0

0
1

文字

分享

0
0
1

想要創造心流體驗?那你先從自得其樂開始——《心流:高手都在研究的最優體驗心理學》

行路出版_96
・2019/07/06 ・4113字 ・閱讀時間約 8 分鐘 ・SR值 525 ・七年級

編按:如果我們說,知道如何控制意識的人,不管發生什麼事都能保持愉快,那就太天真爛漫了。不然而許多研究的結果都告訴我們,懂得尋找「心流」的人,不管處在什麼景況,即使是在絕望之中,也能夠感受到樂趣。

當個自得其樂的人

外在力量並非決定逆境能不能轉變成樂趣的關鍵。健康、富有、強壯、有權有勢的人,不見得比生病、貧窮、柔弱、受迫害的人更能控制自己的意識。能在生命中找到樂趣的人,與被生命擊垮的人,兩者最大的差別是他們受了哪些外在因素影響,以及他們怎麼看待這些因素——究竟是把挑戰當威脅,還是當成行動機會。

不論發生什麼事都樂於投入,大部分時間都處於心流。圖/pexels

「自得其樂的自我」指的是很容易將潛在威脅轉換成有樂趣的挑戰、懂得維持內在和諧的人。這樣的人不會覺得無聊,也很少感到焦慮,不論發生什麼事都樂於投入,大部分時間都處於心流。自得其樂的人也可以說是「擁有自成目標」,他們的目標大多發自內心,不像多數人是依生理需求與社會的傳統制約決定的。自得其樂的人會按著經驗來訂目標,所以目標大多符合自身狀況。

自得其樂的人可以將原本可能形成精神熵的經驗轉換成心流。因此,要發展出這樣的自我很簡單,只要依循心流模式便是。簡單說明如下:

首先來設立目標

想要經歷心流,首先必須有明確目標做為努力方向。自得其樂的人面對抉擇時——不管是大至結婚、就業,小至週末怎麼過、在牙醫候診室怎麼打發時間,都可以處之泰然、不慌亂。

-----廣告,請繼續往下閱讀-----

目標的選定與對挑戰的認知有關。如果我決定學網球,就必須學會發球、反手拍、正拍,還要訓練體力與反應。事情也可能反過來進行:我喜歡將球打過網的感覺,所以決定學打網球。不管哪一種情形,目標與挑戰是互通的。

一旦經由目標與挑戰定義了行動體系,運作所需技能也就明確了。圖/pexels

一旦經由目標與挑戰定義了行動體系,運作所需技能也就明確了。如果我打算辭掉工作,改經營度假中心,就應該去學飯店管理、財務、挑選營業地點等。當然,方向也可以反過來:發現自己具備的技能可以在特定目標有所發揮——我決定經營度假中心,因為我發現自己的條件很適合。

發展技能時,要非常留心這些行動的結果——對回饋進行監控。想要成為好的度假中心經營者,我必須正確評估借貸銀行會怎麼看待我的創業計畫,還必須知道什麼措施可以吸引客人。如果沒有隨時留意當中的回饋,很可能會和行動體系脫節,技能不再進步,效率也不如從前。

自得其樂跟不懂自得其樂的人最大的差別,是前者決定追求的目標是自己選的,不是隨機的,也不是外來力量逼他做的決定。這樣的事實有兩個看似相反的結果。

一方面,因為這個決定是自己做的,所以會格外努力,所有行動都很確實,並由內在控制。另一方面,因為是自己的決定,所以可以隨時視情況調整目標。這麼看來,自得其樂的人表現出來的行為,除了比較容易貫徹到底,也比較有彈性。

-----廣告,請繼續往下閱讀-----

必須要全心投入

選擇行動體系後,具有自得其樂個性的人會全心投入他所做的事。不管是開飛機環繞地球,或是晚餐後洗碗,他都能全神貫注。

選擇行動體系後,具有自得其樂個性的人會全心投入他所做的事。圖/pixabay

要做到這一點,一個人必須在行動機會與本身具備的技能間取得平衡。有些人一開始對自己的期許有點不切實際,例如想在二十歲之前成為百萬富翁之類的。一旦希望破滅就變得沮喪,並因為精神能量都浪費在追求未果的事上,整個人意志消沉。

