近年來,一股健身風氣吹進了台灣,讓蛋白補充品的市場更加蓬勃發展。定睛一看,除了多了很多阿壯與翹臀妹以外,各大量販、電商、超市與代購也出現了琳瑯滿目、口味多變的乳清蛋白產品。
產品口味從早期的草莓、巧克力與香草三大天王,到現在相當風潮的抹茶、奶茶、摩卡、香蕉、芒果、起司蛋糕與優格等;產品形式也從單純的沖泡粉,出現了零食棒、點心塔等烘焙產品。讓下班還要衝健身房打卡的網紅們,有了更便利快速補充營養的選擇。
乳清蛋白珍貴的原因是甚麼?
乳清原料主要來自於起司工廠的副產物。不過在台灣,酪農生產以供應鮮乳為主,並無大量生產起司的工廠,因此台灣品牌如戰神、All in 和 Sparkprotein 等,雖然產地在台灣,使用的乳清蛋白還是需向國外購買,再運至台灣調配,因此關於乳清蛋白的製造流程,台灣能提供的資料較少。這樣物以稀為貴,進口還要加上關稅,讓乳清蛋白在台灣價格不是那麼美麗,也讓人萌生直接吃肉不就好了的想法。要補充蛋白質,除了乳清蛋白外,當然也有蛋粉、大豆蛋白、碗豆蛋白及麻蛋白等商品供選擇,還有便利商店就買的到的即食雞胸肉、蛋等。
不過除了補充蛋白質之外,乳清蛋白還有些其他的效果讓人難以捨棄。Bear 等人在 2011 年發表的研究顯示,每天補充兩份乳清蛋白(共計 56 公克蛋白質),就算只是每天做個深呼吸運動,也比吃具有相同蛋白質含量的大豆蛋白、或相同熱量的麥芽糊精,更有降體脂的作用並;乳清蛋白在其他研究中,也出現配合其他條件能即時提升肌肉質量,或調節血糖、改善第二型糖尿病的效果 (Frid et al, 2005;Mortensen et al, 2012)。
其實,乳清蛋白一開始是各大起司工廠的燙手山芋、會造成環境汙染的廢棄物。到底後來又經過了哪些處理過程,讓乳清蛋白翻身,成為現在的廣告裡,所謂「牛奶中最珍貴的成分」,一家賣得比一家貴呢?
從廢棄物變身為商品
回過來從頭講起,牛奶中的蛋白主要分為酪蛋白與乳清蛋白,各佔 80% 和 20%。在起司加工的過程,隨著酸或凝乳酶加入,酪蛋白會凝結成塊,並排出大量的淡黃色液體,也就是乳清。乳清中有 93% 是水,若直接加熱乾燥,耗能耗時,且蛋白含量僅佔乳清乾重的 13%,早期多直接廢棄或作為飼料。
另外,也因為營養價值與水分含量高,容易受微生物汙染腐敗,發酵產生乳酸,破壞乳清營養價值並產生異味。如果直接排放也會造成河川優養化等問題,所以從 1950 年代開始,隨著大型起司工廠設立,乳清蛋白的去處變成急待解決的難題。
但後來,透過應用膜過濾技術,不但解決了廢棄物處理問題,也加速了乳清蛋白的各式產品誕生。不管是正在喝,還是開始要選購乳清蛋白的人一定會注意到,除了口味之外,乳清蛋白的品項相當多樣,還會再細分成濃縮乳清蛋白(whey protein concentration)、分離乳清蛋白(whey protein isolate)還有水解乳清蛋白(whey protein hydrolysate),以及近期大廠還推出源型乳清蛋白(未變性乳清蛋白)註1。
而這些產品之間始終存在一股微妙的價差,蛋白質含量也有些不同,此外還會混合多種來源的蛋白改變組成,這些也讓購買乳清蛋白變得難單純以蛋白純度做購買單價的考量。
這麼多種多樣的乳清蛋白產品,其實差別的祕密都藏在工廠裡。乳清蛋白只是個統稱,除了營養與口味等因素外,最主要差別在於各家工廠都有自己生產乳清蛋白的小撇步。而乳清的副產品也不只有乳清蛋白而已,還有乳糖和其他具生理活性的特殊成分,它們也因為作為配方食品、保健食品、護膚產品和牙膏的原料而漸漸受到重視。廠商調整產品線到最適化的生產方式後,就演變成現在市面上百家爭鳴,各有特色的乳清蛋白產品。
