0

1
0

文字

分享

0
1
0

超巨大機器人科學嗎?那我們來說說《重甲機神》到底有多重|重甲科不科?04

PanSci_96
・2019/11/26 ・2304字 ・閱讀時間約 4 分鐘 ・SR值 534 ・七年級

-----廣告,請繼續往下閱讀-----

大家有沒有想過,為什麼我們人類的身高,大致上就是一公尺多到兩公尺,體重就是幾十到百來公斤?在各種神話、傳說、科幻、奇幻故事裡面,以同樣比例與型態巨大化或微小化的人類,有可能存在嗎?

像「重甲機神Baryon」這樣的巨大人形機器人的設定,合乎物理學嗎?

這個問題早在四百多年前,有「現代科學之父」的物理大師伽利略就已經在他的「兩個新科學之間的對話」(Discourses and Mathematical Demonstrations Relating to Two New Sciences)中討論過。

伽利略以及其著作「兩個新科學的對話」。圖/維基百科

簡單的說,當動物等比例放大時,若「長度」(如身長)增加為10倍,則體積會變成10的三次方,也就是1000倍,由於構成身體的成分大致不變,密度應該相同,所以體重也會變成1000倍。

-----廣告,請繼續往下閱讀-----

然而動物是以骨骼與肌肉來支撐自身的體重,最主要的是大腿骨。骨骼的支撐力又與其截面積成正比,長度增加10倍,骨骼截面積乃至於支撐力將只會增加100倍,結論是如果是「等比例放大」的話,動物的身體強度將無法支撐自身的體重,所以我們看到現存體型較巨大的動物,如大象,骨骼變粗的程度必須大於變長的程度,也就是大型動物的體型比例會比較「粗、短」,這種現象稱為「異速生長」(allometry)。

體重可達數噸的大象(左)與體重約三公斤斑尾虎鼬(右)的骨骼,型態上有不少相似之處,但是比例上大象的骨骼(尤其是大腿骨)必須比鼬鼠粗壯很多,不能以等比例放大。

所以如果人要變成「巨人」,身體的比例與構造又不變的話,是會被多出來的體重壓垮的,硬要「變身」的話,有兩個選擇,一個是要變成矮胖體型,增加各種身體構造的截面積,另一個就是像「進擊的巨人」裡面的50公尺的超大巨人一樣,密度極低,所以體重沒有以身高的三次方成長,不會還沒去爬牆就先自己把自己給壓垮了。

生物的世界中大體上要符合上述的「平方、立方法則」,不過純粹是「人造物」的巨大機器人又是如何呢?讓我們先來看看「先聖先賢」們的例子。首先當然就是從「人類坐在體內駕駛的巨大機器人」的老祖宗「無敵鐵金剛」開始囉!

指揮艇——組合。圖/imdb

無敵鐵金剛的身高18公尺,大約是一個相當高大的成年人的十倍,先假設這個人體重80公斤好了。因為鐵金剛是「人形」機器人,所以就當它是個等比例放大十倍的人類,體積就是人類的1000倍,如果鐵金剛是跟人類一樣的血肉之軀的話,體重就會是80公噸。無敵鐵金剛有「黑鋼之城」的鋼鐵軀體,應該比人類重吧!

-----廣告,請繼續往下閱讀-----

剛好相反,根據官方設定資料,鐵金剛的體重只有20公噸,換算成密度(每單位體積的質量),只有人體的1/4,人體與水密度相仿(1 g/cm3),所以把人丟進水裡會是「載浮載沈」,這麼一算,無敵鐵金剛的密度只有0.25 g/cm3,跟軟木塞差不多,以後乾脆改稱「無敵軟木塞金剛」好了!

當然材質輕盈也有很多好處,動作可以比較靈活快速,不過根據物理學中的碰撞理論,它的招牌攻擊絕招「金剛飛拳」,或是直接用身體衝撞,就會因為質量不足而威力大打折扣了!

