0

0
0

文字

分享

0
0
0

人工授精失敗,然後她就死掉了!害斑鱉絕種的最後一根稻草?

活躍星系核_96
・2019/04/23 ・1299字 ・閱讀時間約 2 分鐘 ・SR值 510 ・六年級

-----廣告,請繼續往下閱讀-----

中國蘇州動物園最後一隻雌性斑鱉Rafetus swinhoei)在 4/13 的人工授精結束後死亡。根據報導,麻醉及人工授精過程進展順利,在開始之前身體狀況良好,死因尚不清楚。已經計劃進行屍檢,並且已經收集並保存了她的卵巢組織。

如果在越南湖泊中的兩隻未知性別的斑鱉都是雄性,那麼斑鱉就正式成為殭屍物種,即使有個體存活,卻再也無法繁衍並有生態功能。

從廣布種到今天苟延殘喘的悲劇

斑鱉是世界上體型最大的淡水龜類之一,曾廣泛分布於中國長江下游和太湖地區。古人稱之為癩頭黿。過去幼體常被當成中華鱉Pelodiscus sinensis)成體常被當作黿Pelochelys cantorii),早在 1873 年便已命名卻直到 2002 年後才被確認為有效種。因為人為獵捕和環境破壞數量急遽減少,早期的人撈到或看到大鱉就直接吃了,誰管牠是什麼?而雌性個體又因需要上岸產卵的原因,更容易被抓去吃掉。長年下來,能對族群較有貢獻的大母鱉被越吃越少,最後從曾經的廣布物種變成今天苟延殘喘的局面。

斑鱉的故事就是一連串的人謀不臧造成的悲劇。過去數十年間,中國境內有幾間動物園都有飼養斑鱉,但過去一直被當成黿隨意養著,直到發現是斑鱉後,或許為了營運考量弄出了水中大熊貓的稱號,並將其移入空調室飼養,很多個體就在這個時候因為環境劇烈變動而死亡。

-----廣告,請繼續往下閱讀-----

最後幾隻個體又因為動物園本身的本位主義和調配問題拖很久才成功配對,當時雌雄個體都已經是九十歲以上的高齡。一開始園方曾嘗試讓這一對斑鱉自行交配,直到 2015 年才發現雄性的陰莖在早年時與其他雄性打鬥嚴重受損,能夠交配但無法正常授精。鱉的生殖器有一堆複雜的觸手狀結構(其實我覺得比較像船錨),這些觸手狀附屬物必須要鑲嵌到雌性的生殖構造才能成功授精。

鱉的雞雞是中間下排中立邪惡的位置。圖/Zug, G. R. 1966

前幾次人工授精雌鱉都有產下卵但沒有成功授精,推測可能是雄鱉精液品質不佳所致。而人工授精小組才剛完成了與新加坡動物園非瀕危巨鱉物種的合作,真正完善了他們的人工授精技術並採到至今最佳品質的精液。然後雌鱉就死亡了……

麻醉和人工授精兩爬類動物風險極高,但因為人的關係拖到別無選擇最後造成一個物種幾乎宣告滅亡,沒有什麼比這更可悲的了。現在越南那兩隻透過環境 DNA 確認存在的兩隻斑鱉就是這個物種的最後希望。

除了希望這個物種能再有一線生機之外,也希望台灣能好好珍惜自己的物種,不要再因為人的考量去進行保育行動,最好的時機拖過了最後什麼都來不及是最愚蠢也最可悲的。

-----廣告,請繼續往下閱讀-----

參考文章:

 

文章難易度
活躍星系核_96
752 篇文章 ・ 121 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

2

17
2

文字

分享

2
17
2
世界最小微型電腦,揭開蝸牛躲過大屠殺的可能原因!
羅夏_96
・2021/07/05 ・3890字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

生物滅絕是我們所不樂見的,當我們在新聞報導上看到某些物種滅絕,或者瀕臨滅絕,總會感到痛心疾首。不過你知道在過去 50 年間,有一群生物經歷了近乎完全滅絕的慘案,但卻不太為人所知嗎?接下來讓我們一起了解這個悲劇的始末,與殘留的生物究竟是怎樣躲過滅絕的。

