0

6
0

文字

分享

0
6
0

需要地方的爸爸瘋狂顧小孩?激發「愛の激素」讓父愛沒有極限!

帕德波耶特 Pas de poète_96
・2021/08/07 ・2807字 ・閱讀時間約 5 分鐘

在一夫一妻制(monogamous)的物種裡,父系撫育(paternal care,就是奶爸啦)似乎對後代的大腦與行為發展,有著關鍵影響。

相比這種父愛的展現,母親的撫育行為在研究界裡,還是受到比較多的關注。根據神經科學新聞(Neuroscience News)報導,包括人類在內的哺乳類動物中,仍有 5% 的父親會扛起照顧孩子的重責大任。

跟母愛相比,父愛的撫育行為在學界中較少被關注。圖/Pixabay

其中,有「愛の激素」(love hormone)之稱的催產素,固然對這個行為的推動功不可沒,然而,父親照顧幼小的動機與其背後的神經迴路(neuronal circuity),過去並不是那麼清楚⋯⋯

中國陝西師範大學腦與行為重點實驗室研究團隊,近日在《神經科學雜誌》(Journal of Neuroscience)發表一項新研究。他們發現,雄性棕色田鼠(Microtus mandarinus)的育兒行為(parenting behaviors),與牠們下視丘裡的「催產素神經元」(oxytocin neurons)和大腦獎勵區裡的「多巴胺神經元」(dopamine neurons)的活動有關。這個機制和雌性棕色田鼠如出一轍。

多巴胺的飄然爽感,是大腦給「互動」的獎賞

在步入正題之前,我們先來淺談大腦獎勵這回事。

史丹佛大學(Stanford University)精神病學與行為科學系研究員馬連卡(Robert C Malenka)等人於 2017 年在《科學》(Science)期刊發表研究,當時,他們以小鼠實驗探討大腦對社會互動產生的影響,發現腹側被蓋區(ventral tegmental area, VTA)的催產素扮演著很關鍵的角色。

不過,催產素本身並不左右小鼠的偏好,它只是開啟小鼠互動的第一把鑰匙。在小鼠進行社會互動行為時,下視丘室旁核(paraventricular nucleus, PVN)的催產素神經元會跟著被活化,其釋放的催產素影響腹側被蓋區(ventral tegmental area, VTA)的多巴胺神經元,進而產生愉悅的感覺,這才強化了小鼠親近社會的行為。

Brain Neuroscience GIF by University of California
催產素是開啟小鼠互動的鑰匙,但多巴胺能強化牠們的動機,展現更多社會行為。 圖/ GIPHY

解析棕色田鼠的「奶爸神經」迴路

陝西師範大學的研究結果中,雄性棕色田鼠在悉心照料後代時,大腦也走在同樣的道路上,即從 PVN 到 VTA 或伏隔核(nucleus accumbens, NAc)的催產素神經元會被活化。

當 PVN 釋放的催產素被傳導到 VTA 後,如果發生化學遺傳活化(chemogenetic activation),就會促進育兒行為。反之,若讓 PVN 到 VTA 這段迴路發生化學遺傳抑制(chemogenetic inhibition),則雄性棕色田鼠 NAc 裡的多巴胺(dopamine)釋放量就會減少,並減少奶爸們舔舐、梳理幼崽毛髮等照料行為。

稍微整理一下,PVN 釋放到 VTA 的催產素,會讓 VTA 對 NAc 產生多巴胺傳導,促使 NAc 的多巴胺釋放量增加,整個脈絡宛若骨牌般地一個推著一個,最終強化了田鼠爸爸的愛(?),讓牠們願意多與孩子親近。

放鬆信任的好感覺——催產素

看來催產素可是個好東西,至少它的分泌可以讓田鼠爸爸多多關注牠的孩子(們)。如果這東西可以直接注射到大腦裡,應該會在媽媽界掀起熱潮,成為指使丈夫帶小孩的必備良藥。

那⋯⋯人類呢?這個神秘的物質,也能讓人類心裡充滿粉紅泡泡嗎?