算完密度,軟木塞危機在心中揮之不去。圖/imdb

如果看近一點的作品,而且是跟重甲機神一樣在水中戰鬥的巨大機器人,那當然非《環太平洋》中的「吉普賽危機」(Gipsy Danger)莫屬了。

吉普賽危機身高79公尺,體重1980公噸,一算密度,0.29 g/cm3 挖咧又是個軟木塞!這些做巨大機器人作品的人,是有多愛軟木塞啊!密度這麼低要怎麼沈入海底戰鬥呢?這就要有模仿潛水艇的機制了,機體內部必須有71% 以上的體積是「空的」,可以注入海水,就能讓整體密度高於水而下沈了。

-----廣告,請繼續往下閱讀-----

為了避免重甲機神變成另外一個軟木塞,我們在決定了身高是80公尺之後,不是先訂體重,而是先決定密度。最佳的參考對象,當然就是現役的潛水艇了。

既然有前車之鑑,我們決定把最佳的參考對象改為潛水艇。

以美國的「俄亥俄級」核子潛艦來說,全長170公尺,潛航深度240公尺,水上排水量為16,764噸,潛航排水量為18,750噸。由物理學中的浮力原理「潛航潛艦所受浮力=潛艦體積×海水密度(1.03 g/cm3)」可知,潛艦的總體積約為18204立方公尺。另一方面,「浮於水面上之潛艦所受浮力=潛艦本體重量」,即為16,764噸,所以俄亥俄級潛艦的密度為0.92 g/cm3。以此為參考基準,我們將重甲機神密度訂為0.92 g/cm3

俄亥俄級核子潛艦的初號機「俄亥俄號」,可搭載24枚「三叉戟I型」彈道飛彈,每顆飛彈可以攜帶6個核彈頭,可說是毀滅性的武器,也因此成為冷戰時期為背景的軍事電影中的常客,例如東尼‧史考特導演,丹佐‧華盛頓主演的《赤色風暴》(Crimson Tide, 1995)與詹姆斯‧卡麥隆執導,艾德‧哈里斯主演的《無底洞》(Abyss, 1989)都有登場。

又高又帥的重甲機神Baryon,身高80公尺,體重達6500公噸,這次不會變成軟木塞了喔!

我們還是以一個身高180公分,體重80公斤的人放大來看,由於人體密度大約與水相等,所以此人的體積為80公升。重甲機神身高80公尺,為人類的44.4倍,體積為44.4的三次方,也就是8萬8千多倍,約為7000立方公尺,乘上密度0.92 g/cm3,故體重為6500公噸,內部的空間至少要能注水超過500公噸,就能讓密度比水還高而往下沈。

-----廣告,請繼續往下閱讀-----

透過注水量的調節,就可以讓重甲機神自由自在的浮出水面或沈入海底了。當然,在機械的設計上就要有相關的「注水—排水」裝置,變得更複雜了,以後如果要公布內部構造的設定圖的話,設計師可要多花一番腦筋囉!

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
肺癌不只是抽菸惹禍!PM2.5、油煙、腸道菌失衡全都中,TW01 益生菌提升肺部保護力!
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/07 ・2808字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文與 江欣樺營養師 合作,泛科學企劃執行。

肺癌連四冠 成為台灣十大癌症之首的背後原因

根據衛福部國民健康署於 2024 年 12 月公布的最新數據,肺癌已穩居台灣十大癌症榜首。這不只是發生人數最高,更同時擁有死亡率最高、晚期發現比例最高、醫療費用最高等三項不名譽的紀錄,可說是名副其實的「癌症四冠王」。

肺癌不只是台灣十大癌症榜首,更同時是發生人數最高、死亡率最高、晚期發現比例最高、醫療費用最高的疾病。圖 / unsplash

肺癌新確診人數在過去十年中持續上升,尤其在 2022 年 7 月政府推動肺癌篩檢政策後,越來越多過去未被發現的病例被篩檢出來。這項針對高風險族群的篩檢措施,有助於提高早期發現的比例,但也凸顯出台灣肺癌潛藏病例數量之大。

