0

0
1

文字

分享

0
0
1

想要創造心流體驗?那你先從自得其樂開始——《心流:高手都在研究的最優體驗心理學》

行路出版_96
・2019/07/06 ・4113字 ・閱讀時間約 8 分鐘 ・SR值 525 ・七年級

編按:如果我們說,知道如何控制意識的人,不管發生什麼事都能保持愉快,那就太天真爛漫了。不然而許多研究的結果都告訴我們,懂得尋找「心流」的人,不管處在什麼景況,即使是在絕望之中,也能夠感受到樂趣。

當個自得其樂的人

外在力量並非決定逆境能不能轉變成樂趣的關鍵。健康、富有、強壯、有權有勢的人,不見得比生病、貧窮、柔弱、受迫害的人更能控制自己的意識。能在生命中找到樂趣的人,與被生命擊垮的人,兩者最大的差別是他們受了哪些外在因素影響,以及他們怎麼看待這些因素——究竟是把挑戰當威脅,還是當成行動機會。

不論發生什麼事都樂於投入,大部分時間都處於心流。圖/pexels

「自得其樂的自我」指的是很容易將潛在威脅轉換成有樂趣的挑戰、懂得維持內在和諧的人。這樣的人不會覺得無聊,也很少感到焦慮,不論發生什麼事都樂於投入,大部分時間都處於心流。自得其樂的人也可以說是「擁有自成目標」,他們的目標大多發自內心,不像多數人是依生理需求與社會的傳統制約決定的。自得其樂的人會按著經驗來訂目標,所以目標大多符合自身狀況。

自得其樂的人可以將原本可能形成精神熵的經驗轉換成心流。因此,要發展出這樣的自我很簡單,只要依循心流模式便是。簡單說明如下:

首先來設立目標

想要經歷心流,首先必須有明確目標做為努力方向。自得其樂的人面對抉擇時——不管是大至結婚、就業,小至週末怎麼過、在牙醫候診室怎麼打發時間,都可以處之泰然、不慌亂。

-----廣告,請繼續往下閱讀-----

目標的選定與對挑戰的認知有關。如果我決定學網球,就必須學會發球、反手拍、正拍,還要訓練體力與反應。事情也可能反過來進行:我喜歡將球打過網的感覺,所以決定學打網球。不管哪一種情形,目標與挑戰是互通的。

一旦經由目標與挑戰定義了行動體系,運作所需技能也就明確了。圖/pexels

一旦經由目標與挑戰定義了行動體系,運作所需技能也就明確了。如果我打算辭掉工作,改經營度假中心,就應該去學飯店管理、財務、挑選營業地點等。當然,方向也可以反過來:發現自己具備的技能可以在特定目標有所發揮——我決定經營度假中心,因為我發現自己的條件很適合。

發展技能時,要非常留心這些行動的結果——對回饋進行監控。想要成為好的度假中心經營者,我必須正確評估借貸銀行會怎麼看待我的創業計畫,還必須知道什麼措施可以吸引客人。如果沒有隨時留意當中的回饋,很可能會和行動體系脫節,技能不再進步,效率也不如從前。

自得其樂跟不懂自得其樂的人最大的差別,是前者決定追求的目標是自己選的,不是隨機的,也不是外來力量逼他做的決定。這樣的事實有兩個看似相反的結果。

一方面,因為這個決定是自己做的,所以會格外努力,所有行動都很確實,並由內在控制。另一方面,因為是自己的決定,所以可以隨時視情況調整目標。這麼看來,自得其樂的人表現出來的行為,除了比較容易貫徹到底,也比較有彈性。

-----廣告,請繼續往下閱讀-----

必須要全心投入

選擇行動體系後,具有自得其樂個性的人會全心投入他所做的事。不管是開飛機環繞地球,或是晚餐後洗碗,他都能全神貫注。

選擇行動體系後,具有自得其樂個性的人會全心投入他所做的事。圖/pixabay

要做到這一點,一個人必須在行動機會與本身具備的技能間取得平衡。有些人一開始對自己的期許有點不切實際,例如想在二十歲之前成為百萬富翁之類的。一旦希望破滅就變得沮喪,並因為精神能量都浪費在追求未果的事上,整個人意志消沉。