首先,催產素是賀爾蒙,也是一種神經傳導物質,它會在下丘腦的催產素神經元被活化時中產生,並透過垂體分泌到血液中。一般大家所熟知的催產素,最大的功用,就是在女性分娩期間促使子宮肌肉收縮,藉此擴展子宮頸和陰道的空間。

然而除了生理方面,催產素還會影響人的社會功能,如社交記憶、依戀與性行為,甚至與母性和攻擊性的多寡有關。而美國精神衛生研究院(NIMH)研究人員過去研究發現,人與人之間的信任與連結,也跟催產素有關,像是自閉症和思覺失調症,這些疾病很有可能都涉及催產素的表現異常。

以色列巴伊蘭大學(Bar-Ilan University)心理學與腦科學研究所的施耐德曼(Inna Schneiderman)等人,過去則找來 60 對正處於熱戀期的戀人,以及 43 位單身狗,企圖探討這些人在催產素的分泌活動上有何不同。結果,放閃的人果然沒有讓科學家失望,他們的催產素活動顯著高於單身族,且這樣的狀況維持至少六個月的時間。

也就是說,催產素與放鬆、舒緩、同理心、信任以及愛有關。不過,還記得嗎,催產素不直接左右喜好,有愛還不夠,大腦還需要給我們充分的動機,好讓我們心甘情願地放手去愛。

Hands Love GIF
據研究顯示,戀愛中的情侶的催產素活動,明顯高於單身族。 圖/ GIPHY

讓你快樂,讓你嗨——多巴胺

驅使我們追求這些美好事物的動機,究竟從何而來?這就不得不提到,大腦獎勵迴路中影響人類行為動機的多巴胺。

多巴胺向來有「爽の激素」(feel-good hormone)的美譽,顧名思義,這是一種會讓人感到心情愉悅的物質,也是大腦給我們的一種獎賞。

美國密西根大學分子與行為神經科學研究所博士蘿芙(Tiffany M. Love)曾指出催產素會影響中腦多巴胺系統(mesocorticolimbic dopamine system)裡的多巴胺活性,這不僅是獎勵和激勵行為產生的關鍵,也與親和行為(affiliative behaviors)有關。

有人可能會問,到底要獎賞什麼呢?我們得把重點拉回「生存」的課題。大腦的獎勵迴路對我們來說相當重要,它會在我們的做出對的行為或判斷時,施捨我們一些多巴胺,藉此來訓練我們學習「對生存有幫助」的一切事務,包含吃飯、喝水與做愛。

當然,也包含對後代負起照顧責任。

你以為的父愛是什麼呢?

棕色田鼠爸爸茅塞頓開,原來那些不自主散發的父愛,都是為了一己私慾啊⋯⋯(誤),真是令人感到哀傷的消息。突然心裡覺得有些糾結呢,那這樣還算是愛嗎><

矮油,只能說,煩惱都是自找的,如果不去想什麼 PVN、VTA、NAc 還是催產素跟多巴胺的問題,或許我們會比現在更快樂XD

stress i need a drink GIF
爸爸們看完這篇文章都崩潰惹XDD 圖/ GIPHY

參考資料

  1.  The Same Neural Pathways Promote Maternal and Paternal Behaviors in Voles, NeuroscienceNews.com, 5 July 2021.
  2. Zhixiong He et al. (2021) Paraventricular nucleus oxytocin sub-systems promote active paternal behaviors in mandarin voles. J NeuroSci.
  3. Lin W Hung et al. (2017) Gating of social reward by oxytocin in the ventral tegmental area. Science.
  4.  Heon-Jin Lee et al. (2009) Oxytocin: the Great Facilitator of Life. Prog Neurobiol.
  5. Inna Schneiderman et al. (2012) Oxytocin during the initial stages of romantic attachment: Relations to couples’ interactive reciprocity. Psychoneuroendocrinology.
  6. Tiffany M. Love (2015) Oxytocin, Motivation and the Role of Dopamine. Pharmacol Biochem Behav

文章難易度
帕德波耶特 Pas de poète_96
4 篇文章 ・ 3 位粉絲
嗜酒如命的平靜份子,逃離醫療工作後,在一連串荒謬的經歷下,成了文字與音樂工作者。

0

5
1

文字

分享

0
5
1
植物口渴就喊:「啵、啵、啵~」
胡中行_96
・2023/04/06 ・2954字 ・閱讀時間約 6 分鐘

久旱不雨,植物悲鳴,[1, 2]類似教育部《臺灣閩南語常用詞辭典》所謂「因飢餓而吵鬧」的「哭枵」(khàu-iau)。[3]別問為何沒聽過,也不怪天地寡情,人類無義,從來漠不關心。植物叫那種超音波,傳至咱們耳裡就只剩寧靜。幸好靠著以色列科學家幫忙,轉換到常人的聽覺範圍,並分享於 2023 年 3 月底的《細胞》(Cell)期刊,才廣為周知。[1]

轉換到人類聽力範圍的番茄「叫聲」。音/參考資料 1,Audio S1(CC BY 4.0)