過去,大腸直腸癌曾長期穩居癌症發生率第一位,如今退居第二位,仍值得高度關注。不過,肺癌的快速上升與普及化趨勢,則反映出不僅吸菸者受影響,越來越多不吸菸卻罹患肺癌的人也在增加,使得肺癌防治策略面臨新的挑戰。

-----廣告,請繼續往下閱讀-----

基因變異遇上空污 PM2.5:台灣肺癌高發生率的雙重危機

在肺癌逐年升溫的背後,科學家持續探究其背後的成因。其中,一篇刊登於《Cell》2020 年 7 月號的研究引起了國際關注。這項研究由中央研究院團隊主導,聯合臺灣大學、臺北醫學大學及臺中榮總等單位共同完成,發現一種名為「APOBEC 變異」的基因特徵,可能與臺灣女性罹患肺癌發生率偏高有關。該變異會影響細胞內 DNA 的穩定性,使其更容易累積損傷並進一步發展為癌症,這項研究也讓人們開始重新思考肺癌與遺傳體質之間的關聯性。

除了基因之外,環境因素依然是不可忽視的關鍵。2023 年 4 月《Nature》的一篇封面故事則指出,空氣污染對肺癌的影響,可能不是直接造成新的 DNA 突變,而是透過誘發「慢性發炎」的機制,促使原本已帶有變異的細胞被「喚醒」並增殖形成腫瘤。這如同將原本處於沉睡狀態的壞細胞,因長期的空氣污染刺激而被激活。

由此可見,預防癌症的策略或許不應僅著重於防止癌細胞的「產生」,更重要的是避免讓它們「活化」。這也代表預防策略的重點,正從過去單純的「避免基因突變」,轉向同時「減少發炎反應」。而導致這些發炎與突變的因素,其實仍然是我們熟悉的環境污染源,例如 PM2.5、香菸二手煙、油煙與室內空氣品質等。

值得注意的是,這種風險機制並不只侷限於肺癌。大腸直腸癌的發生同樣與基因變異及環境因子的交互作用密切相關,顯示癌症成因不再是單一來源,而是多層次、需整合多面向來防範的健康議題。

-----廣告,請繼續往下閱讀-----

遠離肺部發炎:從廚房油煙到腸道保健的肺癌預防關鍵

在空氣品質頻頻亮紅燈的臺灣,要保護肺部健康,關鍵就在於避開引發發炎反應的因子。國民健康署明確指出,「吸菸」仍是肺癌最主要的危險因子,佔所有患者的七至八成。然而,非吸菸者也絕不能掉以輕心,二手菸、交通廢氣、PM2.5 等空氣污染物,同樣是導致肺部慢性發炎的重要元凶。

肺癌元凶不只有吸菸,空污也是一大原因。圖 / unsplash

此外,有一項常被忽略卻與肺癌風險高度相關的危險因子,來自我們每天的廚房——烹飪油煙。國民健康署指出,臺灣女性長期暴露於烹飪油煙中,罹患肺癌的風險不容忽視,尤其是在長時間未使用抽油煙機的情況下。國民健康署指出,未使用抽油煙機的非吸菸女性,其肺癌風險竟比有使用者高出約8.3倍。這項數據提醒我們,日常看似平常的行為,可能正是健康風險的關鍵所在。

除了遠離風險因子,江欣樺營養師也提出,從「腸道」著手是提升免疫力、降低全身發炎反應的新方向。維持腸道健康不僅能調節整體免疫系統,更與肺部的發炎反應息息相關。以益生菌株 TW01 為例,研究指出它能有效抵達腸道內的免疫關鍵區域——貝爾斑(Peyer’s patch),調節 T 細胞中 TH1 與 TH2 的平衡,有助於緩解過度的免疫反應或過敏現象。

此外,TW01 菌株也能促進B細胞分泌 IgA 免疫球蛋白,強化腸道黏膜層的保護力,減少「腸漏」的發生,進而間接保護其他器官免受炎症的侵擾。更令人關注的是,該菌株亦在研究中展現抑制大腸癌細胞的潛力,對於目前台灣排名第二的大腸直腸癌,可能提供另一層預防上的助力。

