1

7
3

文字

分享

1
7
3

永無止境的圓周率追尋之旅──《數學大觀念》

貓頭鷹出版社_96
・2017/03/13 ・4986字 ・閱讀時間約 10 分鐘 ・SR值 503 ・六年級

  • 【科科愛看書】無論何時,只要想到數學就一個頭兩個大?那你肯定還沒看過《數學大觀念:從數字到微積分,全面理解數學的 12 大觀念》!此書從簡單加減到高深微積分,用嶄新的視角連結密碼般的數字和真實人生,循序漸進去探索數學的規律和其中令人讚嘆的美好。讓我們一起將數學砍掉重練,邁向數學偉大的航道吧!

π 數知多少? 真有如滔滔江水,連綿不絕啊~

只要仔細測量,你便可以用實驗的方法確定 π 稍微大於 3。但是自然而然浮現了兩個問題:

  1. 你可否在不用任何實質測量的條件下,證明 π 是一個接近 3 的數?
  2. π 又是否能用一個簡單的分數或是公式來表示?

第一個問題可以經由畫一個半徑為 1 的圓來回答,這個圓的面積是 π12=π。在下圖中,我們畫出一個邊長為 2 的正方形,將這個圓完整的包在裡面。由於這個圓的面積一定小於正方形的面積,這就證明了 π<4。

圖/《數學大觀念

另一方面,這個圓包含了一個六邊形,它的六個角平均分布在圓周上。這個內接六邊形的周長是多少呢?六邊形可以分解成 6 個三角形,每個三角形都有一個 360º/6=60º 的圓心角,而且每個三角形中有兩邊是圓的半徑(長度為 1),所以它們都是等腰三角形。根據等腰三角形定理,另外兩個角有相同的角度,所以一定都是 60º。

因此,這些三角形都是邊長為 1 的等邊三角形。於是這個六邊形的周長是 6,而它一定比圓周 2π 少一點。因此 6<2π,也就是 π>3。將這些結果放在一起,我們就會得到 3<π<4。

-----廣告,請繼續往下閱讀-----

我們可以用具有更多個邊的多邊形來將 π 限縮在更小的區間中。舉例來說,如果我們不用正方形,而是用一個六邊形將單位圓包起來,就能證明 π<2√3=3.46……。


這個六邊形同樣可以被細分成六個等邊三角形,每一個三角形都可以再細分成兩個全等的直角三角形。如果較短的直角邊其長度為 x,那麼斜邊的長度就是 2x。根據畢氏定理,x2+1=(2x)2,我們即可解出 x=1/√3。

由此可知,這個六邊形的周長是 12/√3=4√3。而因為這個數大於這個圓的周長 2π,於是 π<2√3。(有趣的是,如果將這個圓與這個六邊形兩者的面積互相比較,我們也會得到相同的結論。)

根據這個結果,偉大的古希臘數學家阿基米德(西元前 287~212 年)進一步創造出 12、24、48 和 96 邊的內接和外切多邊形,並導出 3.14103<π<3.14271,以及一個更簡單的不等式:3 又 10/71<π<3 又 1/7

分數啊,請為我找到 π 吧!

用分數逼近 π 有很多簡單的方式,比方說:314/100=3.14、22/7=3.142857、355/113=3.14159292……。

-----廣告,請繼續往下閱讀-----

我特別喜歡最後一個逼近式,因為它不只正確產生小數點後的前六位數,也把最初三個奇數各用上兩次:依序是兩個 1、兩個 3 和兩個 5!

當然,若能找出一個剛好等於 π 的分數會很有趣。(其中分子和分母都是整數,否則我們可以直接用 π=x/1。)不過,朗伯(Johann Heinrich Lambert)在 1768 年證明了 π 是一個無理數,也就證明了上述的嘗試徒勞無功。

或許 π 可以用某個簡單數目的平方根或立方根來表示?舉例來說,√10=3.162…已經相當接近了。

但是在 1882年,林德曼(Ferdinand von Lindemann)證明了 π 不只是無理數,還是一個超越數。也就是說,π 不是任何一個整係數多項式的根。舉例來說,√2 是一個無理數,但它並不是一個超越數,因為 √2 是多項式 x2−2 的根。

