Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

兩個爸爸沒有媽媽!世上第一隻孤雄生殖小鼠誕生

呂宏耘
・2018/12/28 ・2351字 ・閱讀時間約 4 分鐘 ・SR值 527 ・七年級

你知道嗎?最近有同性生殖的小鼠在科學家的手中誕生了。

學界其實一直探尋著:究竟同性的哺乳類能不能生殖、產下後代? 2018 年中國科學院的科學家在國際期刊《Cell Stem Cell》上發表了一個腦洞大開的研究,成功讓實驗鼠完成同性生殖[1]

同性生殖很奇怪?自然界裡其實很常見

有沒有可能不需要和異性一起產生後代?圖/By FotoshopTofs @Pixabay

事實上,同性生殖在其他物種並非罕見的現象,很多爬蟲類、鳥類、鯊魚以及一些昆蟲和植物都有同性生殖的現象。

這些同性生殖的後代通常來自雌體的細胞,因此有另一個大家較為熟悉的名詞:「孤雌生殖」,也就是子代的兩套染色體都來自母親。然而孤雌生殖並不存在於哺乳類中;與之相對的「孤雄生殖」更是聞所未聞,僅在一種斑馬魚上發現過而已[2]

唯一發現的孤雄生殖斑馬魚。
圖/Production of androgenetic zebrafish

幾乎所有動物都有孤雌生殖的能力,唯有哺乳類在演化的過程中淘汰了這項能力,這背後藏有什麼樣的秘密?科學家能藉由實驗和推理越過這道演化上的鴻溝嗎?

-----廣告,請繼續往下閱讀-----

2004 年,日本科學家 Kono 曾經在未成熟的卵中消除兩個「基因印記」,而後結合另一個卵;這個由兩個卵所組合而成的胚胎意外地培育成功,使得科學家成功得到了孤雌小鼠[3]。這是人類第一次創造出孤雌生殖的哺乳類,只不過這些小鼠在出生不久之後就死亡。

基因的識別戳章:基因印記

什麼是基因印記呢?學過基礎生物的你,一定知道孟德爾的豌豆以及等位基因理論:孩子各從父母得到一半的基因,如果兩個基因都是隱性會表現出隱性的樣子;反之,只要父母有一方是顯性,孩子的表徵也會是顯性。

假如父母各有一個顯性和一個隱性的基因,根據孟德爾的等位基因理論,即使父母的表現出來都是顯性的,子代有四分之一的機率會表現出隱性的性狀,並不是隔壁老王的錯
圖/Biology Dictionary

然而並不是所有的基因都符合等位基因的理論;有些基因只需要來自父親,有些則只需要來自母親,因此細胞會將不需要的那一方以「甲基化」的方式讓基因不表現,這個甲基化的現象就稱為基因印記 (Genomic imprinting)。

簡單來說,基因印記就像個戳章,如果來自爸爸的基因蓋上這個戳章,細胞就知道爸爸這邊的基因不必表現;相對的,孩子由母親得到的基因就必須是正常的,子代才會正常。反之亦然,如果卵子上的基因有印記,精子的基因就必須是正常的,否則孩子的基因會有缺陷。

知道基因印記背後的原理之後,就不難理解為何 Kono 的團隊要先消除基因印記;因為來自同樣母親的基因會有相同的印記,如果不將此印記剔除的話,要創造出來的孤雌小鼠基因就會有缺陷。換句話說,剔除基因印記後,可以讓卵細胞的基因表現看起來「比較不那麼雌性」。

-----廣告,請繼續往下閱讀-----

刪兩個還不夠,三個才能成功

理論很美好,現實很殘酷,在一開始的實驗中,雖然已經自卵細胞消除了基因印記,生出的小鼠卻還是有缺陷。爾後,中科院的學者們試著以單倍體胚胎幹細胞 ( haploid embryonic stem cell, haESC )[註] 重新挑戰這項研究。

他們在母源單倍體胚胎幹細胞中消除了 Kono 研究發現的兩個基因印記,之後將另一顆卵子注入,最後出生的孤雌小鼠的確有缺陷。不過這段旅程也並非無所獲,他們在過程中發現了一個表現異常的基因印記:Rasgrf1。

最後的嘗試,他們同時刪除單倍體胚胎幹細胞了包含 Rasgrf1 的三個基因印記,得到的結果證實是 Rasgrf1 造成了孤雌小鼠的缺陷。在刪除了三個基因印記之後,出生的孤雌小鼠便與正常的小鼠無異。人類第一次獲得了在各方面都正常、甚至有生育能力的孤雌生物。

消除基因印記後……哺乳類首見孤雄生殖成功了!