太平洋島嶼的蝸牛多樣性世界第一

一般大眾可能對蝸牛的興趣不大,不過在太平洋的眾多島嶼上 (從法屬玻利維亞群島到夏威夷群島),當地原住民就對蝸牛非常感興趣。這是因為這些島上的原生種蝸牛,許多都有著鮮豔的外殼。像大溪地和夏威夷的原住民會收集並加工這些漂亮的蝸牛殼,做為展示地位象徵的首飾與裝飾品。

根據研究,太平洋群島上的蝸牛多樣性是世界上最高的,因此這些蝸牛不只吸引原住民,也吸引不少研究生物多樣性的專家前來朝聖。

而一場戰爭的到來,不僅打亂了島上居民的生活,也為這些在島上平穩生活的蝸牛們帶來意想不到的腥風血雨。

夏威夷蝸牛- 维基百科,自由的百科全书
被當作裝飾品賣的夏威夷蝸牛殼。圖/Wikipedia

外來種大亂鬥,原生種蝸牛遭池魚之殃

二次大戰期間,非洲大蝸牛 (Lissachatina fulica) 作為戰備糧食,被大量引進到這些太平洋島嶼1。而在戰爭後,這些非洲大蝸牛很快就成為當地島嶼的隱患。

-----廣告,請繼續往下閱讀-----

非洲大蝸牛是對農業有嚴重危害的外來種,牠們的食量大且食性雜,從農作物、花卉到林木都是牠們的食物,而且牠們的繁殖速度極快,這讓島上很快就遍布非洲大蝸牛。雖然非洲大蝸牛沒有威脅到原生種蝸牛的生存,但數量龐大且食量巨大的非洲大蝸牛,很快就威脅到島上的農作物生產。為了對抗非洲大蝸牛,人類決定用「生物防治法」除掉牠們。而這個決定,敲醒了島上原生種蝸牛滅絕的喪鐘。

Achatina fulica Thailand.jpg
非洲大蝸牛。圖/Wikipedia

生物防治法簡單來說就是利用自然界生物間的平衡力量,也就是利用各種天敵如捕食性昆蟲以及殺蟲微生物等生物性方法消滅外來種。而人類為了對抗非洲大蝸牛,所使用的生物防治法是引進另一外來種——玫瑰蝸牛 (Euglandina rosea)。

玫瑰蝸牛是一種原產於北美南部森林的中等體型蝸牛。和一般蝸牛的草食性不同,玫瑰蝸牛是專吃其他蝸牛的肉食性蝸牛!因此人們想靠玫瑰蝸牛來吃光島上的非洲大蝸牛。1955 年,美國政府開始將玫瑰蝸牛引進夏威夷群島,而其他太平洋島嶼也於 1958 年開始陸續跟進這個做法2。但玫瑰蝸牛引進後,人們很快就發現事情大條了。

Euglandina rosea.jpg
玫瑰蝸牛。圖/Wikipedia

首先,非洲大蝸牛的數量並沒有減少,牠們還是大肆地破壞農作物。接著,島上原生種蝸牛的數量越來越少了。後來研究發現,比起來非洲大蝸牛,玫瑰蝸牛更愛吃原生種蝸牛。而原生種蝸牛面對玫瑰蝸牛這種兇猛的外來殺手,根本毫無抵抗力,只能等著被宰。

-----廣告,請繼續往下閱讀-----

當人們終於意識到問題的嚴重性並準備做出干預手段時,卻為時已晚。根據研究,夏威夷群島本來有 81 種原生蝸牛。但在引進玫瑰蝸牛的十年後,島上 90% 的原生種蝸牛都被玫瑰蝸牛屠戮殆盡,而夏威夷政府和科學界根本無力阻止這場恐怖的屠殺,最後只能將剩餘的原生種蝸牛移到動物園或保護區做保護。2019 年,世上最後一隻金頂夏威夷樹蝸 (Achatinella apexfulva) — 「喬治」逝世,這標示著又一夏威夷原生種蝸牛滅絕3。而其他太平洋群島狀況也好不到哪去,以大溪地為例,島上本來有 61 種原生蝸牛。在玫瑰蝸牛引進的十年內,56 種原生蝸牛就被消滅殆盡4

