1

9
2

文字

分享

1
9
2

傳入歐洲的阿拉伯數字推動代數改革──《無限的力量》

PanSci_96
・2020/11/28 ・3331字 ・閱讀時間約 6 分鐘 ・SR值 580 ・九年級

崛起於東方的代數學

雖然微積分的確是在歐洲達到頂峰,但這支數學的根基其實是從別的地方開始的。比如說代數學,它起源於亞洲和中東地區。代數的英文名稱來自於阿拉伯文 al-jabr,原意為「修復」或「碎片重聚」,這是在平衡一道方程式並求解時所需的操作。舉例而言,在處理方程式時,我們經常將一個數字從等號的某一邊移除並加到另一邊,這便是一種先將方程式的一部分拆下再重新修復的過程。

另外,如同我們之前提過的,幾何學事實上源自於埃及。據傳,希臘的幾何學之父泰利斯(Thales)便是在埃及學到這門學問的。還有,幾何學中最著名的一個理論——「畢氏定理」實際上也不是畢達哥拉斯首先發現的;早在公元前 1800 年前的美索不達米亞泥板上就已經存在,證明巴比倫人知道這個定理的時間點比畢達哥拉斯早了至少一千年。

公元前 1800 年的巴比倫石板上,早已刻有畢氏三元數組。圖/Wikipedia

同時必須要注意的是,當我們提到古希臘時,其實是指一個遠超過雅典(Athens)和斯巴達(Sparta)的超廣大領土。在面積最遼闊的時候,它的南方邊界延伸到了埃及、西至義大利與西西里島、而東邊更是橫跨了地中海至土耳其、中東、中亞、甚至是部分的巴基斯坦與印度。畢達哥拉斯是在薩摩斯島(Samos)出生的,這是一座位於安納托利亞(Asia Minor;屬於今日的土耳其)西部海岸線之外的島嶼。阿基米德生活於敘拉古,它位在西西里島的東南方。而歐幾里得則在亞歷山大城附近活動,這是一座位於埃及尼羅河口的巨大港口,並且是當時的學術重鎮。

但在羅馬攻佔了希臘,特別是當位於亞歷山大城的圖書館被燒毀,以及西羅馬帝國隕落以後,數學研究的中心就又回到了東方。阿基米德、歐幾里得、托勒密、亞里斯多德和柏拉圖的作品都被翻譯成了阿拉伯文,並且被當時的學者和抄寫員流傳了下來。這些人同時也在過去的理論中添加了許多嶄新的想法。

代數如何興起,幾何又為何衰落?

在代數降臨前的幾個世紀,幾何學的進展就已經陷入了龜速慢爬時期。在阿基米德於公元前 212 年去世以後,似乎就沒有人能在這個領域超越他的成就。喔,抱歉,應該說「幾乎」沒有人可以超越。大約在公元 250 年,中國的幾何學者劉徽對阿基米德計算圓周率的方法做了改良。兩個世紀以後,祖沖之(公元 429 – 500 年,南北朝時代)使用劉徽的方法及一個 24,576 條邊的多邊形做計算,並在經過一段想必非常史詩級的算術處理後,成功將 π 值限制在以下的兩個數字之間:

3.1415926 < π < 3.1415927

祖沖之對 π 值的計算成功達到小數點後第六位正確。圖/pixabay

又過了五個世紀,進步再度來臨,這一次是由一位名為哈桑‧本‧海什木(Al-Hasan Ibn al-Haytham;在歐洲通常寫作 Alhazen)的人完成。他於約公元 965 年時出生在伊拉克(Iraq)的巴斯拉(Basra),在進入伊斯蘭黃金時代後,他來到開羅(Cairo)從事包括神學、哲學、天文、醫學等各式各樣的研究。在海什木的幾何著作中,他思考一種阿基米德從未想過的立體圖形,並嘗試計算它的面積。與這個發現本身同樣令人吃驚的是,關於幾何學的重大進展也就這些了,且中間竟然花了十二個世紀的時間。