成功創造出孤雌生殖小鼠後,接下來研究團隊比較了父源與母源單倍體胚胎幹細胞的差異,發現他們在發育過程都會出現相近的甲基化模式,因此推測孤雄小鼠是有潛力被創造出來的。

-----廣告,請繼續往下閱讀-----

研究人員在父源單倍體胚胎幹細胞篩選出了七個基因印記並將其去除,再將之與另一顆精子結合。最後這些細胞成功發育成活的孤雄小鼠,只是都在出生後兩天內死亡。

孤雄小鼠的真面目!
圖/Generation of Bimaternal and Bipaternal Mice from Hypomethylated Haploid ESCs with Imprinting Region Deletions

原先在動物界極為少見的孤雄生物,居然可以在哺乳類被建立出來!只是不難想像,如果要培育出正常發育且具生育能力的孤雄小鼠,還需要相當多的實驗和努力。

生物科技已經有如科幻電影一般的境界了,僅僅利用胚胎幹細胞和基因剪輯的技術,就可以破解哺乳類的生育原則。科技能解決和觸及的領域無遠弗屆,我們也不妨想想:這些孤雄或孤雌的小鼠後代是否合乎實驗倫理規範?該怎麼讓孤雌孤雄小鼠有正常的生理機能?這項技術有機會應用在其他物種身上嗎?

這個研究已經在學界產生一股旋風,各個研究機構的相關人員想必已經開始策劃實驗了,身為讀者的我們就拭目以待吧!

-----廣告,請繼續往下閱讀-----
  • [註]:幹細胞裡的楊過:單倍體胚胎幹細胞 (haploid embryonic stem cell, haESC) 就如同一般胚胎幹細胞,有分裂分化的能力。不過單倍體胚胎幹細胞的特點在於:每個細胞都只有單套染色體!獨臂的楊過仍可施展黯然銷魂掌,單套染色體的胚胎幹細胞也有其優點:有利於研究一些未知的隱性基因突變。

參考資料:

  1. Cell Stem Cell. Generation of Bimaternal and Bipaternal Mice from Hypomethylated Haploid ESCs with Imprinting Region Deletions. 2018 Oct;11. (23): 1-12。
  2.  Genetics. Production of androgenetic zebrafish (Danio rerio). 1996 Apr. (4): 1265-76.
  3.  Nature. Birth of parthenogenetic mice that can develop to adulthood. 2004 Apr;22. (428): 860-864。
-----廣告,請繼續往下閱讀-----
文章難易度
呂宏耘
6 篇文章 ・ 0 位粉絲
畢業於清大化工所的無業游民,在摸索未來的生存之道時遇見泛科學。喜歡美食、懸疑片、以及角落生物。不喜歡霧霾、慣老闆、以及生離死別。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

2

133
1

文字

分享

2
133
1
蟻巢營養內循環,螞蟻的蛹不動也能貢獻社會
寒波_96
・2022/12/20 ・2477字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

人類對螞蟻可謂無比熟悉,許多人還不識字就認識螞蟻了;相關的科學研究也十分豐富,產出如威爾森(E. O. Wilson)這類科學大師。2022 年底問世的一篇論文,卻出乎意料地報告一條普遍存在,此前卻一直受到忽視的現象:

螞蟻的蛹會分泌液體,作為成蟲與幼蟲的營養液。

圖/drawception

螞蟻社會的內循環營養液

螞蟻是完全變態的昆蟲,有卵、幼蟲、蛹、成蟲 4 個階段。眾所皆知螞蟻是社會性昆蟲,整個蟻巢運轉精密,但是蛹有好幾天固定不動,除了佔空間以外,在蟻巢裡好像沒什麼存在感。