-----廣告,請繼續往下閱讀-----

雖然 π 並不能用一個分數來表示,卻能表示成無窮多個分數的總和或乘積!舉例來說,我們在第十二章會看到:π=4(1-1/3+1/5-1/7+1/9-1/11…)

這個公式不僅美麗,也相當驚人,但在計算 π 的眾多公式中,它並不算是非常實用的一個。算了 300 項之後,我們仍舊不會得到比 22/7 更逼近 π 的數值。下面是另一個驚人的公式,我們稱之為沃利斯公式,它以一個無窮乘積來計算 π,不過同樣需要花很長的時間來收斂。

π=4(2/3×4/3×4/5×6/5×6/7×8/7×8/9…)=4(1-1/9)(1-1/25)(1-1/49)(1-1/81)…

躺著背、坐著背、趴著背,還是 π 最好背!

由於大家都為 π 所著迷(一部分是為了測試超級電腦的速度和準確性),所以 π 曾經被算到幾兆位數。當然,其實我們並不需要這種精確度,只要知道 π 的前四十位數,你就可以測量出已知宇宙的周長,誤差不超過氫原子的半徑!

π 這個數已經發展到近乎讓人狂熱崇拜的地步了。許多人喜歡在「π 日」(3 月 14 日,用數字來呈現就是 3/14,剛好也是愛因斯坦的生日)讚頌 π。

-----廣告,請繼續往下閱讀-----
It’s Pi Day~~~圖/GIPHY

在這一天,典型的活動可能包含展示和食用以數學為裝飾主題的派、打扮成愛因斯坦的樣子,當然也少不了 π 的記憶大賽。參賽的學生一般都可以記住 π 的幾十位數,但通常贏家都是那些記得超過一百位數的人。

對了,目前記憶 π 的世界紀錄是呂超這位中國人,他曾在 2005 年背誦出了 π 的 67,890 位數!根據《金氏世界紀錄》,呂超花了四年才記住這麼多位數,他也花了整整一天多的時間才將這些位數統統背誦出來。我們來看看 π 的前一百位數:

π = 3.141592653589793238462643383279502884197169399375105
820974944592307816406286208998628034825342117067 …

經過這麼多年,人們早已想出一些背誦圓周率的妙方,其中之一就是創造特殊的英文句子,讓句子裡每個單字所包含的字母數代表 π 的下一位數。一些著名的例子包括:

「How I wish I could calculate pi.」(得到七位數:3.141592)

「How I want a drink, alcoholic of course, after the heavy lectures involving quantum mechanics.」(提供了十五位數)

記憶吐…派?圖/GIPHY
  • (譯注:而在中文裡,有人用諧音的方式將圓周率藏在詩句中,其中最著名的是〈山巔〉這首五言絕句:「一寺一壺酒,二柳舞扇舞,把酒棄舊山,惡善百世流。」連題目共得到二十一位數:3.14159265358979323846。)

最令人佩服的例子出現在 1995 年,凱斯(Mike Keith)利用愛倫坡一首鬼斧神工的打油詩〈烏鴉〉創造出記住 740 位數的方法。這首詩的標題和第一節加起來就能產生出 42 位數,其中由十個字母組成的單字對應數字 0。

-----廣告,請繼續往下閱讀-----

Poe, E. Near a Raven(譯注:對應 3.1415,以下依此類推)
Midnights so dreary, tired and weary.
Silently pondering volumes extolling all by-now obsolete lore.
During my rather long nap−the weirdest tap!
An ominous vibrating sound disturbing my chamber’s antedoor.
“This,” I whispered quietly, “I ignore.”

凱斯隨後將這首鉅作繼續延伸,寫出一首藏有 3835 位數的詩,題為〈Cadaeic Cadenza〉。(請注意,如果你用數字 3 代替字母 C、用 1 代替 A、用 4 代替 D……,那麼「cadaeic」這個字就會變成 3141593。)這首詩的開頭取材自〈烏鴉〉,但也包含了一些數位作品評論以及模仿其他詩詞的部分,比如說卡羅(Lewis Carroll)的詩作〈無聊〉(Jabberwocky)也在其中。

凱斯在這方面最新的貢獻是出版了一本書,書名是「Not a Wake: A Dream Embodying π’s Digits Fully for 10000 Decimals.」(請注意此書標題中每個單字的字母數!)這種用字母數來記憶 π 的方法有一個很大的問題,那就是即使你能記住這些句子、詩詞和故事,要立刻判斷出每個單字有多少字母也並非一件簡單的事。