而就在這段時間裡,代數與算術正在經歷快速且重大的發展。來自印度的數學家發明了「零」這個概念,並創造了十進制系統。另外,關於如何解方程式的代數技巧也在埃及、伊拉克、波斯和中國遍地開花。這些進展大多源自於解決真實世界中的問題,例如:遺產繼承規則、納稅評估、商業活動、計帳、利息計算、以及其它可能用到數字與方程式的主題。

別忘了,阿拉伯數字可是印度人發明的喔!圖/pixabay

代數在當時仍是用文字敘述,也因此這些問題的解決方法都被寫成類似處方箋一樣的東西,上面包含了如何一步步得到答案的文字指引。其中一本著名的教科書是由穆罕默德‧伊本‧穆薩‧花拉子米(Muhammad Ibn Musa al-Khwarizmi;公元 780 – 850 年)所編寫的,因此作者的姓氏被用來泛指所有透過一系列步驟達成目的的程序,也就是演算法(algorithm,即 al-Khwarizmi 的拉丁文譯名)這個字的由來。最終,貿易商和探險家把這種以文字敘述為基礎的代數、以及從印度與阿拉伯發源的十進制帶往了歐洲,與此同時,人們也開始將阿拉伯文的文獻轉譯成拉丁文。

到了文藝復興時期的歐洲,除了應用層面的探索以外,將代數學符號化的研究也開始盛行起來,並且在 1500 年代達到頂峰。於是,方程式的樣貌開始類似於我們現今看到的樣子,也就是用字母來取代數字的形式。1591 年時,法國的弗朗索瓦‧韋達(François Viète)以母音字母(如:A 和 E)來代表未知值,並用子音字母(如:B 和 G)來代表常數。而如今我們用 x、y、z 表示未知值;a、b、c 表示常數的的習慣則源自於約五十年後出現的笛卡兒。這種使用符號與字母來取代文字敘述的作法,使得方程式的推導與求解更為容易。

在算術上也有同樣重大的突破,那就是來自荷蘭的西蒙‧斯蒂文(Simon Stevin)將阿拉伯十進制數字從整數擴大運用到了小數上,並藉此成功消除了亞里斯多德思想中關於數字(即今天的整數,兩相鄰整數間沒有更小的單位存在)與大小(一種連續的數量,可以被分割成無限小的單位)之間的差異。

西蒙‧斯蒂文(Simon Stevin)對小數的運用讓算數有了重大的突破。圖/Wikipedia

在斯蒂文以前,十進制只適用於整數上,而任何小於一單位的數就用分數來表示;但在斯蒂文的新方法中,一個單位的整數可被切割成更小的單位,也就是小數。這對於今天的我們來說是理所當然的事,但在那時卻是一項革命性的想法。當整數具有可分割性,則整數、分數或無理數便可以被整合到一個被稱為「實數」的大家庭中,這給了微積分描述連續空間、時間、運動與變化一項強大而必需的工具。

此圖展示「芝諾悖論」中的「阿基里斯與烏龜」,當缺乏小數帶來的「連續性」與無限帶來的「極限」概念時,會出現跑比較快的阿基里斯永遠追不上烏龜的奇怪解釋。圖/Wikipedia

就在幾何學即將與代數合而為一的前夕,阿基米德所用的舊幾何學方法還有最後一次成功的應用:克卜勒將帶有弧度的物體(如:酒桶和甜甜圈形狀的物體)在腦中切成無限多片且無限薄的圓盤,並藉此計算它們的體積;另外,伽利略與他的學生埃萬傑利斯塔‧托里切利(Evangelista Torricelli)、博納文圖拉‧卡瓦列里(Bonaventura Cavalieri)也是透過將物體視為無限多條線或面的堆疊來求得面積、體積或重心。

然而,這些人在對待「無限大」或「無限小」的概念時可以說是漫不經心,因此他們的方法雖然有力且直覺,卻一點兒也不嚴謹。儘管如此,由於這些方法能比窮盡法更容易且更快速地找到答案,所以也不失為一項讓人感到興奮的進步(當然,如今我們已經知道阿基米德早就使用過這種技巧了,他在關於「方法」的論述裡早就提過相同的點子,只不過當時這些敘述被深埋在一本收藏於修道院的祈禱書之中,直到 1899 年才被人發現)。