這個引進玫瑰蝸牛的決策,可謂是生物防治法上的重大「失敗」案例,不僅消滅不了非洲大蝸牛,還對原生種蝸牛造成毀滅性的打擊。這個案例也告誡人們,未來想要再使用生物防治法時,務必要審慎思考。

不過在這種絕望的情況下,至今仍有少數的原生種蝸牛堅強地在野外生存。這就引起不少科學家的好奇心,想了解這些原生種蝸牛究竟是怎麼逃過玫瑰蝸牛的毒手。而來自密西根大學的生物學家和工程學家,就組成一個跨領域的研究團隊,一起攜手研究出可能的原因5

蝸牛怎麼逃離致命殺手,難道是靠反光?

Partula hyaline (P. hyalina) 是少數仍存活在大溪地森林中的原生種蝸牛,牠們有著白色的外殼,並且大多生活在樹林邊緣。而這兩條線索,讓密西根大學生態學系的兩個專門研究太平洋群島蝸牛滅絕的科學家 —— Cindy Bick 博士和其指導教授Diarmaid Ó Foighil 博士,有了一個 P. hyalina 逃過玫瑰蝸牛追殺的假設。

-----廣告,請繼續往下閱讀-----
A Partula hyalina snail resting on a wild red ginger leaf next to a Michigan Micro Mote computer system in a forest edge habitat in Tahiti. Image credit: Inhee Lee
睡覺的P. hyaline (左)和 M3 微型電腦 (右)。圖/news.umich.edu

蝸牛一般生活在比較潮濕,躲避太陽直曬的地方,這是因為蝸牛要維持其皮膚上的黏液。如果在太熱的地方,會讓其皮膚失去黏液,而這對蝸牛來說是致命的。P. hyalina 生活在樹林邊緣,這表示牠生活的環境會比生活在樹林中的玫瑰蝸牛,接受到更多的日照,溫度也更高。而這樣的環境會讓玫瑰蝸牛因過熱而失去黏液,讓玫瑰蝸牛不想接近。

但這樣的環境,對 P. hyalina 而言不會太熱嗎?由於 P. hyalina 的殼是白色的,讓牠能反射更多日光,這樣就能降低日照對牠的影響。因此 Bick 和 Foighil 認為,P. hyalina 因有著白色外殼而能生活在高日照地區,藉此躲避玫瑰蝸牛的追殺。

要驗證這個想法,只需要在蝸牛身上裝上光照感測器,測量並比較 P. hyalina 和玫瑰蝸牛生活環境的光照數值就行了。恩,講得容易,但做起來不簡單。

因為現有的光照感測器都必須裝上鈕扣型電池,這導致感測器的大小 (12*5*4 mm) 會嚴重影響蝸牛的行動。如果會影響蝸牛的行動,就很難還原牠們真實的生活模式,這樣得到光照數值就不會準確。

-----廣告,請繼續往下閱讀-----

微型電腦的神助攻

正當 Bick 和 Foighil 苦惱於沒有好的光照感測器時,Bick 得知了一個消息:密西根大學開發出目前公認最小的微型電腦 —— Michigan Micro Mote ( M3 )6,大小只有 2*5*2 mm,而這個大小放在蝸牛身上,非常合適。於是她立刻與 M3 的研發團隊聯繫,希望他們能提供協助。而 M3 的研發團隊在深入了解 Bick 和 Foighil 的需求後,決定與 Bick 和 Foighil 組成聯合研究團隊。他們修改了 M3 的程序,並將其改造成能以太陽能發電的微型光照感測器。

研究團隊先在密西根野外測試 M3 安裝在玫瑰蝸牛身上後,並不會影響玫瑰蝸牛的行動,同時 M3 也能長時間的偵測光照數值。確認一切妥當後,他們便前往大溪地進行實驗。