乳清蛋白的主要來源與組成
要了解工廠生產的流程如何影響最終產品,就要從乳清蛋白的成份說起。
乳清蛋白主要分成 β-乳球蛋白(β-lactoglobulin)、α-乳白蛋白(α-Lactalbumin)、血清白蛋白(serum albumin)、免疫球蛋白(immunoglobulins),與一些次要蛋白質,如:乳鐵蛋白(lactoferrin)、糖巨肽,及多種生物活性胜肽與生長因子等。每種蛋白質的胺基酸組成不同,具有各自的營養保健功能。市面上販售的乳清蛋白的蛋白組成比例會依照加工方式有所變動最多以有五種蛋白質為主,其餘的蛋白質皆屬微量存在,近年也有研究希望能將乳清中各種蛋白各別分離,做出供特殊用途之產品。
不過本文中介紹這些蛋白質重點不在討論營養價值,而是其物理化學特性上的差異,這是將蛋白質從乳清中分離的基礎。隨胺基酸組成與數量不同,分子大小會有不同,當分子量達兩倍差異時,即使是非專一性的膜過濾也可以達到分離效果。此外不同蛋白的立體結構、表面疏水特性及對熱的穩定度不同,商業上也會利用加熱讓蛋白質結構展開變性,或改變疏水性,或用酵素水解蛋白,以達到分離目的。
乳清中常見蛋白之物化特性
蛋白質 | 分子量 (Da) | 等電點 | 乳清中佔比 (%) |
乳清中攜 帶電荷 |
相關離子 交換膜 |
β乳球蛋白 | 183,000 | 5.35-5.49 | 40-55 | – | 陰離子 |
α乳白蛋白 | 14,000 | 4.2-4.5 | 11-20 | – | 陰離子 |
免疫球蛋白 | 15,000- 1,000,000 |
5.5-8.3 | 8-11 | + | 陽離子 |
血清蛋白 | 69,000 | 5.13 | 4-12 | – | 陰離子 |
乳鐵蛋白 | 77,000 | 7.8-8.0 | 1 | + | 陽離子 |
乳過氧化酶 | 77,500 | 9.2-9.9 | 1 | + | 陽離子 |
糖巨肽 | 8,000 | 2.8 | 15-20 | – | 陰離子 |
(資料來源:Goodall et al, 2008)
胺基酸帶有的官能基會讓分子表面同時帶有正電荷與負電荷,而在適當 pH值下,蛋白質表面電荷處於電中性狀態則稱為等電點(isoelectric point, PI)。環境中的 pH 值大於蛋白質 PI 值時,蛋白質帶負電,相反狀態時則帶正電。因此當蛋白質的 PI 不同時,可藉由調整乳清酸鹼度,讓蛋白質攜帶不同電荷而達到分離效果。
簡單來說,製程中改變酸鹼值、酵素與熱處理等因素,皆會影響最終乳清蛋白產品的溶解性、起泡性、凝膠溫度與風味。基本的物化特性會影響加工中分離與純化出的各式乳清蛋白的量,而相對應的改變商品組成,並造成不同的沖泡、飲用品質與吸收效率。
不同分離技術的排列組合,是製作乳清商品的機密
市面上最常見的兩種乳清蛋白產品,濃縮乳清蛋白與分離乳清蛋白,兩者最明顯的差異在於蛋白質含量:濃縮乳清蛋白的蛋白質含量範圍在 35-80%,尚含有乳糖、脂肪與灰分;分離乳清蛋白的蛋白質含量在 90%以上。要達到分離乳清蛋白的蛋白質純度,除了基本的超過濾以外,還要利用前面介紹的蛋白質特性,使用離子交換或微過濾技術來去除非蛋白成分。
上圖簡單表示了商業上常用的分離蛋白技術,詳細的排列順序則會依照機器廠牌與生產的產品而有所變動。
使用超濾膜與透析過濾製成的濃縮乳清蛋白
首先,濃縮乳清蛋白的生產是由超濾膜過濾(Ultrafiltration, UF)註2開始的。首次過濾後 100kg 的乳清約可得到 17kg 的濃縮液(滲餘物)與 83kg 的滲透液。這些濃縮液保有原來乳清中大於 99% 的蛋白質、幾乎全部的脂肪、與約一半的乳糖、灰分(可視為無機鹽類)和非蛋白質含氮化合物。