另一個極端,是因為對自己的能力沒有把握,所以自我設限。他們寧可選擇保守而無關緊要的目標,讓複雜性的成長停留在最低層級。然而,要確實參與行動體系中,一個人必須在環境條件與個人能力間取得適當平衡。

舉例來說,一個人走進一間擠滿人的房間,決定「加入派對」,也就是說,他想要盡可能多認識些人,同時希望能玩得開心。如果是缺乏自得其樂性格的人,很可能因為無法主動與人攀談,便退到角落去,希望有人注意到他;或是,他可能會過分聒噪或太搶風頭,因不當而虛假的熱情讓人退避三舍。

-----廣告,請繼續往下閱讀-----
要確實參與行動體系中,一個人必須在環境條件與個人能力間取得適當平衡。圖/pixnio

這兩種策略都不可能成功,也不可能玩得開心。但是懂得自得其樂的人進入房間後,會先將注意力從自己轉到派對,也就是他希望融入的「行動體系」。他會觀察參加的人,試著猜測哪個人可能跟他志同道合,然後開始與這個人談論他認為兩個人都會喜歡的話題。如果得到的回饋是負面的——交談顯得無聊,或是對方覺得不投機——他會試著換個話題,或是另覓談話對象。唯有行動與行動體系提供的機會相稱時,當事人才能完全投入其中。

專注的能力愈強,就愈容易投入行動體系。注意力無法集中的人思緒游移不定,生活只能任憑各種一閃即過的刺激擺布,鮮少遇見心流。非出於自願的分心,是無法控制注意力最明顯的徵兆。令人不解的是,很少人願意花力氣改善自己的注意力。集中精神看書有困難時,不是設法提升專注力,而是將書本扔到一旁,改看起電視,因為看電視所需的注意力少,而不連貫的剪輯、插播的廣告與通常很愚蠢的內容等等,只會讓注意力更加渙散。

注意當下發生的事

注意力可以使人投入,也唯有不斷傾入注意力,才能讓人保持投入狀態。圖/pexels

注意力可以使人投入,也唯有不斷傾入注意力,才能讓人保持投入狀態。運動員都知道,比賽中只要稍微閃神,就可能一敗塗地。重量級的拳王冠軍如果沒注意到對手的一記上勾拳,就可能被擊倒。籃球員如果受觀眾的吶喊聲影響而分心,要進球就難了。同樣的陷阱也威脅著參與各種複雜體系中的所有人,唯有不斷投入精神能量,才能保持置身其中的狀態。不願意專心聆聽孩子說話的父母,會壞了彼此的互動;心不在焉的律師會輸掉官司;而心神不定的外科醫生賠上的,會是病人的生命。

自得其樂的人,簡單的說,就是擁有持續投入的能力。自我意識這個最容易使人分心的原因,在他們身上不構成問題。因為他不擔心自己表現得如何,也不在意別人怎麼看他,而是全心投入自身目標。一個人投入得夠多時,會將自我意識從意識中排除,有時則是反過來,由於缺乏自我意識,才能深深投入。自得其樂性格的組成元素是互為因果的——設立目標、發展技能、培養專注力、放下自我意識這四個,不管從哪一個開始都可以,因為心流一旦開始,其他元素也會跟著實現。

-----廣告,請繼續往下閱讀-----

把注意力放在互動關係,而不是自我身上,會得到看似矛盾的結果。當事人雖然不再覺得自己是獨立個體,卻感到自我變得更加強大。藉由將精神能量投注於包含自己在內的體系,自得其樂的人可以超越自我極限。藉著與體系結合,讓自我脫胎換骨,成就更高的複雜性。這就是為什麼在愛過後失去,好過從來沒愛過。