研究團隊成功在野外測試將 M3 安裝在玫瑰蝸牛身上。影片來源:參考資料 5

到了大溪地後,他們遇到一個問題,那就是不能在 P. hyalina 身上安裝 M3 。因為P. hyalina 是受保護的瀕危物種,不允許任何可能傷害牠們的行為,於是研究團隊採用間接的方法。由於 P. hyalina 是夜行動物,白天牠們會附在樹葉的背面睡覺,因此研究團隊就將 M3 安裝在 P. hyalina 休息的葉片頂端和底部,來觀察其生活環境的光照數值。研究團隊另外將 M3 安裝在玫瑰蝸牛身上,藉此比較兩者生活環境的光照數值。

(b) M3 安裝在 P. hyalina 附近。(c) M3 直接安裝在玫瑰蝸牛身上。圖/參考資料 5

結果顯示,白天 P. hyalina 所休息的環境中,其照度註1 ( 7674-9072 lux )遠超玫瑰蝸牛所能容忍的 ( 540-772 lux )。而這個結果符合 Bick 和 Foighil 的假設,即 P. hyalina 能生活在高日照地區,以此躲避玫瑰蝸牛的追殺。

-----廣告,請繼續往下閱讀-----

不過可能會有人好奇,玫瑰蝸牛難道不會在清晨光照較弱的時候,去捕食 P. hyalina 嗎? 

研究團隊在野外觀察發現,P. hyalina 大約在上午 9 點左右就寢。此時的光照量雖然仍在玫瑰蝸牛的忍受範圍內,但等牠們捕食完再移動回到陰暗處,時間會到上午10 點,而此時的光照量就遠超玫瑰蝸牛的最高容忍值了。因此玫瑰蝸牛若要去捕食 P. hyalina,很可能吃飽後就死在半路上了。

雖然藉著 M3 的協助,證實了 P. hyalina 能生存在光照量較高的環境,但是否光照量是決定 P. hyalina 不被玫瑰蝸牛所捕食的原因,仍需要很多實驗驗證。不過研究團隊表示,這個實驗開啟了研究無脊椎動物的新世界,因為 M3 這種微型電腦的發明,讓隨時監控這些無脊椎動物的生態與行為變成可能。

或許未來隨著 M3 對玫瑰蝸牛與原生種蝸牛的有更多認識的同時,也能找出拯救這些瀕危蝸牛的新方法。甚至隨著微型電腦的廣泛應用,能讓我們看到小型動物更多的生態與行為,大大開啟科學研究的新視野!

-----廣告,請繼續往下閱讀-----

註釋

  1. 照度:是每單位面積所接收到的光通量,SI 制單位是勒克斯 (lux)。居家的照度一般在 300-500 勒克斯之間。

參考資料

  1. 非洲大蝸牛
  2. 玫瑰蝸牛
  3. 世上最後一隻金頂夏威夷樹蝸「孤獨喬治」逝世,終年14歲
  4. Régnier C, Fontaine B, Bouchet P. Not knowing, not recording, not listing: numerous unnoticed mollusk extinctions. Conserv Biol. 2009 Oct;23(5):1214-21. doi: 10.1111/j.1523-1739.2009
  5. Bick CS, Lee I, Coote T, Haponski AE, Blaauw D, Foighil DÓ. Millimeter-sized smart sensors reveal that a solar refuge protects tree snail Partula hyalina from extirpation. Commun Biol. 2021 Jun 15;4(1):744.
  6. Michigan Micro Mote (M3) makes history as the world’s smallest computer
  7. Snails carrying the world’s smallest computer help solve mass extinction survivor mystery
所有討論 2
羅夏_96
52 篇文章 ・ 817 位粉絲
同樣的墨跡,每個人都看到不同的意象,也都呈現不同心理狀態。人生也是如此,沒有一人會體驗和看到一樣的事物。因此分享我認為有趣、有價值的科學文章也許能給他人新的靈感和體悟

1

34
2

文字

分享

1
34
2
「基因恆久遠,一個永流傳」,隱藏在你我之間的尼安德塔人 DNA——《滅絕生物學》
PanSci_96
・2021/02/07 ・2648字 ・閱讀時間約 5 分鐘 ・SR值 535 ・七年級