另一個極端,是因為對自己的能力沒有把握,所以自我設限。他們寧可選擇保守而無關緊要的目標,讓複雜性的成長停留在最低層級。然而,要確實參與行動體系中,一個人必須在環境條件與個人能力間取得適當平衡。

舉例來說,一個人走進一間擠滿人的房間,決定「加入派對」,也就是說,他想要盡可能多認識些人,同時希望能玩得開心。如果是缺乏自得其樂性格的人,很可能因為無法主動與人攀談,便退到角落去,希望有人注意到他;或是,他可能會過分聒噪或太搶風頭,因不當而虛假的熱情讓人退避三舍。

-----廣告,請繼續往下閱讀-----
要確實參與行動體系中,一個人必須在環境條件與個人能力間取得適當平衡。圖/pixnio

這兩種策略都不可能成功,也不可能玩得開心。但是懂得自得其樂的人進入房間後,會先將注意力從自己轉到派對,也就是他希望融入的「行動體系」。他會觀察參加的人,試著猜測哪個人可能跟他志同道合,然後開始與這個人談論他認為兩個人都會喜歡的話題。如果得到的回饋是負面的——交談顯得無聊,或是對方覺得不投機——他會試著換個話題,或是另覓談話對象。唯有行動與行動體系提供的機會相稱時,當事人才能完全投入其中。

專注的能力愈強,就愈容易投入行動體系。注意力無法集中的人思緒游移不定,生活只能任憑各種一閃即過的刺激擺布,鮮少遇見心流。非出於自願的分心,是無法控制注意力最明顯的徵兆。令人不解的是,很少人願意花力氣改善自己的注意力。集中精神看書有困難時,不是設法提升專注力,而是將書本扔到一旁,改看起電視,因為看電視所需的注意力少,而不連貫的剪輯、插播的廣告與通常很愚蠢的內容等等,只會讓注意力更加渙散。

注意當下發生的事

注意力可以使人投入,也唯有不斷傾入注意力,才能讓人保持投入狀態。圖/pexels

注意力可以使人投入,也唯有不斷傾入注意力,才能讓人保持投入狀態。運動員都知道,比賽中只要稍微閃神,就可能一敗塗地。重量級的拳王冠軍如果沒注意到對手的一記上勾拳,就可能被擊倒。籃球員如果受觀眾的吶喊聲影響而分心,要進球就難了。同樣的陷阱也威脅著參與各種複雜體系中的所有人,唯有不斷投入精神能量,才能保持置身其中的狀態。不願意專心聆聽孩子說話的父母,會壞了彼此的互動;心不在焉的律師會輸掉官司;而心神不定的外科醫生賠上的,會是病人的生命。

自得其樂的人,簡單的說,就是擁有持續投入的能力。自我意識這個最容易使人分心的原因,在他們身上不構成問題。因為他不擔心自己表現得如何,也不在意別人怎麼看他,而是全心投入自身目標。一個人投入得夠多時,會將自我意識從意識中排除,有時則是反過來,由於缺乏自我意識,才能深深投入。自得其樂性格的組成元素是互為因果的——設立目標、發展技能、培養專注力、放下自我意識這四個,不管從哪一個開始都可以,因為心流一旦開始,其他元素也會跟著實現。

-----廣告,請繼續往下閱讀-----

把注意力放在互動關係,而不是自我身上,會得到看似矛盾的結果。當事人雖然不再覺得自己是獨立個體,卻感到自我變得更加強大。藉由將精神能量投注於包含自己在內的體系,自得其樂的人可以超越自我極限。藉著與體系結合,讓自我脫胎換骨,成就更高的複雜性。這就是為什麼在愛過後失去,好過從來沒愛過。