無論如何,雖然那些新阿基米德派的做法在當時看上去相當有效,但它們卻不足以應付未來的挑戰。而符號代數此時已經蓄勢待發,與之相關的兩支強大分支,即解析幾何與微分,也已如春芽一般呼之欲出。

──本文摘自《無限的力量》,旗標出版,2020 年 09 月 09 日
文章難易度
所有討論 1
PanSci_96
1164 篇文章 ・ 1501 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
2

文字

分享

0
3
2
圓形 = 三角形?形狀之間的秘密關係——《不用數字的數學》
經濟新潮社
・2022/09/27 ・1427字 ・閱讀時間約 2 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

數學家通常都想很多,這是我們的習性。我們會分析對稱或相等這類大家都知道的基本概念,試圖找出更深層的意義。

形狀就是一個例子。我們多少都知道形狀是什麼。我們看到一個物體時,很容易就看得出它是圓形、方形還是其他形狀。但數學家會問:形狀是什麼?構成形狀的要素是什麼?我們以形狀分辨物體時,會忽略它的大小、色彩、用途、年代、重量、誰把它拿來的,以及最後誰要負責歸位。我們沒有忽略的是什麼?當我們說某樣東西是圓形時,看到的是什麼呢?

形狀百百種,可以量化嗎?

當然,這些問題沒什麼意義。就實際用途而言,我們對形狀的直覺理解就已經夠了——生活中沒有什麼重大決定是需要仰賴我們對於「形狀」的確切定義。但如果你有空又願意花時間來想一想,形狀倒是個很有趣的主題。

假設我們現在要思考了,我們或許會問自己這個問題:

世界上有多少形狀?圖/經濟新潮社

這個問題很簡單,但不容易回答。這個問題有個比較精確和有限的說法,稱為廣義龐卡赫猜想(generalized Poincaré conjecture,或譯龐加萊猜想)。這個猜想提出至今已經超過一百年,目前還沒有人解答出來。嘗試過的人相當多,有一位數學家解出這個問題的大部分,因此獲得了100萬美元獎金,但還有許多種形狀沒有找到,所以目前我們還不知道世界上一共有幾種形狀。

動手把形狀畫出來

我們來試著解答這個問題。世界上有幾種形狀?如果沒有更好的點子,有個不錯的方法是畫出一些形狀,看看會有什麼結果。

我們可以試著畫出一些形狀。圖/經濟新潮社
我們可以試著畫出一些形狀。圖/經濟新潮社

看來這個問題的答案取決於我們區分形狀的方式。大圓和小圓是相同的形狀嗎?波浪線(squiggle)應該全部算成一大類,還是應該依彎曲的方式細分?我們需要一種通用規則來解決這類爭議,才不用每次都需要停下來爭論。

從幾何學到拓樸學

可用於決定兩個形狀是否相同的規則相當多。如果是木匠或工程師,通常會希望規則既嚴謹又精確:必須長度、角度和曲線都完全相等,兩個形狀才算相同。這樣的規則屬於幾何學(geometry)這個數學領域。在這個領域裡,形狀嚴格又精確,經常做的事情是畫垂直線和計算面積等等。

決定兩個形狀是否相同的規則相當多。圖/經濟新潮社

但我們的要求比較寬鬆一點。我們想要找出所有可能的形狀,但沒時間慢慢區分幾千種不同的波浪線。我們想要的是在比較兩個形狀是否相同時比較寬鬆的規則,它能夠把所有的形狀分成若干類別,但類別的數量又不至於太多。

所以三角形可以等於圓形。圖/經濟新潮社




——本文摘自《不用數字的數學:讓我們談談數學的概念,一些你從沒想過的事……激發無窮的想像力!》,2022 年 9 月,經濟新潮社,未經同意請勿轉載。

經濟新潮社
4 篇文章 ・ 4 位粉絲

6

12
2

文字

分享

6
12
2
今晚,我想來點……圓周率的派(π)!
Yi-Hsuan Lee_96
・2021/03/14 ・2391字 ・閱讀時間約 4 分鐘 ・SR值 529 ・七年級

  • 作者/李奕萱

3 月 14 日是什麼節呢?白色情……呸呸呸!身為科學愛好者今天過的是 π day 啦!