這項研究主要的對象是畢氏粗角蟻 (Ooceraea biroi) ,近年成為探索螞蟻奧秘的主力。照論文的寫法,一開始目的很單純,就是把蛹從蟻巢中移出,看看孤獨對螞蟻有什麼影響。

被移出巢穴的蛹,羽化成蟲的比例有 90% ;即使周圍沒有同儕,絕大部分的蛹似乎也能成功轉大蟲。然而過程沒這麼簡單。

-----廣告,請繼續往下閱讀-----
將螞蟻的蛹由巢中取出,搜集分泌液體的裝置。羽化前幾天,蛹會由白轉而黑化,羽化前 6 天開始分泌液體。圖/參考資料 1

蛹在成功羽化的前幾天會黑化,論文觀察到當蛹開始黑化不久,也就是羽化的 6 天之前,每天都會分泌出液體。留著液體會害蛹被自己淹死,人為將液體移除,蛹才能順利羽化。

如果是在原本的蟻巢中,蛹排放的液體還來不及把自己淹死,就會慘遭黴菌入侵感染而亡。所幸慘劇實際上不會發生,因為成年螞蟻會將液體去除。

將藍色染劑注入蛹,一天後觀察到成蟻的消化道都出現藍染,可見蛹產生的液體,都隨即轉移進入前輩同儕的肚子。分析蛹產生的液體,得知營養十分豐富。

把食用藍色染料注入蛹,便可觀察蛹分泌液體的轉移。圖/參考資料 1

完全變態的昆蟲,從幼蟲到成蟲的過程中經過蛹的階段,將幼年的身體砍掉重練。螞蟻蛹分泌的液體顯然來自蛹期分解的身體,可謂原汁原味的液化螞蟻。這些容易吸收的成分,在巢穴中直接轉移給同類,毫不浪費。

-----廣告,請繼續往下閱讀-----

這些幼體原汁原味形成的液體營養豐富,其他會化蛹的昆蟲也會產生類似的產物,為什麼不會把自己淹死,或是被黴菌感染?應該是由於那些昆蟲會將其回收利用,轉化為成年身體的建材。社會性生活的螞蟻卻是直接排放出去,變成其他個體的食物。

同時餵養更老與更小的同儕

成年螞蟻以外,蛹產生的液體也是寶寶的營養補充液。螞蟻幼蟲移動能力有限,成年螞蟻會將寶寶放到蛹的旁邊,方便它們液來伸口。沒有液體也能正常長大,不過有得吃的幼體,生長速度更快、存活率更高。

幼蟲破蛋出生的之後一天,蛹也開始分泌液體。圖/參考資料 1

近來在台灣出名的紅火蟻(Solenopsis invicta)雖然兇狠,卻也是畢氏粗角蟻的菜單美食之一。有個實驗是給予紅火蟻和蛹,讓成年蟻選擇,結果大部份都優先將寶寶放在蛹旁邊,可見它們認為蛹提供的善液,是更佳的育幼食品。

換句話說,螞蟻在幼年階段到成年之間的蛹,同時支持更老與更小的同儕。

-----廣告,請繼續往下閱讀-----

奧妙還不僅如此,和一般印象不同,畢氏粗角蟻沒有特定蟻后,也缺乏男生,所有成員皆為工蟻,再透過孤雌生殖進入生殖時期。

奇妙的是,蟻巢中處於不同階段的螞蟻,時程非常協調。當卵孵化出寶寶的一天後,蛹也開始分泌液體。也就是說寶寶從出生以後,馬上就能獲得營養補充液,概念實在很像哺乳動物的哺乳。

檢視螞蟻大家族 5 大群各自的代表,都觀察到蛹分泌類似的液體。圖/參考資料 1

畢氏粗角蟻只是一種螞蟻,論文還調查螞蟻分類上其他 4 大群的成員,發現各種螞蟻的蛹都會分泌液體,而且內容物極為相似。由此推敲,這是螞蟻大家族的普遍現象,可能在眾蟻尚未分家之前已經存在。