處處以自我為中心的人可能比較有安全感,但是與願意將注意力投注在周遭事物、參與當中的互動的人相比,這種總是以個人利益為出發點的人就顯得匱乏了。

如果有小孩攀爬雕像而受傷,市政府要花多少錢才能擺平官司?圖/freestockphotos

我去芝加哥市政廳前廣場,參加為畢卡索的巨型戶外雕塑舉行的揭幕儀式時,剛好站在一位擅長處理個人傷害的律師旁。揭幕演說沒完沒了,我發現他的表情十分專注,口中喃喃自語。我問他在想什麼,他說他在估算如果有小孩攀爬雕像而受傷,市政府要花多少錢才能擺平官司。

我們要說這位律師真幸運,能夠將周遭所有事都轉換成與他的技能相關的問題,所以總是處於心流呢?還是為他只知道專注在自己熟悉的事物上,忽略了這件事在美學、市政及社會上的意義,錯失成長契機,而感到遺憾呢?或許兩種解讀方式都沒有錯。但是長期來看,井底觀天必定有所限制。即使是最受推崇的物理學家、藝術家或政治家,如果只對自己有限的角色感興趣,遲早會變成空洞無聊、不懂得生活樂趣的人。

-----廣告,請繼續往下閱讀-----

學習樂在當下

自得其樂的自我——懂得設立目標、培養技能、留心回饋、做事專注而投入的人——即使客觀環境惡劣,仍然可以從中找到樂趣。有能力控制心靈的人,可以讓任何事都成為樂趣來源。夏日的一陣微風、映在高樓玻璃帷幕上的一朵白雲、談一筆生意、看小孩與狗嬉戲、喝一杯水,都足以滿足人心、豐富生活。

然而,想要擁有這樣的掌控權,需要決心與紀律配合。最優體驗不是享樂主義,或貪圖安樂的結果,輕鬆放任的態度不足以抵禦生活中的混沌。就像《心流》這本書一開始說的,想要讓隨機事件化為心流,就必須培養拓展能力的技能,使自己變得更強大。心流可以驅使人發揮創意,成就不凡。

有能力控制心靈的人,可以讓任何事都成為樂趣來源。圖/pixabay

不斷精進的技能帶來的樂趣,更是推動文化進化的力量。不論是個人或文化,都會因此邁向更高的複雜性。在體驗中創造秩序,得到的獎賞是推動演化的能量——為我們的後代子孫鋪路,讓繼我們而起的他們更具複雜性,也更有智慧。
但是想要將生活的全部變成一場心流體驗,光懂得控制一時的意識狀態是不夠的;還得有整體的目標,讓日常生活中的每一件事都變得有意義才行。

如果一個人只是從一個心流活動跳到另一個心流活動,中間缺少連結,那麼來到人生盡頭往回看時,就不容易看出過去這些日子、這些事的意義何在。對於想要獲得最優體驗的人,心流理論要給大家的最後一項任務,是在所做的每一件事上創造和諧;在這個任務中貫穿所有目標,將人生整合成單一件心流活動。

-----廣告,請繼續往下閱讀-----

 

 

 

 

——本文摘自《心流:高手都在研究的最優體驗心理學》,2019 年 3 月,行路出版

 

-----廣告,請繼續往下閱讀-----
文章難易度
行路出版_96
21 篇文章 ・ 8 位粉絲
行路為「讀書共和國」出版集團旗下新創的出版社,出版知識類且富科普或哲普內涵的書籍,科學類中尤其將長期耕耘「心理學+腦科學」領域重要、具時代意義,足以當教材的出版品。 行路臉書專頁:https://www.facebook.com/WalkPublishing

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

10
6

文字

分享

0
10
6
【從中國經典認識大腦系列】庖丁能解牛,是因為「Zone」?
YTC_96
・2023/07/01 ・4257字 ・閱讀時間約 8 分鐘

庖丁如何解牛?