-----廣告,請繼續往下閱讀-----
國民健康署指出,未使用抽油煙機的非吸菸女性,其肺癌風險竟比有使用者高出約8.3倍。圖 / shutterstock

TW01 益生菌對抗肺癌:從腸-肺軸線降低空污引發的肺損傷

腸道與肺部之間存在一條重要的生理連結,稱為「腸-肺軸線」。今年初發表於《Nutrients》期刊的一項臺灣研究指出,TW01 益生菌能透過腸-肺軸線機制,從腸道出發,間接守護我們的肺部健康。研究結果顯示,TW01 益生菌有三大關鍵作用:首先,有助於減輕空污 PM2.5 所造成的肺損傷;其次,可降低肺部發炎物質(如 TNF-α、IL-6、IL-10 等);第三,降低肺纖維化,主要透過調節 TGF-β1/Smad 信號傳導來達成。

其實,腸道與其他器官之間也存在類似的「軸線」關係,例如腸-腦軸線影響情緒與睡眠,腸-皮膚軸線與皮膚狀況密切相關。這些軸線代表著腸道菌叢的健康與代謝活動,很容易影響到其他器官。反過來,器官之間的影響同樣是雙向的——空污中的 PM2.5 不只損害肺部,也會擾亂腸道菌相,甚至引發「腸漏症」,讓體內毒素再次回到肺部,進一步惡化發炎反應。

預防肺癌、對抗 PM2.5,從 TW01 益生菌構築更健康的防線

面對癌症這個複雜的敵人,我們或許無法改變基因,但我們可以從每天的選擇中,建立更堅固的健康防線。越來越多研究顯示,身體各個器官並非獨立運作,而是彼此緊密串聯——肺與腸的關聯,正是一個明顯的例子。從腸道微生物的平衡,到肺部的免疫狀態,生活中的每一項小習慣,其實都可能悄悄影響著我們罹癌的風險。

空氣品質意識、健康飲食內容、規律運動習慣、定期健康檢查,這些看似平凡的日常行為,正是最切實且有效的預防行動。特別在台灣,肺癌與大腸癌長期高居發生率前兩名,更提醒我們——預防不能等到症狀出現才開始,而應該從日常做起。

-----廣告,請繼續往下閱讀-----

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
任意添加光學元件 為研究打開大門的無限遠光學系統
顯微觀點_96
・2025/01/30 ・1763字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

圖 / 顯微觀點

顯微鏡在科學發展中扮演關鍵的角色,讓人們得以突破肉眼的限制,深入微觀的世界探索。而隨著時間推進,顯微技術也日新月異,其中現代顯微鏡設計了所謂的「無限遠光學系統」(Infinity Optical Systems),更是提升了顯微鏡性能和突破過去的觀察瓶頸。因此主要的顯微鏡製造商現在都改為無限遠校正物鏡,成為顯微鏡的技術「標配」。

1930 年代,相位差顯微技術出現,利用光線在穿過透明的樣品時產生的微小的相位差造成對比,使透明樣本需染色就能更容易被觀察。1950 年左右,則出現使用兩個 Nomarski 稜鏡,將光路分割再合併產生 干涉效應的 DIC 顯微技術,讓透明樣本立體呈現、便於觀察。

在傳統「有限遠系統」中,單純的物鏡凸透鏡構造,會直接將光線聚焦到一個固定距離處,再經過目鏡放大成像。也因此過去顯微鏡的物鏡上通常會標示適用的鏡筒長度,通常以毫米數(160、170、210 等)表示。

-----廣告,請繼續往下閱讀-----

而在過渡到無限遠校正光學元件之前,選用的物鏡和鏡筒長度必須匹配才能獲得最佳影像,且大多數物鏡專門設計為與一組稱為補償目鏡的目鏡一起使用,來幫助消除橫向色差。

但是問題來了!當這些光學配件要添加到固定鏡筒長度的顯微鏡光路中,原本已完美校正的光學系統的有效鏡筒長度大於原先設定,顯微鏡製造商必須增加管長,但可能導致放大倍率增加和光線減少。因此廠商以「無限遠」光學系統來解決這樣的困境。