處處以自我為中心的人可能比較有安全感,但是與願意將注意力投注在周遭事物、參與當中的互動的人相比,這種總是以個人利益為出發點的人就顯得匱乏了。

如果有小孩攀爬雕像而受傷,市政府要花多少錢才能擺平官司?圖/freestockphotos

我去芝加哥市政廳前廣場,參加為畢卡索的巨型戶外雕塑舉行的揭幕儀式時,剛好站在一位擅長處理個人傷害的律師旁。揭幕演說沒完沒了,我發現他的表情十分專注,口中喃喃自語。我問他在想什麼,他說他在估算如果有小孩攀爬雕像而受傷,市政府要花多少錢才能擺平官司。

我們要說這位律師真幸運,能夠將周遭所有事都轉換成與他的技能相關的問題,所以總是處於心流呢?還是為他只知道專注在自己熟悉的事物上,忽略了這件事在美學、市政及社會上的意義,錯失成長契機,而感到遺憾呢?或許兩種解讀方式都沒有錯。但是長期來看,井底觀天必定有所限制。即使是最受推崇的物理學家、藝術家或政治家,如果只對自己有限的角色感興趣,遲早會變成空洞無聊、不懂得生活樂趣的人。

-----廣告,請繼續往下閱讀-----

學習樂在當下

自得其樂的自我——懂得設立目標、培養技能、留心回饋、做事專注而投入的人——即使客觀環境惡劣,仍然可以從中找到樂趣。有能力控制心靈的人,可以讓任何事都成為樂趣來源。夏日的一陣微風、映在高樓玻璃帷幕上的一朵白雲、談一筆生意、看小孩與狗嬉戲、喝一杯水,都足以滿足人心、豐富生活。

然而,想要擁有這樣的掌控權,需要決心與紀律配合。最優體驗不是享樂主義,或貪圖安樂的結果,輕鬆放任的態度不足以抵禦生活中的混沌。就像《心流》這本書一開始說的,想要讓隨機事件化為心流,就必須培養拓展能力的技能,使自己變得更強大。心流可以驅使人發揮創意,成就不凡。

有能力控制心靈的人,可以讓任何事都成為樂趣來源。圖/pixabay

不斷精進的技能帶來的樂趣,更是推動文化進化的力量。不論是個人或文化,都會因此邁向更高的複雜性。在體驗中創造秩序,得到的獎賞是推動演化的能量——為我們的後代子孫鋪路,讓繼我們而起的他們更具複雜性,也更有智慧。
但是想要將生活的全部變成一場心流體驗,光懂得控制一時的意識狀態是不夠的;還得有整體的目標,讓日常生活中的每一件事都變得有意義才行。

如果一個人只是從一個心流活動跳到另一個心流活動,中間缺少連結,那麼來到人生盡頭往回看時,就不容易看出過去這些日子、這些事的意義何在。對於想要獲得最優體驗的人,心流理論要給大家的最後一項任務,是在所做的每一件事上創造和諧;在這個任務中貫穿所有目標,將人生整合成單一件心流活動。

-----廣告,請繼續往下閱讀-----

 

 

 

 

——本文摘自《心流:高手都在研究的最優體驗心理學》,2019 年 3 月,行路出版

 

文章難易度
行路出版_96
16 篇文章 ・ 7 位粉絲
行路為「讀書共和國」出版集團旗下新創的出版社,出版知識類且富科普或哲普內涵的書籍,科學類中尤其將長期耕耘「心理學+腦科學」領域重要、具時代意義,足以當教材的出版品。 行路臉書專頁:https://www.facebook.com/WalkPublishing

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

10
6

文字

分享

0
10
6
【從中國經典認識大腦系列】庖丁能解牛,是因為「Zone」?
YTC_96
・2023/07/01 ・4257字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

庖丁如何解牛?