π day 訂在 3 月 14 日,並通常在下午 1 時 59 分慶祝,是取自圓周率(π)的近似值 3.14159 而來。圖/pixabay

2009 年,美國眾議院正式通過麻省理工提出將 3 月 14 日定為國家圓周率日的申請,將 3 月 14 日正式定為圓周率日(pi day)。世界各地的科學家會吃圓周率(派,pie)、喝圓周率(雞尾酒,piña colada)、玩圓周率(皮納塔,piñata)……來紀念這個科學界的重要常數── π。這些人有多喜歡 π 呢?他們甚至發明了 π 語言!

早在 1988 年物理學家 Larry Shaw 就在舊京山的科學探索館舉辦了第一次的「π」對,人們吃派和討論關於π的事物。圖/Wikipedia

什麼是π語言呢?

π語言(Pilish),是一種特殊的書寫格式,每個單詞中的字母數與π的對應數字匹配。第一個單詞包含三個字母,第二個單詞包含一個字母,第三個單詞包含四個字母,依此類推。舉例來說:How I need a drink, alcoholic in nature, after the heavy lectures involving quantum mechanics! 就是典型的π語言,How 由三個字母組成,I 由一個字母組成,並接續下去。人們利用這個格式創作 π 文章或是 π 詩,其中最有名的是邁克爾·基思(Michael Keith)發表的一首以 π 為主題的詩《piku》:

It’s a moon,

A wheel revolving on golden earth, and lotus blossoms.

Mountains embrace windmills, and it all reflects this number, pi.

這首詩不僅符合每個字母數的規定,甚至每句的音節數也符合規定:第一句 3 個音節,第二句 14 個音節,第三句 15 個音節。π 語言除了是一種創作形式,也衍伸出一種記憶技巧──圓周率文字學(Piphilology),先記憶 π 語言撰寫的故事再回復成數字的形式來背誦 π。你想不想也試著寫看看 π 詩呢?

邁克爾甚至用這種語言寫了一本一萬字的書,叫做《不醒》(原文書名 Not A Wake: A Dream Embodying π’s Digits Fully For 10000 Decimals,也符合 π 語言的格式喔!)。圖/amazon

所以 π 是怎麼來的呢?π 又代表什麼呢?


π 源自於希臘語的 περίμετρος,有「周長」的意思,為一個圓的周長和其直徑的比值,看似很簡單的定義卻讓人類研究了數千年還是對她著迷不已。π 是無理數,用小數來表示的話就會形成一個無限的不循環小數,也就是你無法找出這些數字的規律,現代有超級電腦可以幫忙計算,那麼在沒有電腦甚至沒有計算機的的古代呢?

π 的計算最早要回溯到古埃及時期,以畫圓面積的方式計算出 π =3.16,雖然離更正確的 3.14159… 有一段差距,但當時可是公元前 1850 年的石器時代呢!後來曹魏時期的數學家劉徽和希臘化時期的阿基米德相繼提出了以相似多邊形逼近的來估算圓形周長的方式,而這些新方法也讓我們更加接近 π。

π 又有人稱作阿基米德常數,阿基米德晚年致力於幾何研究,相傳在羅馬戰士攻進城裡時阿基米德還在研究 π 的計算。圖/wikipedia

那麼 π 這個神秘的常數,在各個學界有什麼不一樣的地位呢?對於一般人來說,課本告訴我們計算π的時候要代近似值 3.14;對於軟體工程師來說,只要輸入指令就能直接從後台計算π;對數學家來說,近似值根本是邪教!!π 就是圓周跟直徑的比值,就是無法被窮盡的無理數。而這時工程師說話了:「那就當作 3 吧!」數學家頓時氣死在路邊……

工程師把數學裡兩大無理數:圓周率(π)代入 3、數學常數(e)代入 2,時常被做成迷因調侃。

海浪居然也跟 π 有關?


