲的民間非營利組織。最初以鯨豚調查為開端,多年來深耕於海洋議題、環境教育與科學調查,如同一股陸地上的黑潮洋流溫暖而堅定,期許每個臺灣人的心中都有一片海洋。