-----廣告,請繼續往下閱讀-----

  • 作者/池田清彥,本文摘自《滅絕生物學》,世茂出版,2020 年 11 月 04 日

從基因層級來看,尼安德塔人與丹尼索瓦人尚未滅絕

回到人類的話題,人屬之一的尼安德塔人於四十萬年前出現,三萬九千年時滅絕。但很明顯的,尼安德塔人的 DNA 確實存在於智人的基因內。除了十多萬年以來,每個祖先都是非洲原住民的人們之外,其他現存人類的基因中,都有一部分的基因來自尼安德塔人。也就是說,尼安德塔人曾與智人雜交過,所以現代人的基因中,有百分之二來自尼安德塔人。

現代人的基因中,有百分之二來自尼安德塔人。圖/pixabay

如果尼安德塔人從未與其他物種的人類雜交,一直保持尼安德塔人的「單系群」,這個種系確實在三萬九千年前便已滅絕。實際上,尼安德塔人卻曾和智人雜交,基因混入了現代人的基因體,故尼安德塔人的基因至今仍未滅絕。某種意義上,現代人可以說是尼安德塔人的後代。

我們常聽到有人說「人口再這麼減少下去,日本人就會滅絕了」。這裡說的「日本人」,究竟是指那些人?是指住在日本列島上的人嗎?還是所謂日本人血統的人?舉例來說,一位日本女性前往非洲,與非洲人結婚,並生下孩子。那麼這個孩子自然有日本人的血統。即使日本列島上的日本人因為某些原因而全部消失,只要其他地方還留著日本人的血統,那麼「日本人滅絕」就不會成真。再說,所謂的日本血統其實是個模糊的概念,日本人與中國人、韓國人在遺傳學上幾乎相同。

基本上,「不存在人種的概念」已是人類學上的常識。所有現代智人百分之九十九·九的 DNA 都相同。

-----廣告,請繼續往下閱讀-----
現代智人百分之九十九·九的 DNA 都相同,基本上可說是「不存在人種的概念」。圖/pixabay

前面提到,現代智人的祖先曾與尼安德塔人雜交過。丹尼索瓦人(Homo deni-sova)由尼安德塔人分歧而來,是與尼安德塔人稍有差異的物種。而智人的祖先就曾經和丹尼索瓦人雜交過。目前已知,丹尼索瓦人曾和智人與尼安德塔人共同生存了數萬年。

丹尼索瓦人在四萬年前便已「滅絕」。而走出非洲的智人,在十萬年前左右,以及六萬年前~五萬年前之間,曾兩度與尼安德塔人雜交。接著又在五萬年前~四萬年前之間,與丹尼索瓦人雜交,其後代再擴散至全世界。在基因的層次上,尼安德塔人與丹尼索瓦人皆沒有「滅絕」。西藏人、澳洲原住民、因紐特人、新幾內亞人、美拉尼西亞人等,都具有尼安德塔人與丹尼索瓦人的基因。特別是新幾內亞人的 DNA,有百分之三~六來自丹尼索瓦人,有百分之二來自尼安德塔人,故一共有百分之五~八的 DNA 來自其他人類。

而日本人也有少許 DNA 來自丹尼索瓦人,不過大致上還是尼安德塔人與智人的混血物種。

粒線體 DNA 必定繼承自母方,而非父方,故我們可以從粒線體 DNA 追溯母方的血統。而調查結果發現,現代智人的粒線體 DNA 全都來自智人。沒有任何一人的粒線體 DNA 來自尼安德塔人。也就是說,女性尼安德塔人在雜交後所生下的後代,並沒有一直延續至今。女性尼安德塔人與男性智人所生下的小孩,或許是在尼安德塔人的村落內長大的,後來隨著尼安德塔人族群的滅絕,這個種系也跟著消失了。因此,具有尼安德塔人粒線體 DNA 的「女性尼安德塔人後代」,便沒有延續至今。除了非洲人,現代智人皆為數萬年前,男性尼安德塔人與女性智人混血後產下的後代。

-----廣告,請繼續往下閱讀-----
可以從粒線體 DNA 追溯母方的血統。圖/Wikipedia

智人與尼安德塔人的「雜交種1」並未滅絕,而是留存至今

我曾在日本早稻田大學國際教養學部教書到二○一八年春季。這個學部的外國學生特別多,還有許多異國婚姻的學生。不同國家的人們結婚並生下小孩,可以增加人類的多樣性,是一件好事。