關於這點,我喜歡的說法是:「多麼希望能跟大家解釋,其實通常有更好的記憶法可用。」( 「How I wish I could elucidate to others. There are often superior mnemonics!」這句話產生出13位數。)

-----廣告,請繼續往下閱讀-----
《Not a Wake: A Dream Embodying π’s Digits Fully for 10000 Decimals.》

來點音碼巧思,讓數字成為你朋友

要記住許多數字,我最喜歡用的方法是一種名為主要系統的音碼。在這套音碼中,每個數字都用一個或多個子音來表示。更具體地說:

1=t 或d
2=n
3=m
4=r
5=l
6=j、ch 或 sh
7=k 或硬 g 音
8=f 或 v
9=p 或 b
0=s 或 z

甚至還有人發明了幫你記住這套記憶系統的記憶法呢!我的朋友馬洛斯科維普(Tony Marloshkovips)提供了下列建議:字母 t(或發音相似的 d)中藏有一條直線;n 有兩條;m 有三條;而愛地球就別忘了環保 4R。伸出 5 根手指頭,你就會在拇指和食指之間看到 L;將 6 倒過來,看起來就很像字母 j;而兩個 7 可以組成一個K。(微軟系統)開機時按下 F8 能進入安全模式;將 9 左右或上下翻轉,就能得到 p 或 b。最後,ZO 就是 0 輸出的意思。

或者你也可以將這些子音統統照順序排好,形成TNMRLShKVPS,然後就會得到一個我(想像中的)朋友的名字:

-----廣告,請繼續往下閱讀-----

Tony Marloshkovips

我們只要在每個相連的子音中插入母音,就能利用這套音碼讓數字變成文字。舉例來說,31 用到的子音有 m 和 t(或是 m 和 d),因此這個數字可以轉化成如下一些單字:

31 = mate, mute, mud, mad, maid, mitt, might, omit, muddy

請注意,像是「muddy」或是「mitt」這樣的單字是可以被接受的,因為 d 和 t 聽起來像是只出現一次,拼法也不會造成任何影響。此外,因為像是 h、w 和 y 這樣的子音並沒有出現在上表中,所以這些字母也能像母音一樣自由使用。因此我們可以將 31 轉化成像是「humid」或是「midway」這樣的單字。請注意,雖然同一個數字通常可以對應許多不同的單字,但是一個單字只能表示唯一的數字。

π 的前三個位數包含子音 m、t 和 r,這三位數可以轉換成如下一些單字:314 = meter, motor, metro, mutter, meteor, midyear, amateur;前五個位數 31415 可以變成「my turtle」這個詞。若再繼續延伸至 π 的前二十四位數,314159265358979323846264 就可以變成:

My turtle Pancho will, my love, pick up my new mover Ginger

然後將接下來的十七位數 33832795028841971 變成:My movie monkey plays in a favorite bucket;我很喜歡接下來的十九位數:6939937510582097494,因為它們可以對應一些較長的單字:Ship my puppy Michael to Sullivan’s backrubber;而下面十八個位數 459230781640628620 可以帶給我們這句話:A really open music video cheers Jenny F. Jones;然後再接下來的二十二位數 8998628034825342117067 則是:Have a baby fish knife so Marvin will marinate the goose chick!

於是,我們就將圓周率的前一百位數悄悄藏在這五個傻裡傻氣的句子中了!音碼對於記憶日期、電話號碼、信用卡號等長串數字都相當有用。試試看,只要稍加練習,你就能大大增強記住許多數字的能力了。

π 還是 τ?今天要算哪一道?請選擇!