因此經過超濾膜過濾處理提升固形物含量,乾燥後可得到蛋白質含量約 35% 的乳清蛋白,伴隨著 47% 乳糖,8%灰分與 2% 脂肪。而過濾過程中的流量與預處理如加水、濃縮與加熱等,也會影響整體組成與滲餘物含量。隨著增加濃縮次數與加水透析過濾,可再進一步去除部分乳糖與礦物質,得到整體蛋白質含量達 80%、脂肪含量 7%、乳糖含量 4% 與灰分含量 3.1% 之濃縮乳清蛋白產品。而為了達到良好的經濟效益,濃縮液最好濃縮到固形物含量在 25% 左右,搭配後續的蒸發濃縮或逆滲透濃縮與噴霧乾燥技術,即可製成常見的濃縮乳清蛋白。
製造分離乳清蛋白最常用的方法:離子交換法與錯流微濾膜過濾法
而要達到更高濃度的蛋白質比例,前面的辦法就不夠用囉。商業上製造乳清分離蛋白,最常見則是以離子交換法(Ion-Exchange Chromatography, IEC)或錯流微濾膜過濾法(Cross Flow Microfiltration, CFM)。
隨著 1980 年引進 IEC 離子交換樹脂技術,加酸讓大部分乳清中主要蛋白攜帶正電荷(pH值低於PI),會吸附在帶負電的樹脂上,將多餘的乳糖與其他非蛋白質成分洗脫後,再加鹼使溶液 pH 值升高,讓蛋白質脫離樹脂,此步驟幾乎可以去除全部的乳糖與脂肪,再搭配超濾與透析過濾去除水分與礦物質。乾燥後可得到 95%蛋白質含量的乳清蛋白,分離純化的效果非常不錯。然而此方法會搭配熱與酸以達到較佳的分離效率,因此收集到的多為變性蛋白。
CFM 則是利用微濾膜過濾方式將脂肪、變性蛋白與不溶顆粒與細菌從乳清中去除,因專一性低,分離後的蛋白質含量較 IEC 稍低,約為90%。但是相對的,由於不需要加熱或額外添加化學藥劑調整酸鹼值,被認為可以保留較好的蛋白質生物活性與風味。特別是像是糖巨肽這類的蛋白質,因 PI 值較低,在傳統離子交換法中會直接被去除,而許多研究顯示其能刺激一種控制食慾的腸胃荷爾蒙「cholecystokinin」的分泌,此賀爾蒙除了能進一步降低食慾除外,也有抑菌以達到免疫調節功能,但在陽離子交換製成的分離乳清蛋白中幾乎不被保留。
製造成本上來說,由於 CMF 有體積依賴性,生產成本與處理溶液的體積成正比,而離子交換法主要依賴多少蛋白質吸附於樹脂上,而在未濃縮處理的乳清中蛋白質含量只有0.6%,因此相較起來,離子交換法生產成本較低,許多廠商依然對此種生產方式仍具有相當的信心,並持續投入 IEC 的改良研發。
更多新技術新品項持續出現中……
隨著技術的進步,有越來越多的新方法也開始被應用於乳清蛋白的製程中。如冷連續式陰離子交換樹脂層析因不用熱與酸處理,可以保留較多的糖巨肽與其他蛋白的生物活性,所以有些廠商會特別強調此種方法得到的為富含糖巨肽之分離乳清蛋白。此外還有「源型乳清」直接使用脫脂奶製造,強調冷過濾製程;甚至是含有專一性酵素水解讓身體更好吸收的水解乳清蛋白產品等。這些新的技術與介紹,都可以漸漸在國外各大乳清蛋白的品牌中出現。
身為消費者,當然樂見更多好商品的誕生。不管是有專業健身需求,作為運動前預防補給或是運動後即時補充,可選擇純度高的分離乳清蛋白、或是保留較多機能性成分的乳清蛋白。想要好吸收、以及避免對部分蛋白過敏的人,可以選擇水解乳清蛋白。只是想維持正常體位,而食用乳清蛋白增加蛋白質攝取量、與提升飽足感,可以購買較為便宜的濃縮蛋白等。不過乳清蛋白始終是補充品,可不能完全取代正餐中的豆魚肉蛋類。而身為食品人,透過這個典型的廢棄物變黃金的故事,持續探索,也許下個挖到寶的就是你。
註解