在戰國時期,一位叫做「丁」的廚師(故稱作庖丁)為魏文惠王殺牛。丁廚師宰牛的技術非常純熟,分解牛的動作和進刀的聲響都像是美妙的雅樂。當文惠王詢問為何丁的技藝能如此高超。他解釋道,自己追求的是超越技術的 「道」。

丁說:「一開始宰牛的時候,看到的是一頭牛,三年之後,就不曾看到整頭牛,現在甚至不需用眼睛觀察,只要透過精神,就能依照牛的生理構造來準確運刀進入關節縫隙,將利刃遊走於空隙間,完全不碰撞骨頭以及經絡聚集處。」

而丁的菜刀已經使用超過十九年,宰殺超過上千頭牛隻,但刀刃依舊像剛磨過一樣鋒利。

在庖丁心中,對牛的一切生理構造與關節處都了然於心。 圖/pixbay

這原因在於刀刃是幾乎沒有厚度,而關節及組織間都有縫隙,透過刀刃的旋轉能輕鬆有餘地的肢解牛隻,就算遇到骨節錯綜難以下刀處,只要動刀輕微,格外謹慎專注,牛體也能像泥土般剖開散落在地上。

-----廣告,請繼續往下閱讀-----

以上的故事是出自《莊子.養生主》的一則寓言,原意是用來說明養生之道。刀刃就好比人的生命與精神,而牛體的結構就是人世間的錯綜複雜與障礙。若是不順應牛體的紋理(自然),拿刀(精神)和骨頭(障礙)強碰撞,只會磨損自己的刀,這提醒我們做事要順應自然規律的道理,不要是非糾纏,才能游刃有餘不耗損精神。庖丁解牛後來也成為一個成語,形容經過長期實踐某件事物後,對其了解透測且掌握了規律,做起來得心應手。[1-3]

乍看之下,庖丁解牛只是一個用來比喻養生和做人處事原則的寓言故事。但丁廚師的精湛刀法,以及其故事中所描述的神乎其技,與匈牙利裔美國心理學家,米哈伊.奇克森特米哈伊(Mihaly Csikszentmihalyi)於 1975 年提出的心流理論(Flow)不謀而合[4]。

心流狀態是什麼?心流狀態產生的大腦神經機制是什麼?這相差超過兩千年的交會又能讓我們有什麼啟示呢?

Flow,日裔美籍畫家内間安瑆 (Uchima Ansei)1955 年的作品。圖/Flow | The Art Institute of Chicago (artic.edu)

心流狀態是什麼?

心流狀態是一個正向心理學概念,指的是一種心理流暢的狀態,用來描述全面沉浸且專注投入任務後,所產生的興奮愉悅感。

心流狀態在翻譯上有人稱神馳狀態,或是沉浸狀態。早在心理學家提出心流狀態理論前,我們生活中早已有相似的用語說明這種狀態,英文俗稱 in the zone ,中文則是忘我或是身心合一。在此狀態下,人們對時間的感受性減少,會覺得自己能夠用最佳的狀態發揮潛力,輕鬆地應對挑戰。過程中,人們也可能會對事情有更清晰的目標[4]。

-----廣告,請繼續往下閱讀-----
有些人會急迫地想知道,要如何才達到心流狀態。圖/GIPHY

為了實現巔峰表現而全身心投入任務,心流狀態通常伴隨著高度的專注、沉浸感以及在活動中忘我的感覺。要達到心流狀態,人們的技能和面臨的挑戰需要達到一種平衡,並融合行動以及自我覺察,如果一個人的技巧遠遠高於事件挑戰難度,他們只會感受到無聊或是輕鬆。若是事件難度過高,他們則會感受到擔心或焦慮(下圖)。

奇克森特米哈伊的心流狀態模型。心流的產生要在技巧成熟度和事件難度達到一個平衡下才會產生。圖/Wikipedia

心流狀態最常見於人們參與具有挑戰性的活動,例如運動、藝術創作、音樂演奏、學習新技能或專注於特定任務。NBA 知名球星麥可喬丹(Michael Jordan)在 1988 年的灌籃大賽上演罰球線飛身灌籃是史上最經典的灌籃場景之一。要能在距離籃框如此遠的距離起跳,並成功灌進那小小的籃框,是一件相當困難的任務,甚至麥可在比賽第一次的嘗試也並未成功。