π 是數學中最重要的數之一,這一點所有的數學家都會認同。但是如果你看看那些用到 π 的公式,你會發現它們大多會將 π 乘上 2。我們用希臘字母 τ(發音類似「陶」)來代表這個數。

τ = 2π

許多人相信如果我們能回到過去,就能因為用 τ 取代 π,而讓許多數學公式以及三角學中的關鍵概念變得比較簡單。在一些文章中,比如說帕萊(Bob Palais)的〈 π 是錯誤的!〉以及哈特爾(Michael Hartl)的〈 τ 的宣言〉,作者都優雅又饒富趣味地表達過這個想法。

這個論述的「中心點」在於圓都是由半徑來定義的,當我們將圓周和半徑相比的時候,就會得到 C/r=2π = τ。有些教科書現在會標示「兼容 τ」來表示這本書同時用 π 和 τ 來寫出公式。(雖然全面改用 τ 不會是輕鬆的過程,但許多學生和老師都認為使用 τ 會比 π 更輕鬆。)觀察這項行動在未來數十年會演變成什麼樣子是相當有趣的。

τ 的支持者(他們自稱為陶幫)誠摯地相信真理站在他們那邊,但他們也能包容比較傳統的符號。如同他們所說的,陶幫絕非頑固不化。下面是 τ 的前一百位數,其中插入了一些空格,對應我們隨後會提到的記憶法。請注意,τ 的開頭是 6,接著是 28,這兩個數目都是第六章提過的「完全數」。這是個巧合嗎?當然囉!不過還算是個有趣的花絮啦。

τ = 6.283185 30717958 64769252 867665 5900576 839433 8798750
211641949 8891846 15632 812572417 99725606 9650684 234135 ⋯

2012 年,當時才十三歲的布朗(Ethan Brown)締造了一項世界紀錄。為了一個募款計畫,他背出了 τ 的 2012 位數。他也是利用音碼,但並非創造出長句,而是創造出視覺圖像。每個畫面都包括了一個主體、一個動作(結尾永遠是現在進行式的 -ing)和一個當作受詞的物體。例如 τ 的前七位數:62 831 85 就變成「An ocean vomiting a waffle」(大海吐出一塊鬆餅)。下面是他為 τ 的前一百位數所創造出來的畫面:

An ocean vomiting a waffle
A mask tugging on a bailiff
A shark chopping nylon
Fudge coaching a cello
Elbows selling a couch
Foam burying a mummy
Fog paving glass
A handout shredding a prop
FIFA beautifying the Irish
A doll shooing a minnow
A photon looking neurotic
A puppy acknowledging the sewage
A peach losing its chauffeur
Honey marrying oatmeal

為了更容易記住這些畫面,布朗採用記憶宮殿這個方法。他想像自己在學校中遊蕩,當他沿著某條走廊前進並進入一間間的教室,每間教室裡都會有三到五個主體做著一些蠢事。最後,他得到了分布在 60 個地方的 272 個圖像。花了四個月準備之後,他用了 73 分鐘背誦出那 2012 位數。

來首餘韻無窮的 π 之歌吧!

讓我們用一首讚頌 π 的樂曲來結束這一章吧。這是我根據雷斯(Larry Lesser)的模仿歌曲〈美國 π〉(American Pi)所寫的一段新歌詞(譯著:雷斯所模仿的對象是〈American Pie〉這首經典歌曲)。這首歌你應該只唱一次就好,因為 π 是不會自我重複的。

很久,很久以前,
我還記得數學課總是讓我打瞌睡。
因為我們碰上的每一個數,
不是有終點就是一直重複。
但或許這世上其實有更厲害的數

但後來我的老師說:「給你一個挑戰,
試著找出圓的面積。」
雖然我嘗試無數,
我還是找不出一個分數。

我不記得我是不是哭了,
愈是嘗試或限制範圍,
但在我心深處有個東西觸動了我
就在這一天我認識了 π!

π 啊 π,數學上的 π,
兩個十一除以七是個不錯的嘗試。
你或許希望能提出一個美好的分數
但它的小數展開永不止息,
小數展開永不止息。

π 啊 π,數學上的 π,
3.141592653589。
你或許希望能用一個美好的分數來定義它,
但是小數展開永不止息!