- 「乳清」這個詞除了是起司製作時排出可溶性物質的代稱,近年來也代表了牛奶中酪蛋白膠微粒(casein micelles)以外的物質。這兩種不同的原料會因為菌酛(mother starter)本身的蛋白質,細菌代謝產物與凝乳酶作用於酪蛋白的產物,如糖巨肽等,而造成最後商品的成份有差異。使用牛奶直接製成乳清蛋白也可以減少蛋白質受熱,或是避免因過酸等因素而變性,因此在商業上也會將直接用牛奶加工製成的乳清蛋白另稱為源型乳清蛋白。
- 膜分離技術是指在分子水平上,不同粒徑分子的混合物在通過半透膜時,實現選擇性分離的技術,半透膜又稱分離膜或濾膜,膜壁布滿小孔,根據孔徑大小可以分為:微濾膜(Microfiltration, MF)、超濾膜(Ultrafiltration, UF)、納濾膜及反滲透膜等。MF 膜可用來阻擋粒徑在 0.05 ~ 10 微米間的粒子,通常操作壓力在 0.5 ~ 2 大氣壓就可獲得有效濾速,讓溶解蛋白質通過,可濾除細菌。UF 膜則用來分離粒徑較小的巨分子或所謂的膠體(colloids),其膜孔大約在 5 ~ 100 奈米,因可去除較大的有機分子,常以能阻擋粒子的分子量來表示其分離能力。超過濾膜通常可攔截分子量約在 0.5 ~ 50 萬之間的分子,施加的操作壓力則在 1 ~ 10 大氣壓之間,大部分可溶性蛋白質無法濾出。除了膜孔徑大小,膜表面的化學性質等也分別有不同的截流作用。
參考資料
- 羅英琪, 陳奕鳴, 王國慧, & 黃啟彰. (2015). 運動營養補充品乳清蛋白之多樣生物活性探討. 運動教練科學, (37), 105-121.
- Baer, D. J., Stote, K. S., Paul, D. R., Harris, G. K., Rumpler, W. V., & Clevidence, B. A. (2011). Whey protein but not soy protein supplementation alters body weight and composition in free-living overweight and obese adults. The Journal of nutrition, 141(8), 1489-1494.
- Brody, E. P. (2000). Biological activities of bovine glycomacropeptide. British Journal of Nutrition, 84(S1), 39-46.
- Deeth, H. C., & Bansal, N. (Eds.). (2018). Whey Proteins: From Milk to Medicine. Academic Press.
- Goodall, S., Grandison, A. S., Jauregi, P. J., & Price, J. (2008). Selective separation of the major whey proteins using ion exchange membranes. Journal of dairy science, 91(1), 1-10.
- Huffman, L. M., & Harper, W. J. (1999). Maximizing the value of milk through separation technologies. Journal of dairy science, 82(10), 2238-2244.
- WHEY PROCESSING
- MEMBRANE SEPARATIONS