在戰國時期,一位叫做「丁」的廚師(故稱作庖丁)為魏文惠王殺牛。丁廚師宰牛的技術非常純熟,分解牛的動作和進刀的聲響都像是美妙的雅樂。當文惠王詢問為何丁的技藝能如此高超。他解釋道,自己追求的是超越技術的 「道」。

丁說:「一開始宰牛的時候,看到的是一頭牛,三年之後,就不曾看到整頭牛,現在甚至不需用眼睛觀察,只要透過精神,就能依照牛的生理構造來準確運刀進入關節縫隙,將利刃遊走於空隙間,完全不碰撞骨頭以及經絡聚集處。」

而丁的菜刀已經使用超過十九年,宰殺超過上千頭牛隻,但刀刃依舊像剛磨過一樣鋒利。

在庖丁心中,對牛的一切生理構造與關節處都了然於心。 圖/pixbay

這原因在於刀刃是幾乎沒有厚度,而關節及組織間都有縫隙,透過刀刃的旋轉能輕鬆有餘地的肢解牛隻,就算遇到骨節錯綜難以下刀處,只要動刀輕微,格外謹慎專注,牛體也能像泥土般剖開散落在地上。

-----廣告,請繼續往下閱讀-----

以上的故事是出自《莊子.養生主》的一則寓言,原意是用來說明養生之道。刀刃就好比人的生命與精神,而牛體的結構就是人世間的錯綜複雜與障礙。若是不順應牛體的紋理(自然),拿刀(精神)和骨頭(障礙)強碰撞,只會磨損自己的刀,這提醒我們做事要順應自然規律的道理,不要是非糾纏,才能游刃有餘不耗損精神。庖丁解牛後來也成為一個成語,形容經過長期實踐某件事物後,對其了解透測且掌握了規律,做起來得心應手。[1-3]

乍看之下,庖丁解牛只是一個用來比喻養生和做人處事原則的寓言故事。但丁廚師的精湛刀法,以及其故事中所描述的神乎其技,與匈牙利裔美國心理學家,米哈伊.奇克森特米哈伊(Mihaly Csikszentmihalyi)於 1975 年提出的心流理論(Flow)不謀而合[4]。

心流狀態是什麼?心流狀態產生的大腦神經機制是什麼?這相差超過兩千年的交會又能讓我們有什麼啟示呢?

Flow,日裔美籍畫家内間安瑆 (Uchima Ansei)1955 年的作品。圖/Flow | The Art Institute of Chicago (artic.edu)

心流狀態是什麼?

心流狀態是一個正向心理學概念,指的是一種心理流暢的狀態,用來描述全面沉浸且專注投入任務後,所產生的興奮愉悅感。

心流狀態在翻譯上有人稱神馳狀態,或是沉浸狀態。早在心理學家提出心流狀態理論前,我們生活中早已有相似的用語說明這種狀態,英文俗稱 in the zone ,中文則是忘我或是身心合一。在此狀態下,人們對時間的感受性減少,會覺得自己能夠用最佳的狀態發揮潛力,輕鬆地應對挑戰。過程中,人們也可能會對事情有更清晰的目標[4]。

-----廣告,請繼續往下閱讀-----
有些人會急迫地想知道,要如何才達到心流狀態。圖/GIPHY

為了實現巔峰表現而全身心投入任務,心流狀態通常伴隨著高度的專注、沉浸感以及在活動中忘我的感覺。要達到心流狀態,人們的技能和面臨的挑戰需要達到一種平衡,並融合行動以及自我覺察,如果一個人的技巧遠遠高於事件挑戰難度,他們只會感受到無聊或是輕鬆。若是事件難度過高,他們則會感受到擔心或焦慮(下圖)。