德國顯微鏡製造商 Reichert 在 1930 年代開始嘗試所謂的無限遠校正光學系統,這項技術隨後被徠卡、蔡司等其他顯微鏡公司採用,但直到 1980 年代才變得普遍。

無限遠系統的核心在於其物鏡光路設計。穿透樣本或是樣本反射的光線透過無限遠校正物鏡,從每個方位角以平行射線的方式射出,將影像投射到無限遠。

-----廣告,請繼續往下閱讀-----
有限遠(上)和無限遠(下)光學系統的光路差別
有限遠(上)和無限遠(下)光學系統的光路差別。圖 / 擷自 Optical microscopy

透過這種方法,當使用者將 DIC 稜鏡等光學配件添加到物鏡、目鏡間鏡筒的「無限空間」中,影像的位置和焦點便不會被改變,也就不會改變成像比例和產生像差,而影響影像品質。

但也因為無限遠系統物鏡將光線平行化,因此這些光線必須再經過套筒透鏡在目鏡前聚焦。有些顯微鏡的鏡筒透鏡是固定的,有些則設計為可更換的光學元件,以根據不同實驗需求更換不同焦距或特性的透鏡。

除了可以安插不同的光學元件到光路中而不影響成像品質外,大多數顯微鏡都有物鏡鼻輪,使用者可以根據所需的放大倍率安裝和旋轉更換不同的物鏡。

傳統上一旦更換物鏡,樣本可能就偏離焦點,而須重新對焦。但在無限遠光學系統的設計中,物鏡到套筒透鏡的光路長度固定,也就意味著無論更換哪個物鏡,只要物鏡設計遵循無限遠系統的標準,光路長度和光學路徑的一致性得以保持。

-----廣告,請繼續往下閱讀-----

因此無限遠光學系統也有助於保持齊焦性,減少焦距偏移。這對需要頻繁切換倍率的實驗操作來說,變得更為便利和具有效率。

不過使用上需要注意的是,每個顯微鏡製造商的無限遠概念都有其專利,混合使用不同製造商的無限遠物鏡可能導致不正確的放大倍率和色差。

改良顯微技術,使研究人員能夠看到更精確的目標;以及如何讓更多光學配件進入無限遠光學系統中的可能性仍然在不斷發展中。但無限遠光學系統的出現已為研究人員打開了大門,可以在不犧牲影像品質的情況下輕鬆連接其他光學設備,獲得更精密的顯微影像。

參考資料:

  1. M. W. Davidson and M. Abramowitz, “Optical microscopy”, Encyclopedia Imag. Sci. Technol., vol. 2, no. 1106, pp. 120, 2002.
  2. C. Greb, “Infinity Optical Systems: From infinity optics to the infinity port,” Opt. Photonik 11(1), 34–37 (2016).
  3. Infinity Optical Systems: From infinity optics to the infinity port
  4. Basic Principle of Infinity Optical Systems
  5. Infinity Optical Systems

延伸閱讀選擇適合物鏡 解析鏡頭上的密碼

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
28 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

2
0

文字

分享

0
2
0
一年有幾週?背後竟隱藏著宗教、政治與天文觀測的紛爭?為何決定一年有幾週如此大費周章?
F 編_96
・2025/01/06 ・3256字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

每到歲末或年初時,大家常會打開新的行事曆,做新一年的計畫。從直覺來看,我們常以「一年有 365 天」或「閏年 366 天」的概念衡量時間。如果將 365 天除以 7(每週 7 天),得到的答案約是 52 週又 1 天;若遇到閏年(366 天),則是 52 週又 2 天。換句話說,無論是一般年還是閏年,一年都不可能整除,剛好 52 週,總要多出 1 或 2 天。