我常和大學生說:「最偉大的智人,就是那位和尼安德塔人性交的女性。」這聽起來像是玩笑話,但其實智人正是靠著與尼安德塔人雜交後獲得的基因,撐過許多環境變遷而存活了下來。

「純種」尼安德塔人約在三萬九千年前滅絕。在這之後,智人只能和智人繁衍後代,於是尼安德塔人的血統便逐漸稀薄。照機率來看,尼安德塔人基因在智人體內的比例應該會越來越小。然而實際上,來自尼安德塔人的基因卻沒有消失,代表這些基因可以讓個體有更強的生存能力。換言之,體內沒有尼安德塔人基因的人,便無法存活下來。

末次冰期於一萬年前結束,這時只有體內有尼安德塔人耐寒基因的智人能活下來。如本書第二章所述,智人與尼安德塔人性交後所獲得的基因,可以提供對寒冷的耐受度,幫助智人撐過更新世時的冰河期。另外,丹尼索瓦人的基因也混入了西藏人體內,有人認為這可以幫助西藏人適應高地。

-----廣告,請繼續往下閱讀-----
只有體內有尼安德塔人耐寒基因的智人活過了冰河期,並且使得他們的基因留存至今。圖/pixabay

當然,從前的歐亞大陸智人,某些個體並沒有獲得尼安德塔人或丹尼索瓦人的基因。這些所謂「純種」的族群,沒辦法應付氣候寒冷與各種環境變動,進而走上滅絕的路。

雖然尼安德塔人與丹尼索瓦人皆已滅絕,其 DNA 卻被保留至今。

現代人口已達七十六億,可說是相當繁盛,卻是人類種系的最後一個物種。如果發生破火山口噴發、大隕石撞擊地球等環境衝擊,或者人類這個物種的壽命到了盡頭,人類便會滅絕。無論如何,從地質學的時間尺度來看,人類的滅絕只是時間早晚的問題而已。若是如此,以查德沙赫人為起點的人類種系便會完全滅絕,地球將進入新的時代。雖然到時沒有一種生物能夠繼續觀測、研究、記錄這個星球。然而到了早上,太陽仍會東昇;到了傍晚,太陽仍會西沉,地球還會繞著太陽公轉好一陣子。

註釋

  1. 審訂註:尼安德塔人的部分基因組因為「遺傳滲漏」(genetic introgression)而進入現代智人的基因組,但這與「雜交種」的概念仍有一定的差距。
——本文摘自《滅絕生物學》,世茂出版,2020 年 11 月 04 日
所有討論 1
PanSci_96
1219 篇文章 ・ 2177 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

15
4

文字

分享

0
15
4
近親交配:物種復育的大難關——《滅絕生物學》
PanSci_96
・2021/02/06 ・2101字 ・閱讀時間約 4 分鐘 ・SR值 558 ・八年級

-----廣告,請繼續往下閱讀-----

  • 作者/池田清彥,本文摘自《滅絕生物學》,世茂出版,2020 年 11 月 04 日

朱鷺在一九五二年時被日本政府指定為特別天然紀念物,那時只剩下二十四隻個體。到了這個地步,保護這個物種的難度已變得相當高,滅絕可以說只是時間的問題。當個體數低到一定程度以下,要防止物種滅絕幾乎不可能。

可繁殖後代之族群的整體基因,稱作基因庫,但如果個體數很少,基因庫自然也會非常少。這麼小的基因庫內,雖然仍可以交配,卻會成為近親交配。即使個體數增加,也常無法順利復育物種。

基因庫太小,就連上帝也幫不了你。圖/修改自網路梗圖

在日本朱鷺的基因庫還很大的時候,引進中國朱鷺雜交,應可增加遺傳多樣性。然而,如果個體數在一定程度以下,便無力回天。

當鳥與哺乳類的個體數少到一定程度,物種便很難避免走向滅絕的命運。

-----廣告,請繼續往下閱讀-----

人類社會相當忌諱近親交配,稱為亂倫。先不管避免近親交配在社會學上的根據,至少在生物學上,近親交配會產生所謂的「近交衰退」。由於人類基因中存在著所謂的有害基因,當有害基因為顯性,可能會使個體在短時間內被自然淘汰掉,進而使該基因消失。因此,很少人會具有顯性的有害基因。當有害基因為隱性,必須為同型合子(同一染色體的同一位置有相同的遺傳基因型),才能使該基因表現出來。如果某個家族中存在這種隱性有害基因,在近親交配時,就有很大的機會出現同型合子,這就是所謂的近交衰退。