本文摘自《數學大觀念:從數字到微積分,全面理解數學的 12 大觀念》,貓頭鷹出版

文章難易度
貓頭鷹出版社_96
65 篇文章 ・ 26 位粉絲
貓頭鷹自 1992 年創立,初期以單卷式主題工具書為出版重心,逐步成為各類知識的展演舞台,尤其著力於科學科技、歷史人文與整理台灣物種等非虛構主題。以下分四項簡介:一、引介國際知名經典作品如西蒙.德.波娃《第二性》(法文譯家邱瑞鑾全文翻譯)、達爾文傳世經典《物種源始》、國際科技趨勢大師KK凱文.凱利《科技想要什麼》《必然》與《釋控》、法國史學大師巴森《從黎明到衰頹》、瑞典漢學家林西莉《漢字的故事》等。二、開發優秀中文創作品如腦科學家謝伯讓《大腦簡史》、羅一鈞《心之谷》、張隆志組織新生代未來史家撰寫《跨越世紀的信號》大系、婦運先驅顧燕翎《女性主義經典選讀》、翁佳音暨曹銘宗合著《吃的台灣史》等。三、也售出版權及翻譯稿至全世界。四、同時長期投入資源整理台灣物種,並以圖鑑形式陸續出版,如《台灣原生植物全圖鑑》計八卷九巨冊、《台灣蛇類圖鑑》、《台灣行道樹圖鑑》等,叫好又叫座。冀望讀者在愉悅中閱讀並感受知識的美好是貓頭鷹永續經營的宗旨。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
【科學說文解字】才不是白色情人節!是 π DAY!公式裡常見的符號到底該怎麼寫、怎麼唸?
PanSci_96
・2024/03/14 ・779字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

各位觀眾~今天是什麼節日呢?

什麼?情人節?

嘖嘖嘖,只知道這個的話就膚淺了。

今天可是圓周率日、愛因斯坦的生日、霍金的忌日……是巧合嗎?我可不這麼認為!總之,對於科學界來說,3 月 14 日不僅僅是白色情人節,而是一個意義非凡的日子!

-----廣告,請繼續往下閱讀-----

那圓周率又有什麼酷酷的地方讓科學家如此著迷,甚至有一個專門的節日呢?快點進影片,一探究竟吧!

除了 π(pi)之外,你還認得哪些希臘字母呢?從國中就認識的朋友——代表波長的 λ(lambda):

還是代表頻率,長得很像 v,常常害小編認錯的 ν(nu)?

在高中認識的 μ(mu),除了用於微米、代表摩擦係數,它還有什麼意思呢?

-----廣告,請繼續往下閱讀-----

快動動你的指頭搜尋一下吧!

最後這個像蛇的符號是什麼啊?長得有點像 Z 的書寫體?

沒錯!拉丁字母的 Z 就是從 ζ(zeta)來的。

而數學上有許多 ζ 函數,其中,最為知名的便是發現質數規律的黎曼 ζ 函數。

-----廣告,請繼續往下閱讀-----

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

討論功能關閉中。

0

0
0

文字

分享

0
0
0
民眾黨是未來台灣政治的樞紐?
林澤民_96
・2024/01/30 ・3382字 ・閱讀時間約 7 分鐘

一、前言

選後的立法院三黨不過半,但民眾黨有八席不分區立委,足以與民進黨或國民黨結成多數聯盟,勢將在國會居於樞紐地位。無獨有偶的是:民眾黨主席柯文哲在總統大選得到 26.5% 的選票,屈居第三,但因其獲得部分藍、綠選民的支持,在選民偏好順序組態的基礎上,它卻也同樣地居於樞紐地位。這個地位,將足以讓柯文哲及民眾黨在選後的台灣政壇持續激盪。

二、柯文哲是「孔多塞贏家」?

這次總統大選,誰能脫穎而出並不是一個特別令人殷盼的問題,更值得關心的問題是藍白綠「三跤㧣」在選民偏好順序組態中的消長。台灣總統大選採多數決選制,多數決選制英文叫 first-past-the-post(FPTP),簡單來講就是票多的贏,票少的輸。在 10 月中藍白合破局之後,賴蕭配會贏已經沒有懸念,但這只是選制定規之下的結果,換了另一個選制,同樣的選情可能就會險象環生。

從另一個角度想:選制是人為的,而選情反映的是社會現實。政治學者都知道天下沒有十全十美的選制;既定的選制推出了一位總統,並不代表選情的張力就會成為過眼雲煙。當三股社會勢力在制度的帷幕後繼續激盪,台灣政治將無法因新總統的誕生而趨於穩定。