你知道嗎?海浪、聲音、電、路燈光線強度……這些看似跟圓形沒什麼關聯的事物其實都跟 π 有關係喔!還記得高中物理學過的海浪的簡諧運動嗎?當你把一塊會漂浮的木頭丟到海裡,木頭隨著海浪做上下規律的簡諧運動,當你把那塊浮木的運動軌跡記錄下來你就能得到一福完美的波浪圖,而圓型的秘密其實就藏在這幅圖裡!

除了波浪有做簡諧運動,水分子本身也在做簡諧運動。圖/Daniel A. Russell from Longitudinal and Transverse Wave Motion

想像有一個圓形操場,你沿著跑道等速繞圈圈,並且有一道平行光從北邊打過來,這時你就會發現自己印在南邊牆上的影子軌跡也形成一幅一模一樣的波浪圖。也就是說海浪的起伏可以看作是等速度圓周運動的投影,這就說明了簡諧運動中的週期公式 \( T=2π\sqrt{\frac{m}{k_m}} \)為什麼有π在裡面了!

π 還有一些有意思的故事!

世界上有一群熱愛 π 的人,那就有另一群討厭π的人,他們認為我們在計算圓的時候應該使用的常數是 τ(念 Tau,τ=2π),也就是圓周和半徑的比值,τ 的擁護者則會在 6/28 慶祝 τ day。除了科學界慶祝圓周率,影劇界也會開π的玩笑,星際爭霸戰影集在某年 3 月 14 日的劇集中將π的最後一位數當作電腦破譯密碼,但我們知道π是一個無理數,所以我們大概也就永遠無法破解那部電腦了。π 就是這麼神秘且令人著迷,甚至法國奢侈品牌紀梵希就曾經推出一款命名為π的男性香水,是專為聰明、有遠見的男人設計的木質調香。

史巴克:「我們應該都知道 π 是一個無法被解決的超越數吧!」圖/IMDb

3 月 14 日不僅是 π day 同時是愛因斯坦的生日、史蒂芬霍金的忌日,是不是也為這天蒙上更神秘的色彩呢,那麼何不一起吃個派慶祝 π day 吧!

參考資料:

  1. Pi – Wikipedia
  2. Larry Shaw (Pi) – Wikipedia
  3. Exploratorium – Wikipedia
  4. 阿基米德 – 維基百科,自由的百科全書
  5. Daniel A. Russell(2016). Longitudinal and Transverse Wave Motion.
  6. Longitudinal and Transverse Wave Motion
所有討論 6
Yi-Hsuan Lee_96
3 篇文章 ・ 1 位粉絲
Science Communicator | 數學系畢業,跑到心理系當了一年間諜,現在是應用科學研究生。喜歡文學、古典戲劇和薏仁。立志在台灣創造一個老人小孩都能樂在其中的科普空間。

667

29
5

文字

分享

667
29
5
一起寫下圓周率迎接 π day!你可以寫到第幾位?
PanSci_96
・2021/03/14 ・346字 ・閱讀時間少於 1 分鐘 ・SR值 450 ・四年級

國小高年級科普文,素養閱讀就從今天就開始!!

「π 等於 3.14 」這個觀念在學生時期深植人心,平時我們加以運算也多是套用這個數字,更後面的位數便較少為人所記得 (。ŏ_ŏ)

一年一度的 3 月 14 日是圓周率日,它的確立首先由美國麻省理工學院倡議,到 2009 年美國眾議院正式通過將每年的 3 月 14 號設定為「圓周率日」(Pi day)。

3 月 14 日同時也是科學家愛因斯坦(Albert Einstein)和思想家卡爾.馬克思(Karl Marx)的生日,以及宇宙學家史蒂芬.霍金(Stephen Hawking)的忌日。

為了度過這個特別的日子,泛科學準備了一小活動!想和大家一起接力蓋樓慶祝 Pi day!

參加方法如下:

1. 在本文底下留言任一數字進行接龍(你可以留了又留留了又留喔!)

2. 成功接到下一個數字的夥伴,留言框會出現藍色數字,表示你接到的位數

3. 接龍成功的科夥伴也有機會獲得我們的小獎勵ヽ(●´∀`●)ノ

現在已經來到小數點後 321 位囉!

共有 58 位科夥伴,用 666 則留言,一起寫下圓周率!
所有討論 667