螞蟻巢穴的內部循環如此協調,充分反映出社會性昆蟲的優點,但是同為社會性昆蟲的蜜蜂沒有。這應該是螞蟻演化為社會性的重要一步,卻不是其他社會性昆蟲的特徵。

-----廣告,請繼續往下閱讀-----

想來也很奇妙。人們對螞蟻很熟,研究螞蟻、養螞蟻的人一大堆,可是這回報告的現象儘管普遍,卻只是首度被明確指出。我猜以前應該有人發現這件事,只是沒有深入鑽研。

等待探討的問題,無所不在,只要有心。

延伸閱讀

參考資料

  1. Snir, O., Alwaseem, H., Heissel, S., Sharma, A., Valdés-Rodríguez, S., Carroll, T. S., … & Kronauer, D. J. (2022). The pupal moulting fluid has evolved social functions in ants. Nature, 1-7.
  2. A fluid role in ant society as adults give larvae ‘milk’ from pupae
  3. Anatomy of a superorganism: Ant pupae secrete fluid as ‘milk’ to nurture young larvae
  4. Pupating ants make milk — and scientists only just noticed

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
所有討論 2
寒波_96
193 篇文章 ・ 1094 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

0
0

文字

分享

0
0
0
【特輯】爸比們父親節快樂!那些關於當爸爸的科學
郭 宜蓁
・2019/08/07 ・2502字 ・閱讀時間約 5 分鐘 ・SR值 449 ・四年級

回憶過往,父親除了和我們一起玩樂,還有許多重要功能,像是:玩我們(?)

有媽的孩子像個寶,有爸的孩子也不賴。圖/giphy

關於父親有哪些科學故事呢?和我們一起看下去吧!

摩洛哥國王真的有可能成為888個孩子的父親!

摩洛哥國王伊斯邁爾(Moulay Ismael)有著一項非常傳奇的紀錄:據說他在 30 年內生了 888 個小孩,平均每年生將近 30 個,每兩個月生將近 2.5……嗯,小孩用小數點聽起來有點恐怖,每兩個月生5個。

伊斯邁爾國王這種媲美蟻后的行為真的有可能嗎?

-----廣告,請繼續往下閱讀-----

圖/pixabay

這是一個數學問題,長話短說:可以的。

維也納大學團隊使用 Python 撰寫了 Wilcox-Weinberg、Jöchle、Barrett-Marshall 三種不同的受孕模型,運用此模型跑數值模擬,發現在假設隨機行房的情況下,國王平均每天各需要 1.97、0.83、2.30 次行房(每個模型結論略有差異),持續三十年不間斷,就能達到傳說中的兒女數。

得到初步結果後,研究團隊加入更多因子設法讓模型更貼近現實狀況。比方說,當時的習俗不允許在女性經期內行房,此習俗會提升受孕的機率,減少國王白做工的比例,三種模型下的平均行房次數會各自下降成 1.59、0.75、1.87。如果國王再精明一點,還懂得叫人去算排卵期,那麼他可以再輕鬆點,平均只需要 0.68~1.44 次的行房就能生出破千位子女。當然,這可能得需要一個團隊來幫他算,畢竟國王的後宮高達五百多人。就算用 Google calendar 來管理也是一件工程浩大的事情。

-----廣告,請繼續往下閱讀-----

然而,現實生活中也有不盡如人意的事情,不是每次懷胎九月都能順利生產的,再考慮到這些不順利的狀況後,國王平均每天約 0.83~1.63 次行房。數據是給出來了,但能不能真的做到,我想是很講天分的一件事(可能比絕大多數的事情都還要講天分吧)。

為什麼在很多語言中父親都叫 Papa?

根據語言學家 Jakobson 的分析,mama/papa 這兩個詞很有可能是小孩的父母親創造的。

當嬰兒進入了呀語時期,就開始會發出他的父母熟悉且可以辨識的音,哪些聲音呢?這會與發音的困難度有關,分成子音和母音來看,最容易發的母音是 [a],因為你只要張開嘴巴、震動聲帶、送出氣流,音就發出來了,舌頭和嘴唇幾乎都不用動;子音則是 [m]、[b]、 [p]。因此,[ma]、[pa]、[ba] 可說是最容易產生的發音組合。