對多數人而言,這種「約 52 週加 1 天」似乎是再自然不過的事。然而,實際上人類在訂定「一年幾天」與「多久閏一次」的規則上,一路走來經歷了漫長探索與爭議。自古以來,不同文明先後採用依太陽或月亮運行週期為基準的曆法;儘管最終各國大多轉而採行以太陽週期為主的格里高利曆(Gregorian calendar),但並非一蹴可幾,而是一段包含宗教、政治、天文觀測的故事。

一年感覺很長,其實也就 52 週(+1 或 +2 天)。 圖/unsplash

從洪荒到曆法:人類如何決定時間單位

追溯人類對時間的測量,可遠至一萬多年前:考古發現顯示,澳洲原住民或新石器時代的部落,便會根據太陽、星象的移動,來推算季節變遷與祭典進行。後來,隨著農業興起,區分一年四季並掌握耕作節氣成了首要需求,日曆的概念亦逐漸成型。

  • 宗教推力:古埃及與蘇美等文明常需要在特定時刻進行祭祀或儀式,故對晝夜長短、月相週期乃至每年太陽位置頗為講究。
  • 日月曆法之爭:有些文明依月亮週期(約 29.5 天)為月數基礎,稱「陰曆」;也有採納太陽年度(約 365 日)稱「陽曆」,或折衷稱「陰陽合曆」。

就週數而言,古人或許更關注「每個月有幾天」與「一年有幾個月」,而非「一年到底可以分成幾週」。然而,週的概念在很多宗教與文化裡同樣重要,如猶太教及後來的基督宗教都強調「七天」一週之體系,用於安息日或祈禱輪替。因此,當今的一年分成「52 週多幾天」,也綜合了宗教傳統與太陽年的計算。

-----廣告,請繼續往下閱讀-----

朱利安曆失準?教宗格里高利的關鍵校正

現行國際普及的格里高利曆,最早源自於古羅馬朱利安曆(Julian calendar)。公元前 46 年,凱撒大帝(Julius Caesar)在天文學家蘇西根尼斯(Sosigenes)建議下,設定一年 365.25 天,並每四年加一天作閏年。看似精妙,但實際上太陽年長度約是 365.2422 天,每年多出的 0.0078 天、也就是大約 11 分鐘,雖然聽來微乎其微,卻在一段世紀之後累積成巨大的誤差。

對天主教而言,耶穌受難與復活日期影響了整年眾多教會節日。若曆法逐漸偏移,像復活節等慶典便逐年脫節了季節原意。至 16 世紀末時,朱利安曆已誤差累積多達 10 天。教宗格里高利十三世遂在 1582 年宣佈大刀闊斧改革:10 月 4 日的次日直接跳到 10 月 15 日,並規定「百年年份如若非 400 整除,則不列為閏年」。如此,將一年的平均時長微調至更貼近 365.2422 天。

一些國家如法國、西班牙和義大利等迅速採納「新曆」,但英國則因宗教立場等因素拖延至 1752 年才肯切換。中國雖在 1912 年起算是「正式認可」,但廣泛實施延至 1929 年。這樣因曆制修整所產生的「失落日子」,在各國各時期都曾引發不小民眾抗議與混亂,但如今我們所熟知的「一年 365(或 366)天、每週 7 天」全球大體一致,正是拜此改革所賜。

教宗格里高利十三世的改革,成了日後我們熟知的「一年 365(或 366)天、每週 7 天」。圖/unsplash

一年是 52 週又幾天?