圖/作者自製

如果在「三跤㧣」選舉之下,選情的激盪從候選人的得票多少看不出來,那要從哪裡看?政治學提供的一個方法是把候選人配對 PK,看是否有一位候選人能在所有的 PK 中取勝。這樣的候選人並不一定存在,如果不存在,那代表有 A 與 B 配對 A 勝,B 與 C 配對 B 勝,C 與 A 配對 C 勝的 A>B>C>A 的情形。這種情形,一般叫做「循環多數」(cyclical majorities),是 18 世紀法國學者孔多塞(Nicolas de Condorcet)首先提出。循環多數的存在意涵選舉結果隱藏了政治動盪。

-----廣告,請繼續往下閱讀-----

另一方面,如果有一位候選人能在配對 PK 時擊敗所有的其他候選人,這樣的候選人稱作「孔多塞贏家」(Condorcet winner),而在配對 PK 時均被擊敗的候選人則稱作「孔多塞輸家」(Condorcet loser)。三角嘟的選舉若無循環多數,則一定會有孔多塞贏家和孔多塞輸家,然而孔多塞贏家不一定即是多數決選制中贏得選舉的候選人,而多數決選制中贏得選舉的候選人卻可能是孔多塞輸家。

如果多數決選制中贏得選舉的候選人不是孔多塞贏家,那與循環多數一樣,意涵選後政治將不會穩定。

那麼,台灣這次總統大選,有沒有孔多塞贏家?如果有,是多數決選制之下當選的賴清德嗎?我根據戴立安先生調查規劃的《美麗島電子報》追蹤民調第 109 波(1 月 11 日至 12 日),也是選前最後民調的估計,得到的結果令人驚訝:得票墊後的柯文哲很可能是孔多塞贏家,而得票最多的賴清德很可能是孔多塞輸家。果然如此,那白色力量將會持續地激盪台灣政治!

我之前根據美麗島封關前第 101 波估計,侯友宜可能是孔多塞贏家,而賴清德是孔多塞輸家。現在得到不同的結果,顯示了封關期間的三股政治力量的消長。本來藍營期望的棄保不但沒有發生,而且柯文哲選前之夜在凱道浩大的造勢活動,還震驚了藍綠陣營。民調樣本估計出的孔多塞贏家本來就不準確,但短期內的改變,很可能反映了選情的激盪,甚至可能反映了循環多數的存在。

-----廣告,請繼續往下閱讀-----

三、如何從民調樣本估計孔多塞贏家

根據這波民調,總樣本 N=1001 位受訪者中,如果當時投票,會支持賴清德的受訪者共 355 人,佔 35.4%;支持侯友宜的受訪者共 247 人,佔 24.7%。支持柯文哲的受訪者共 200 人,佔 19.9%。

美麗島民調續問「最不希望誰當總統,也絕對不會投給他的候選人」,在會投票給三組候選人的 802 位支持者中,一共有 572 位對這個問題給予了明確的回答。《美麗島電子報》在其網站提供了交叉表如圖:

根據這個交叉表,我們可以估計每一位明確回答了續問的受訪者對三組候選人的偏好順序,然後再依這 572 人的偏好順序組態來判定在兩兩 PK 的情形下,候選人之間的輸贏如何。我得到的結果是:

  • 柯文哲 PK 賴清德:311 > 261(54.4% v. 45.6%)
  • 柯文哲 PK 侯友宜:287 > 285(50.2% v. 49.8%)
  • 侯友宜 PK 賴清德:293 > 279(51.2% v. 48.8%)

所以柯文哲是孔多塞贏家,賴清德是孔多塞輸家。當然我們如果考慮抽樣誤差(4.1%),除了柯文哲勝出賴清德具有統計顯著性之外,其他兩組配對可說難分難解。但在這 N=572 的小樣本中,三位候選人的得票率分別是:賴清德 40%,侯友宜 33%,柯文哲 27%,與選舉實際結果幾乎一模一樣。至少在這個反映了選舉結果的樣本中,柯文哲是孔多塞贏家。依多數決選制,孔多塞輸家賴清德當選。