「呀語時期」的兒童,開始發出成人可以辨識的音。 圖/pixabay

-----廣告,請繼續往下閱讀-----

當小孩發出 mama 的音時,母親會很興奮的認為小孩在與他互動,並且認為小孩是在叫她,而不是在叫家裡的狗、桌上的食物等。接著,母親就會開始認為,這是小孩所說的第一個字,「叫 mama、叫 papa」就是常見的父母親和小孩的 baby talk。

接下來, mama/papa 這兩個詞會開始擴展,父母會向親戚好友說:「我的小孩會開始叫 mama/papa 囉」。從小孩的牙牙學語到親朋好友的認知,於是 mama/papa 開始代表著父親和母親的意思,詞彙開始進入這個語言的系統裡,社會上就有越來越多人這樣使用。

基因上有兩個爸爸是有可能的?

事實上,同性生殖在其他物種並非罕見的現象,很多爬蟲類、鳥類、鯊魚以及一些昆蟲和植物都有同性生殖的現象。這些同性生殖的後代通常來自雌體的細胞,因此有另一個大家較為熟悉的名詞:「孤雌生殖」,也就是子代的兩套染色體都來自母親。

然而孤雌生殖並不存在於哺乳類中;與之相對的「孤雄生殖」更是聞所未聞,僅在一種斑馬魚上發現過而已。

-----廣告,請繼續往下閱讀-----

孤雄小鼠的真面目! 圖/Generation of Bimaternal and Bipaternal Mice from Hypomethylated Haploid ESCs with Imprinting Region Deletions

在這個研究中,研究團隊在實驗室中培育出了兩邊的基因都由雄性提供的小鼠──也就是實驗室內的孤「雄」生殖。

研究團隊比較了父源與母源單倍體胚胎幹細胞的差異,發現他們在發育過程都會出現相近的甲基化模式,因此推測孤雄小鼠是有潛力被創造出來的。研究人員在父源單倍體胚胎幹細胞篩選出了七個基因印記並將其去除,再將之與另一顆精子結合。最後這些細胞成功發育成活的孤雄小鼠,只是都在出生後兩天內死亡。

原先在動物界極為少見的孤雄生物,居然可以在哺乳類被建立出來!只是不難想像,如果要培育出正常發育且具生育能力的孤雄小鼠,還需要相當多的實驗和努力。

-----廣告,請繼續往下閱讀-----

有爸可靠,影響女兒的成熟速度?

眾多研究早已發現,父親對孩子的各方面影響都很巨大。但是萬萬沒想到,在父親消失或失格的家庭中,女兒的性成熟速度竟然會比較快,此外,這些失父之女會提早發生性行為,而且懷孕生子的年齡也會提早!

這究竟是怎麼一回事呢?

從演化心理學的角度來看,其中一個解釋可能是:父親所展現出來的親子照顧行為品質,會成為女兒判斷周遭未來配偶之品質的依據。

當家中爸爸的親子照顧行為失格、或者根本就「出國深造」(跑路)時,女兒會認為自己生存環境中其他男性也具有類似特質。女兒在這種預期心理(潛意識)之下,可能就會不知不覺的改變自己的生殖策略,來讓自己更有繁衍優勢。那是怎樣的生殖策略呢?答案:性早熟、提早發生性行為、以及提早懷孕生產。

-----廣告,請繼續往下閱讀-----

最近幾年的研究中都顯示,父親在家庭中的參與狀況,的確都會影響到孩子的表現。在有爸可靠的家庭中,嬰兒的死亡率、孩子的生病風險、學童在學校的課業成績、以及小孩長大後的社經地位等各項指標,都有較佳的表現。

老掉牙的趁著父親節跟爸爸抱一下、適時表達自己情感也是很重要的唷!圖/giphy

伴隨父親節的來臨,老掉牙出去吃個大餐,或是跟爸爸抱一下、適時表達自己情感什麼應應景。還是要提醒大家,表達情感不用等節日,隨時都可以跟家人朋友好好道謝或分享心情喔!

祝天下的好爸爸們父親節快樂!

-----廣告,請繼續往下閱讀-----

延伸閱讀:

-----廣告,請繼續往下閱讀-----
郭 宜蓁
11 篇文章 ・ 0 位粉絲
輔大心理系畢業,面對未知世界,選擇用科學方式碰觸、感受,再用內化後的框架去結構、詮釋所感知的世界。