奇克森特米哈伊的心流狀態模型。心流的產生要在技巧成熟度和事件難度達到一個平衡下才會產生。圖/Wikipedia

心流狀態最常見於人們參與具有挑戰性的活動,例如運動、藝術創作、音樂演奏、學習新技能或專注於特定任務。NBA 知名球星麥可喬丹(Michael Jordan)在 1988 年的灌籃大賽上演罰球線飛身灌籃是史上最經典的灌籃場景之一。要能在距離籃框如此遠的距離起跳,並成功灌進那小小的籃框,是一件相當困難的任務,甚至麥可在比賽第一次的嘗試也並未成功。

唯有運動員全神貫注,展現心流狀態才有機會完成如此高難度的表演。此外,在七、八年級生熟知的經典懷舊動畫閃電霹靂車,頂尖賽車手有機會施展出「零的領域」,一種能提高周圍感知能力自然施展高超的賽車技巧,也類似心流狀態。

喬丹灌籃。 圖/GIPHY

然而,心流的狀態也會發生在普通的情況下,包含工作或休閒時間從事某些任務時。譬如電腦玩家在玩一款遊戲時,遊玩超過數個小時也不感到無聊、疲勞或飢餓。又或是享受美食時,那好吃到忘我的境界,也常常讓人忘記痛苦並沉浸在幸福感之中(圖三)。如果你正在享受閱讀這篇文章帶來的樂趣,或許你也正處於心流狀態。

-----廣告,請繼續往下閱讀-----
心流的產生可能比我們想像中常見,譬如享受美食而吃到忘我的境界。圖/千と千尋の神隠し – スタジオジブリ|STUDIO GHIBLI
不能吃太胖喔會被殺掉的。圖/千と千尋の神隠し – スタジオジブリ|STUDIO GHIBLI

大腦是如何影響心流狀態的產生?

心流狀態對幸福感和滿足感有正面影響,能提高工作表現、增加創造力和增進學習效果。過去有相當多關於心流的心理學理論,但若想要心流狀態在工作、生活、又甚至是精神醫學有進一步的廣泛應用,了解心流的大腦神經機制是極其重要的[5]。

暫時性次額葉假說(Transient Hypofrontality Hypothesis)是神經科學家阿恩·迪特里希(Arne Dietrich)於 2004 年提出解釋心流的一個假說 [6]。該假說認為大腦的資源是有限被分配的,而當心流狀態產生時,外顯功能相關腦區如前額葉(負責邏輯推論和執行功能)以及內側顳葉(記憶功能)會降低,但內隱功能相關腦區基底核(控制自主運動)則是升高。該假說認為心流狀態是透過內隱,也就是透過自動化且技能相關的知識來運作,並減少外顯系統如抽象推論和自我反思的歷程。

這就好比當我們學會騎腳踏車,我們不需要知道是怎麼騎的,但當我們一坐上椅墊,踏起踏板,我們身體就自然地駕馭看似很難平衡的腳踏車,而這狀態也如同心流。該假說也被另一個研究團隊透過功能性磁共振成像(Functional Magnetic Resonance Imaging,fMRI)部分證實,他們發現心流狀態時扣帶皮質( Cingulate Cortex) 、內側前額葉(Medial Prefrontal Cortex)以及內側顳葉包含杏仁核(Medial Temporal Lobe including the Amygdala)都看到活動下降,而前腦島(Anterior Insula)、額下回( Inferior Frontal Gyri), 基底核(Basal Ganglia) 以及中腦(Midbrain)則有活動上升的跡象 [7]。

有趣的是,另一派學者提出了和暫時性次額葉假說完全相反的看法,稱作心流的同步理論(Synchronization Theory of Flow)。神經科學家勒內·韋伯(René Weber)在 2009 的一篇文章認為暫時性次額葉假說過度簡化心流狀態,並且忽略了高度專注在心流狀態時的重要性[8]。在專注時,前額葉會高度活化[9],說明心流狀態需要注意力相關的腦區網路整合同步。這理論是基於認知神經科學家麥可·波斯納(Michael Posner)在 1987 年的注意力三元理論(Tripartite Theory of Attention)。