唯有運動員全神貫注,展現心流狀態才有機會完成如此高難度的表演。此外,在七、八年級生熟知的經典懷舊動畫閃電霹靂車,頂尖賽車手有機會施展出「零的領域」,一種能提高周圍感知能力自然施展高超的賽車技巧,也類似心流狀態。

喬丹灌籃。 圖/GIPHY

然而,心流的狀態也會發生在普通的情況下,包含工作或休閒時間從事某些任務時。譬如電腦玩家在玩一款遊戲時,遊玩超過數個小時也不感到無聊、疲勞或飢餓。又或是享受美食時,那好吃到忘我的境界,也常常讓人忘記痛苦並沉浸在幸福感之中(圖三)。如果你正在享受閱讀這篇文章帶來的樂趣,或許你也正處於心流狀態。

-----廣告,請繼續往下閱讀-----
心流的產生可能比我們想像中常見,譬如享受美食而吃到忘我的境界。圖/千と千尋の神隠し – スタジオジブリ|STUDIO GHIBLI
不能吃太胖喔會被殺掉的。圖/千と千尋の神隠し – スタジオジブリ|STUDIO GHIBLI

大腦是如何影響心流狀態的產生?

心流狀態對幸福感和滿足感有正面影響,能提高工作表現、增加創造力和增進學習效果。過去有相當多關於心流的心理學理論,但若想要心流狀態在工作、生活、又甚至是精神醫學有進一步的廣泛應用,了解心流的大腦神經機制是極其重要的[5]。

暫時性次額葉假說(Transient Hypofrontality Hypothesis)是神經科學家阿恩·迪特里希(Arne Dietrich)於 2004 年提出解釋心流的一個假說 [6]。該假說認為大腦的資源是有限被分配的,而當心流狀態產生時,外顯功能相關腦區如前額葉(負責邏輯推論和執行功能)以及內側顳葉(記憶功能)會降低,但內隱功能相關腦區基底核(控制自主運動)則是升高。該假說認為心流狀態是透過內隱,也就是透過自動化且技能相關的知識來運作,並減少外顯系統如抽象推論和自我反思的歷程。

這就好比當我們學會騎腳踏車,我們不需要知道是怎麼騎的,但當我們一坐上椅墊,踏起踏板,我們身體就自然地駕馭看似很難平衡的腳踏車,而這狀態也如同心流。該假說也被另一個研究團隊透過功能性磁共振成像(Functional Magnetic Resonance Imaging,fMRI)部分證實,他們發現心流狀態時扣帶皮質( Cingulate Cortex) 、內側前額葉(Medial Prefrontal Cortex)以及內側顳葉包含杏仁核(Medial Temporal Lobe including the Amygdala)都看到活動下降,而前腦島(Anterior Insula)、額下回( Inferior Frontal Gyri), 基底核(Basal Ganglia) 以及中腦(Midbrain)則有活動上升的跡象 [7]。

有趣的是,另一派學者提出了和暫時性次額葉假說完全相反的看法,稱作心流的同步理論(Synchronization Theory of Flow)。神經科學家勒內·韋伯(René Weber)在 2009 的一篇文章認為暫時性次額葉假說過度簡化心流狀態,並且忽略了高度專注在心流狀態時的重要性[8]。在專注時,前額葉會高度活化[9],說明心流狀態需要注意力相關的腦區網路整合同步。這理論是基於認知神經科學家麥可·波斯納(Michael Posner)在 1987 年的注意力三元理論(Tripartite Theory of Attention)。

-----廣告,請繼續往下閱讀-----

此理論模型包含警覺(意識到刺激:前額葉和頂葉(Parietal Lobe))、定向(分配注意力資源到刺激:上下頂葉、上丘(Superior Colliculus)和前視野(Frontal Eye Field))和注意力的執行功能(目標導向的處理,調節警覺和定向網絡:內側前額皮層、前扣帶皮層和外側前額皮層)[10]。後續也有研究進一步證實此理論,透過功能性近紅外光譜技術(Functional Near – Infrared Spectroscopy , fNIRS)[11] 和功能性磁共振成像[7][12],心流狀態時前額葉網路的活動是上升的。