回到主題:基於現在格里高利曆的「年」長度,一般年 365 天,閏年 366 天。因此只要把 365 ÷ 7 = 52 餘 1,或 366 ÷ 7 = 52 餘 2。這樣看來,52 週是某種近似值,再加上 1 或 2 天則填補了週數的縫隙。有趣的是,人們日常生活中往往不深究這些「多一天」會落在哪裡,反而透過各國法定假期、節日分布或企業排班,來靈活因應。

-----廣告,請繼續往下閱讀-----

不管日曆如何安排,七天一週與太陽一年的 365.2422 天本質上不會整除。因而實際執行層面,才衍生「一月有 4 週多幾天」或「一年 52 週多幾天」。而根據格里高利曆規範,每 4 年遇到 2、6 結尾者時通常加閏日;再以百年刪除閏日,唯獨 400 年倍數的百年不刪。如此 400 年中有 97 個閏年,非 100 次,年均值約 365.2425 天,與真實太陽年極為貼近。

再度修正:米蘭科維奇曆與東正教的調整

與此同時,一些東正教教會或科學家,仍曾嘗試做更精準的校調。例如 1923 年出現的「米蘭科維奇曆」,由塞爾維亞天文學家米蘭科維奇(Milutin Milanković)提出:

  • 改進閏年規則:如果該年不是 100 的倍數,則正常計算;若是 100 的倍數,就得看除以 900 所餘下的數是否為 200 或 600,若是,則跳過閏年。
  • 應用範圍:此一方案被視為更貼近天文年,但只有部分東正教教會接納實施,對全球世俗時間並未產生重大影響。

有趣的是,若米蘭科維奇曆被大規模推廣,平均一年長度會更符合真實太陽年,但世界各國基礎已扎根於格里高利曆,也不太可能再冒然重新改革。畢竟,每次曆改都會使官方紀錄、民間活動和宗教節慶產生協調難題,且大眾的社會慣性早已落實在現行制度裡。

時間計算背後宗教、政治與科學的糾纏

我們眼中的「一年 52 週又 1~2 天」其實是長期政治、宗教、科學交互影響的產物。數世紀以來,不同文明為祭祀、政令或貿易往來而反覆調整曆制;伴隨天文觀測與數學演算的精進,人們才一步步從古老的朱利安曆轉到格里高利曆,避免每年多出一些看似微不足道的分鐘數量,卻逐漸累積成整天的時差。在這些爭論、改革中,週數雖非爭議焦點,但它一同被帶入今日世界,最終定型為「一年 = 52 週 +1(或 2)天」。

-----廣告,請繼續往下閱讀-----
儘管目前的曆法存在些許時差,但已是目前全球通用的計日方式。圖/unsplash

另一方面,有些文化或地區在現代仍維持傳統的陰曆、陰陽曆搭配格里高利曆,如中國農曆可見節氣和月相紀錄;穆斯林世界則使用純陰曆,並以其方法計算齋戒月、開齋節等。全球一體化雖使格里高利曆成為主流,但不代表其他紀年方式就此消失。在各種曆法交錯下,「一週幾天,一年多少週」或許並非普世絕對,卻是人類根植於宗教、科學與經濟行為下逐漸形成的共識。

踏入 21 世紀,隨著全球高度互聯與商業活動頻繁,幾乎所有國際公約、金融市場、交通規劃都以格里高利曆為基準。此種高度一致有利經貿往來與跨國協作,但究其根源,私底下仍有一種「不完美但通用」的妥協性質。時至今日,要再度大規模推行新的曆制(比如米蘭科維奇曆)的機率微乎其微。

也許未來某天?

不管你是否每天翻開行事曆查看日期,或是習慣智慧型手機提醒,在全球主流價值裡,「一年 52 週又 1 或 2 天」已成幾乎不容置疑的常識。

也許未來仍有理論家建議以更精準的曆法取代格里高利曆,讓一年日數更貼合天文常數。然而,歷史經驗告訴我們,此種改革勢必付出巨大社會成本,還要面對全球龐雜的政治協調。最終,我們大概仍會安於現在這個略有瑕疵卻普及度最高的制度,繼續說著「一年有 52 週」,並在每年最後那 1 或 2 天裡,慶祝跨年、增添慶典。

-----廣告,請繼續往下閱讀-----

不論如何,時間的運行永不止息;地球仍舊繞著太陽旋轉,帶給我們四季遞嬗與新的挑戰。或許最重要的並非究竟一年「整除」了多少週,而是我們如何在這既定框架下規劃生活,在有限的時間裡,拓展出新的生活軌跡。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。