-----廣告,請繼續往下閱讀-----

不過以上的分析有一個問題:各陣營的支持者中,有不少人無法明確回答「最不希望看到誰當總統,也絕對不會投給他做總統」的候選人。最嚴重的是賴清德的支持者,其「無反應率」(nonresponse rate)高達 34.5%。相對而言,侯友宜、柯文哲的支持者則分別只有 24.1%、23.8% 無法明確回答。為什麼賴的支持者有較多人無法指認最討厭的候選人?一個假設是因為藍、白性質相近,對許多綠營選民而言,其候選人的討厭程度可能難分軒輊。反過來說,藍、白陣營的選民大多數會最討厭綠營候選人,因此指認較無困難。無論如何,把無法明確回答偏好順序的受訪者歸為「遺失值」(missing value)而棄置不用總不是很恰當的做法,在這裡尤其可能會造成賴清德支持者數目的低估。

補救的辦法之一是在「無法明確回答等於無法區別」的假設下,把「遺失值」平分給投票對象之外的其他兩位候選人,也就是假設他們各有 1/2 的機會是無反應受訪者最討厭的候選人。這樣處理的結果,得到

  • 柯文哲 PK 賴清德:389 > 413(48.5% v. 51.5%)
  • 柯文哲 PK 侯友宜:396 > 406(49.4% v. 50.6%)
  • 侯友宜 PK 賴清德:376 > 426(46.9% v. 53.1%)

此時賴清德是孔多塞贏家,而柯文哲是孔多塞輸家。在這 N=802 的樣本中,三位候選人的得票率分別是:賴清德 44%,侯友宜 31%,柯文哲 25%。雖然依多數決選制,孔多塞贏家賴清德當選,但賴的得票率超過實際選舉結果(40%)。用無實證的假設來填補遺失值,反而造成賴清德支持者數目的高估。

如果擔心「無法明確回答等於無法區別」的假設太勉強,補救的辦法之二是把「遺失值」依有反應受訪者選擇最討厭對象的同樣比例,分給投票對象之外的其他兩位候選人。這樣處理的結果,得到

-----廣告,請繼續往下閱讀-----
  • 柯文哲 PK 賴清德:409 > 393(51.0% v. 49.0%)
  • 柯文哲 PK 侯友宜:407 > 395(50.8% v. 49.2%)
  • 侯友宜 PK 賴清德:417 > 385(52.0% v. 48.0%)

此時柯文哲又是孔多塞贏家,而賴清德又是孔多塞輸家了。這個樣本也是 N=802,三位候選人的得票率分別是:賴清德 44%,侯友宜 31%,柯文哲 25%,與上面的結果一樣。

以上三種無反應處理方法都不盡完美。第一種把無反應直接當遺失值丟棄,看似最不可取。然而縮小的樣本裡,三位候選人的支持度與實際選舉結果幾乎完全一致。後兩種以不同的假設補足了遺失值,但卻過度膨脹了賴清德的支持度。如果以樣本中候選人支持度與實際結果的比較來判斷遺失值處理方法的效度,我們不能排斥第一種方法及其結果。

無論如何,在缺乏完全資訊的情況下,我們發現的確有可能多數決輸家柯文哲是孔多塞贏家,而多數決贏家賴清德是孔多塞輸家。因為配對 PK 結果缺乏統計顯著性,我們甚至不能排除循環多數的存在。此後四年,多數決選制產生的總統能否在三角嘟力量的激盪下有效維持政治穩定,值得我們持續觀察。

四、結語

柯文哲之所以可以是孔多塞贏家,是因為藍綠選民傾向於最不希望對方的候選人當總統。而白營的中間偏藍位置,讓柯文哲與賴清德 PK 時,能夠得到大多數藍營選民的奧援而勝出。同樣的,當他與侯友宜 PK 時,他也能夠得到一部份綠營選民的奧援。只要他的支持者足夠,他也能夠勝出。反過來看,當賴清德與侯友宜 PK 時,除非他的基本盤夠大,否則從白營得到的奧援不一定足夠讓他勝出。民調 N=572 的樣本中,賴清德得 40%,侯友宜得 33%,柯文哲得 27%。由於柯的支持者討厭賴清德(52.5%)遠遠超過討厭侯友宜(23.7%),賴雖然基本盤較大,能夠從白營得到的奧援卻不多。而侯雖基本盤較小,卻有足夠的奧援。柯文哲之所以成為孔多塞贏家,賴清德之所以成為孔多塞輸家,都是這些因素的數學結果。

-----廣告,請繼續往下閱讀-----

資料來源

討論功能關閉中。

林澤民_96
37 篇文章 ・ 243 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。