受試者在心流狀態時的功能性磁共振成像圖。圖/參考資料 7

2020 年,心理學家 Dimitri van der Linden 提出的大尺度網路(Large-scale network)觀點整合了過去心流狀態腦科學的理論[13]。他認為心流狀態的產生需要透過多巴胺和正腎上腺素系統調節內在動機以及情緒反應的引導[14],接著三個和注意力相關的大尺度的大腦網路的交互作用則是心流產生的關鍵。

這三個大尺度網路分別是默認模網路(Default Mode Network),這與自我察覺有關。第二個是中央執行網絡(Central Executive Network),這和全心投入與專注有關。第三個則是顯著網路(Salience Network),這和分配與協調大腦資源並平衡默認網路和中央執行網路活動相關(下圖)。心流狀態的產生,可能與大腦網路模式不斷的切換而達到的一種和諧穩定有關。

顯著網路作為大腦切換默認網路和中央執行網路的調節。 圖/參考資料 13

心流狀態是一個非常複雜的現象,目前的研究主要探討心流狀態產生時的現象和神經反應的相關性。未來仍需要更進一步的研究,來解析心流狀態是否能透過外部操弄的方式,譬如穿顱磁刺激術(Transcranial Magnetic Stimulation)(下圖),來創造並改善人們生活。

-----廣告,請繼續往下閱讀-----
穿顱磁刺激術示意圖。圖/Wikipedia

心流作為養生之道,呼應庖丁解牛

心流狀態被認為能促進正向心理來提高專注度以及愉悅感,不論是數千年前的庖丁、籃球之神喬丹、又或是一般人,每個人或多或少都曾經體會過那種難以用言語的心流狀態。透過現代科學測量儀器,我們有機會能更進一步了解大腦是如何產生心流,提高生活和工作的品質,來達到莊子提倡注重內在精神的養生之道。

參考文獻:

1. 庖丁解牛 – 維基百科,自由的百科全書 (wikipedia.org)

2. 庖丁解牛 – 教育百科 | 教育雲線上字典 (cloud.edu.tw)

3. 庖丁解牛(古代寓言)_百度百科 (baidu.com)

-----廣告,請繼續往下閱讀-----

4. Flow (psychology) – Wikipedia

5. Brain activity during flow : A systematic review (diva-portal.org)

6. Neurocognitive mechanisms underlying the experience of flow – ScienceDirect

7. Neural signatures of experimentally induced flow experiences identified in a typical fMRI block design with BOLD imaging | Social Cognitive and Affective Neuroscience | Oxford Academic (oup.com)

-----廣告,請繼續往下閱讀-----

8. Theorizing Flow and Media Enjoyment as Cognitive Synchronization of Attentional and Reward Networks | Communication Theory | Oxford Academic (oup.com)

9. Typologies of attentional networks | Nature Reviews Neuroscience

10.  Isolating attentional systems: A cognitive-anatomical analysis | SpringerLink

11. Brain activity during the flow experience: A functional near-infrared spectroscopy study – ScienceDirect

12. Neural correlates of experimentally induced flow experiences – ScienceDirect

13. Go with the flow: A neuroscientific view on being fully engaged – Linden – 2021 – European Journal of Neuroscience – Wiley Online Library

14. Frontiers | The Neuroscience of the Flow State: Involvement of the Locus Coeruleus Norepinephrine System (frontiersin.org)

-----廣告,請繼續往下閱讀-----
YTC_96
11 篇文章 ・ 19 位粉絲
從大學部到博士班,在神經科學界打滾超過十年,研究過果蠅、小鼠以及大鼠。在美國取得神經科學博士學位之後,決定先沉澱思考未來的下一步。現在於加勒比海擔任志工進行精神健康知識以及大腦科學教育推廣。有任何問題,歡迎來信討論 ytc329@gmail.com。