不僅是人類,哺乳類與鳥類也常有近交衰退的問題。當野生動物族群的個體數少到一定程度,就難以避免物種走向滅絕的命運,近交衰退就是一大原因。

除了哺乳類,近交衰退的問題經常發生在鳥類身上。圖/pixabay

不過,如果家族中不存在有害基因,就算近親交配生下後代,也不會出現近交衰退。

順帶一提,我們在第二章中曾提到,賽馬中,純種馬的父系血統全都可追溯到三隻雄性種馬。雖然還不到近親交配,但遺傳上的親緣仍可算是相當接近。牠們的後代都可以跑得很快,但一般認為,牠們都具有隱性的有害基因,故純種馬的壽命比一般馬還要短。

-----廣告,請繼續往下閱讀-----

不只是哺乳類與鳥類,只要是有性生殖(除了自體受精之外)的生物,就會出現近交衰退的情況,譬如昆蟲。

昆蟲中,白紋夜蛾(Xestia c-nigrum)是一個很有名的例子。若在實驗室裡讓牠們近親交配,第一子代就會顯現出近交衰退的影響。隨著代數的增加,畸形個體的比例與幼蟲死亡率會逐漸增加。過了五代,連卵都沒辦法受精,進而使整個族群滅絕。

白紋夜蛾。圖/EOL

我在四十年前左右,曾飼養過一種叫做長谷川天牛(Teratoclytus plavilstshikovi)的天牛,並曾想要以近親交配的方式繼代培養。當時長谷川天牛相當稀有,一隻可以賣到七千日圓的價格,不過我並不是想靠這個賺錢。總之,我試著用近親交配的方式培養後代,但要不了幾代,個體便頻繁出現後腿內彎的畸形。

近年來,民間吹起了一波鍬形蟲養殖的熱潮。許多昆蟲愛好者都曾嘗試過近親交配,想培養出又大又漂亮的品系,但後來幾乎都因為近交衰退而失敗。彩虹鍬形蟲(Phalacrognathus muelleri)、巴布亞金色鍬形蟲(Lamprima adolphinae)在經過數代的近親交配後,甚至會出現繁殖率降低而絕後的結果。一般認為,整個族群的共同祖先體內,隱性有害基因的質與量,決定了族群會不會出現近交衰退。

-----廣告,請繼續往下閱讀-----
彩虹鍬形蟲(左)與巴布亞金色鍬形蟲(右)。圖左/EOL、圖右/EOL

我過去以近親交配培養的長谷川天牛個體中,或許就含有「有害基因」。

那麼,為什麼這些「有害基因」不會消失?一般來說,有害基因應該都會被淘汰。既然這些基因會一直存續至今,或許表示這些基因有「好的一面」。有些「有害基因」因為有好的一面,而仍可保留在族群內。

舉例來說,鐮刀型紅血球疾病是一種遺傳性疾病。患者的紅血球外型如鐮刀狀,運送氧氣的能力相當低,會引發貧血。患者的血紅素基因序列與一般人不同,使紅血球無法順利運送氧氣,進而導致貧血。具有這種基因,且為同型合子的個體,會有嚴重貧血症狀;異型合子的個體則可以正常生活,不會產生出現嚴重貧血情況。不過,這種基因可以提高對瘧疾的耐性。事實上,瘧疾嚴重的區域內,具有這種基因,且為異型合子的個體會有較高的生存機率。日本幾乎沒有人具有鐮刀型紅血球基因,但在瘧疾嚴重的非洲,卻有很多人具有這個基因。或許是因為這個基因能提高對瘧疾的抗性,所以這個基因才會存續下來吧。

——本文摘自《滅絕生物學》,世茂出版,2020 年 11 月 04 日
PanSci_96
1219 篇文章 ・ 2177 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。