-----廣告,請繼續往下閱讀-----

此理論模型包含警覺(意識到刺激:前額葉和頂葉(Parietal Lobe))、定向(分配注意力資源到刺激:上下頂葉、上丘(Superior Colliculus)和前視野(Frontal Eye Field))和注意力的執行功能(目標導向的處理,調節警覺和定向網絡:內側前額皮層、前扣帶皮層和外側前額皮層)[10]。後續也有研究進一步證實此理論,透過功能性近紅外光譜技術(Functional Near – Infrared Spectroscopy , fNIRS)[11] 和功能性磁共振成像[7][12],心流狀態時前額葉網路的活動是上升的。

受試者在心流狀態時的功能性磁共振成像圖。圖/參考資料 7

2020 年,心理學家 Dimitri van der Linden 提出的大尺度網路(Large-scale network)觀點整合了過去心流狀態腦科學的理論[13]。他認為心流狀態的產生需要透過多巴胺和正腎上腺素系統調節內在動機以及情緒反應的引導[14],接著三個和注意力相關的大尺度的大腦網路的交互作用則是心流產生的關鍵。

這三個大尺度網路分別是默認模網路(Default Mode Network),這與自我察覺有關。第二個是中央執行網絡(Central Executive Network),這和全心投入與專注有關。第三個則是顯著網路(Salience Network),這和分配與協調大腦資源並平衡默認網路和中央執行網路活動相關(下圖)。心流狀態的產生,可能與大腦網路模式不斷的切換而達到的一種和諧穩定有關。

顯著網路作為大腦切換默認網路和中央執行網路的調節。 圖/參考資料 13

心流狀態是一個非常複雜的現象,目前的研究主要探討心流狀態產生時的現象和神經反應的相關性。未來仍需要更進一步的研究,來解析心流狀態是否能透過外部操弄的方式,譬如穿顱磁刺激術(Transcranial Magnetic Stimulation)(下圖),來創造並改善人們生活。

-----廣告,請繼續往下閱讀-----
穿顱磁刺激術示意圖。圖/Wikipedia

心流作為養生之道,呼應庖丁解牛

心流狀態被認為能促進正向心理來提高專注度以及愉悅感,不論是數千年前的庖丁、籃球之神喬丹、又或是一般人,每個人或多或少都曾經體會過那種難以用言語的心流狀態。透過現代科學測量儀器,我們有機會能更進一步了解大腦是如何產生心流,提高生活和工作的品質,來達到莊子提倡注重內在精神的養生之道。

參考文獻:

1. 庖丁解牛 – 維基百科,自由的百科全書 (wikipedia.org)

2. 庖丁解牛 – 教育百科 | 教育雲線上字典 (cloud.edu.tw)

3. 庖丁解牛(古代寓言)_百度百科 (baidu.com)

-----廣告,請繼續往下閱讀-----

4. Flow (psychology) – Wikipedia

5. Brain activity during flow : A systematic review (diva-portal.org)

6. Neurocognitive mechanisms underlying the experience of flow – ScienceDirect

7. Neural signatures of experimentally induced flow experiences identified in a typical fMRI block design with BOLD imaging | Social Cognitive and Affective Neuroscience | Oxford Academic (oup.com)

-----廣告,請繼續往下閱讀-----

8. Theorizing Flow and Media Enjoyment as Cognitive Synchronization of Attentional and Reward Networks | Communication Theory | Oxford Academic (oup.com)

9. Typologies of attentional networks | Nature Reviews Neuroscience

10.  Isolating attentional systems: A cognitive-anatomical analysis | SpringerLink

11. Brain activity during the flow experience: A functional near-infrared spectroscopy study – ScienceDirect

12. Neural correlates of experimentally induced flow experiences – ScienceDirect

13. Go with the flow: A neuroscientific view on being fully engaged – Linden – 2021 – European Journal of Neuroscience – Wiley Online Library

14. Frontiers | The Neuroscience of the Flow State: Involvement of the Locus Coeruleus Norepinephrine System (frontiersin.org)

YTC_96
11 篇文章 ・ 19 位粉絲
從大學部到博士班,在神經科學界打滾超過十年,研究過果蠅、小鼠以及大鼠。在美國取得神經科學博士學位之後,決定先沉澱思考未來的下一步。現在於加勒比海擔任志工進行精神健康知識以及大腦科學教育推廣。有任何問題,歡迎來信討論 ytc329@gmail.com。

1

6
1

文字

分享

1
6
1
萌翻全網!英國跳水選手Tom Daley「場邊打毛線」為金牌織一個家——淺談心流對運動員的影響
Bonnie_96
・2021/08/05 ・2537字 ・閱讀時間約 5 分鐘

「你有沒有過很投入地完成某件事,達到一種很忘我境界的經驗?」這其實就是正向心理學中的心流(Flow)概念。在今年東京奧運中,最能夠體現心流的,莫過於英國金牌跳水選手湯姆戴利(Tom Daley)了!

當大家在屏氣凝神觀賞跳水決賽的同時,戴利在場邊非常投入地編織。甚至,在前往東京的班機上,他還是不停地繼續編織。光是這段期間他就幫自己的奧運金牌織了一個「家」,也完成自家法鬥的衣服等作品。

為此,戴利還開了專屬編織的 Instagram帳號,分享自己的編織作品。場邊編織影片爆紅後,他也在社群中回應,「編織已經成了我尋求平靜、滿足和放鬆壓力的方式,我愛編織!」。

英國金牌跳水選手湯姆戴利(Tom Daley) 在 Instagram 上展示他為金牌所編織的「家」。圖/Tom Daley

編織真的可以讓人變快樂嗎?

先說結論,編織真的能夠幫助我們變得更快樂、更放鬆。英國卡迪夫大學學者萊利(Jill Riley)等人,就曾針對全球超過 3500 多名編織愛好者進行調查1,並發現這項活動能夠帶來極為顯著的心理和社會效益。

像是,很多編織愛好者都提到,編織是為了要放鬆、緩解壓力和提升自己的創造力。其實,研究結果就發現,編織頻率與感受到平靜與快樂的情緒,存在顯著關係。

-----廣告,請繼續往下閱讀-----

透過編織不僅能讓人感受幸福之外,也連帶提升生活品質,更改善自身的人際關係、促進社會聯繫。

還有,一項針對飲食障礙症患者所進行的研究2,也發現針織能夠幫助他們減輕對身材、飲食和體重等的焦慮、強迫性意念等。所以,也建議未來可以考慮將針織活動引入臨床治療中,畢竟成本低、也很容易學習,減緩症狀的效果也蠻顯著的。

編織不僅能讓我們變快樂,甚至還能幫助飲食障礙症患者的治療。圖/Pexels

心流告訴你,為什麼快樂的時光過得特別快?

我們可能在日常生活中,或多或少有過很投入地某件事,以至於感覺時間變得更快/慢的經驗。而這就是心流,最早提出這個概念的,是正向心理學家契克森米哈伊 (Mihaly Csikszentmihalyi)。

「一種當人全神貫注投入、沉浸在充滿創造力或樂趣的活動中時,體驗到渾然忘我的一種感受。」,這就是當我們體驗到心流的狀態3

-----廣告,請繼續往下閱讀-----

聽起來要能夠體驗心流,對一般人而言不是件容易的事。但實際上,在日常生活中,不論是運動、閱讀、工作,或是靜坐冥想等活動,都能夠引發我們體驗到心流。甚至,契克森米哈伊還發現日本青少年和朋友一起尬車的時候,也會出現心流活動。

契克森米哈伊發現,日本青少年和朋友一起尬車的時候,也會出現心流活動。圖/GIPHY

然而,也不是所有的活動,都能讓人體驗到心流。基本上,能夠引發心流活動,需要包含三個條件:

  • 從事一件艱難、但有機會成功的活動。也就是說,活動雖然有點挑戰,但是自己有一定的能力和機會,可以挑戰成功。當我們要完成有挑戰的活動時,不只需要投入大量精力之外,也需要具備適當的技能,能夠知道要完成特定活動,需要經過哪些步驟等。
  • 活動必須有「明確的目標和進度」。明確且有挑戰性的目標,不僅可以讓人帶來樂趣之外,也可以隨時掌握自己努力的方向與狀況。
  • 活動必須能夠提供「即時的反饋」。目標和反饋的兩項元素,在心流活動中尤其重要。回饋不只是人在完成目標的過程中,監測進度的最好指標,也是我們的成就感來源。

當我們進入心流狀態後,會發生什麼事呢?你就會全神貫注地在做這件事,也會因為非常投入,而忘卻平常讓人煩心的事情和挫折等負面事情。且甚至進入忘我的境界後,也會連帶影響我們對於時間的感受。

在體驗心流活動中,也會讓我們對於時間的感受,和平常不一樣。像是,你可能會因為太投入完成某件事,覺得才過幾分鐘。實際上,已經過了一小時。有時,也會反過來。感覺過了幾小時,其實只過了半個小時。

-----廣告,請繼續往下閱讀-----
在體驗心流活動中,會讓我們對於時間的感受,和平常很不一樣。圖/Pixabay

運動員的心流體驗,與運動表現正相關

因此,契克森米哈伊也總結,「提供探索」、「創造的感受」是引發心流活動的兩大共通點。所以,其實也不難理解為什麼有這麼多人喜歡編織活動,認為這項活動能夠讓人放鬆、減緩壓力等好處。

因為在編織的過程中,我們就是朝著完成毛衣、玩偶等目標前進。而當編織的技能越嫻熟,你也能夠掌握自己編織的節奏與速度,這也符合掌握的可能性。且編織完成後,你不僅馬上就擁有自己的手做物之外,也會有滿滿的成就感。

關鍵就在於,編織活動是屬於能夠引發人體驗心流的活動之一,且也能夠讓人集中注意力。戴利在場邊編織,不只可以讓他在賽事之間放鬆,也能讓他進入心流狀態、保持專注。過去,在200多名運動員的研究中4,就發現運動員的心流體驗和運動表現是正相關。尤其當運動員處在正向情緒狀態中,和運動表現的提升也有相關。

所以,不論是在競爭激烈的頂尖賽事中,或是在日常生活等,透過從事不同活動,讓自己進入心流狀態,來排解自身壓力,也是個很好的選擇。這樣講完後,你是否更加心動,想開始學編織了呢?

-----廣告,請繼續往下閱讀-----
編織可以引起「心流」,也因此能使人放鬆、緩解壓力。圖/Pexels

參考資料

  1. Riley, J., Corkhill, B., & Morris, C. (2013). The Benefits of Knitting for Personal and Social Wellbeing in Adulthood: Findings from an International Survey. British Journal of Occupational Therapy, 76(2), 50–57.
  2. Clave-Brule, M., Mazloum, A., Park, R. J., Harbottle, E. J., & Birmingham, C. L. (2009). Managing anxiety in eating disorders with knitting. Eating and weight disorders : EWD, 14(1), e1–e5. https://doi.org/10.1007/BF03354620
  3. Mihaly Csikszentmihalyi(2019)。《心流:高手都在研究的最優體驗心理學(繁體中文唯一全譯本)》。台北:行路出版社。
  4. Stavrou, N. A., Jackson, S. A., Zervas, Y., & Karteroliotis, K. (2007). Flow experience and athletes’ performance with reference to the orthogonal model of flow. The Sport Psychologist, 21(4), 438–457. https://doi.org/10.1123/tsp.21.4.438 
所有討論 1
Bonnie_96
21 篇文章 ・ 33 位粉絲
喜歡以科普的方式,帶大家認識心理學,原來醬子可愛。歡迎來信✉️ lin.bonny@gmail.com