傾聽植物的聲音

面臨乾旱或草食動物的威脅,植物會做出多種反應,例如:改變外貌,或是以揮發性有機化合物影響鄰居等。[1]過去的文獻指出,缺水引發空蝕現象(cavitation),使植物負責輸送水份的木質部,因氣泡形成、擴張和破裂而震動。[1, 4]現在科學家想知道,這是否也會產生在特定距離內,能被其他物種聽見的聲音。[1]

受試的對象是番茄菸草,分別拆成乾旱、修剪和對照 3 組。對照組又有常態生長的一般對照、有土卻無植物的盆器,以及每株植物實驗前的自體對照 3 種。實驗大致有幾個階段:首先,在隔音箱裡,距離每個受試對象 10 公分處,各立 2 支麥克風收音。將聲音的紀錄分類後,拿去進行機器學習。接著移駕溫室,讓訓練好的模型,分辨雜音和不同情況下植物的聲音。再來,觀察乾旱程度與植物發聲的關係。最後,也測試其他的植物和狀態。[1]

麥克風對著乾旱、修剪和對照組的植物收音。圖/參考資料 1,Graphical Abstract局部(CC BY 4.0)

植物錄音與機器學習

隔音箱裡常態生長的植物,每小時平均發聲少於一次;而沒植物的盆器當然完全無聲。相對地,遭受乾旱或修剪壓力的實驗組植物,反應則十分劇烈:[1]

 平均值(單位)番茄菸草
乾旱發聲頻率(次/小時)35.4 ± 6.111.0 ± 1.4
 音量(聲壓分貝;dBSPL)61.6 ± 0.165.6 ± 0.4
 聲波頻率(千赫茲;kHz)49.6 ± 0.454.8 ± 1.1
修剪發聲頻率(次/小時)25.2 ± 3.215.2 ± 2.6
 音量(聲壓分貝;dBSPL)65.6 ± 0.263.3 ± 0.2
 聲波頻率(千赫茲;kHz)57.3 ± 0.757.8 ± 0.7

隔音箱中實驗組的錄音,被依照植物品種以及所受的待遇,歸納為 4 個組別,各組別再彼此配對比較,例如:乾旱的番茄對修剪的番茄等。以此資料訓練出來的機器學習模型,判別配對中各組別的準確率為 70%。第二階段在溫室中進行,自然較隔音箱嘈雜。科學家拿空蕩溫室的環境錄音,來教模型分辨並過濾雜訊。訓練後,令其區別乾旱與對照組番茄的聲音,結果 84% 正確。[1]既然能聽得出基本的差別,下一步就是了解水量對番茄發聲的影響。

體積含水量

為了操縱體積含水量(volumetric water content,縮寫VWC),即水份與泥土體積的比值或百分比,[1, 5]科學家狠下心,連續幾天都不給溫室裡的番茄植栽喝水。一邊觀察 VWC 的變化;一邊錄下它們的聲音。起先水份充足,番茄不太吵鬧;4、5 天下來,發聲的次數逐漸增加至高峰;然後應該是快渴死了,有氣無力,所以次數又開始減少。此外,番茄通常都在早上 8 點(圖表較像 7 點)到中午 12 點,以及下午 4 點至晚上 7 點,這兩個時段出聲。[1]科學家覺得這般作息,可能與規律的氣孔導度(stomatal conductance),也就是跟光合作用的換氣以及蒸散作用的水份蒸發,兩個透過氣孔進行的動作有關。[1, 6]

大部份的聲音都是在 VWC < 0.05 時出現;當 VWC > 0.1,水份還足夠,就幾乎無聲。科學家將比較的條件進一步分成 VWC < 0.01 與 VWC > 0.05、VWC < 0.05 跟 VWC > 0.05,以及 VWC < 0.01、VWC > 0.05 和淨空溫室的聲音。機器學習模型分辨起來,都有七、八成的準確率。[1]

縱軸為每日發聲次數;橫軸為缺乏灌溉的天數。圖/參考資料 1,Figure 3A(CC BY 4.0)
乾旱狀態下,番茄發聲的時段。縱軸為每小時發聲次數;橫軸為 24 小時制的時間。圖/參考資料 1,Figure 3B(CC BY 4.0)

植物發聲的原理

實驗觀察所得,都將植物發聲的機制,指向木質部導管中氣體的運動,也就是科學家先前預期的空蝕現象[1]下面為支持這項推論的理由:

  1. 木質部導管的口徑,與植物被錄到的聲波頻率相關:寬的低;而窄的高。[1]
  2. 乾旱與修剪所造成的聲音不同:在木質部導管中,前者氣泡形成緩慢,發聲時數較長;而後者則相當迅速,時數較短。[1]
  3. 聲音是由植物的莖,向四面八方傳播。[1]
  4. 空蝕現象造成的震動,跟記錄到的超音波,部份頻率重疊;而沒有重疊的,其實已經超出其他物種的聽力以及麥克風收音的範圍。[1]
葡萄、菸草和番茄木質部導管的水平橫截面。圖/參考資料 1,Figure S4B(CC BY 4.0)
葡萄(綠色)、菸草(灰色)和番茄(橙色)的差異:縱軸為聲波頻率;橫軸是木質部導管的平均口徑。圖/參考資料 1,Figure S4A(CC BY 4.0)

問誰未發聲

觀察完番茄和菸草之後,科學家不禁好奇,別的植物是否也會為自己的處境發聲?還是它們都默默受苦,無聲地承擔?研究團隊拿小麥玉米卡本內蘇維濃葡萄(Cabernet Sauvignon grapevine)、奇隆丸仙人掌(Mammillaria spinosissima)與寶蓋草(henbit)來測試,發現它們果然有聲音。不過,像杏仁樹之類的木本植物,還有木質化的葡萄藤就沒有了。另外,科學家又監聽感染菸草嵌紋病毒(tobacco mosaic virus)的番茄,並錄到它們的病中呻吟。[1]

你敢有聽著咱的歌

之前有研究指出,海邊月見草(Oenothera drummondii)暴露於蜜蜂的聲音時,會產出較甜的花蜜。[2]若將角色對調過來:植物在乾旱、修剪或感染等壓力下釋出的超音波,頻率約在 20 至 100 kHz 之間,理論上 3 到 5 公尺內的某些哺乳動物或昆蟲,例如:蝙蝠、老鼠和飛蛾,應該聽得到。[1, 2]以色列科學家認為幼蟲會寄住在番茄或菸草上的飛蛾,或許能辨識植物的聲波,並做出某些反應。同理,人類可以用機器學習模型,分辨農作物的聲音,再給予相應的照顧。如此不僅節省水源,精準培育,還能預防氣候變遷所導致的糧食危機。[1]

  

備註

本文最後兩個子標題,借用音樂劇《Les Misérables》歌曲〈Do You Hear the People Sing?〉的粵語和臺語版曲名。[7]

參考資料

  1. Khait I, Lewin-Epstein O, Sharon R. (2023) ‘Sounds emitted by plants under stress are airborne and informative’. Cell, 106(7): 1328-1336.
  2. Marris E. (30 MAR 2023) ‘Stressed plants ‘cry’ — and some animals can probably hear them’. Nature.
  3. 教育部「哭枵」臺灣閩南語常用詞辭典(Accessed on 01 APR 2023)
  4. McElrone A J, Choat B, Gambetta GA, et al. (2013) ‘Water Uptake and Transport in Vascular Plants’. Nature Education Knowledge, 4(5):6.
  5. Datta S, Taghvaeian S, Stivers J. (AUG 2018) ‘Understanding Soil Water Content and Thresholds for Irrigation Management’. OSU Extension of Oklahoma State University.
  6. Murray M, Soh WK, Yiotis C, et al. (2020) ‘Consistent Relationship between Field-Measured Stomatal Conductance and Theoretical Maximum Stomatal Conductance in C3 Woody Angiosperms in Four Major Biomes’. International Journal of Plant Sciences, 181, 1.
  7. FireRock Music.(16 JUN 2019)「【問誰未發聲】歌詞 Mix全民超長版 粵+國+台+英 口琴+小童+學生+市民 Do you hear the people sing?」YouTube.
胡中行_96
117 篇文章 ・ 39 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

2

3
1

文字

分享

2
3
1
核二退場,核廢料還要放 20 年!又該何去何從?
PanSci_96
・2023/03/28 ・2622字 ・閱讀時間約 5 分鐘

核二廠已經在 3 月 14 日正式退役,完成 40 年的發電任務;但你知道嗎?還得要再花 25 年,才能完成全部的退役工作。

而高階核廢料 -9620 束的核燃料棒,依照國際原子能總署(IAEA)建議,需要在遠離人類的地方儲存 20 萬年,然而它們至今仍留存在核二廠內,無處可去。

核廢料該何去何從? 安全嗎?其他國家又是怎麼處理的呢?再者,難道核廢料不能再利用嗎?

核廢料該去何處

相比於其他發電方式,核能發電要退場可不簡單;未來 25 年的旅程中,包含 8 年的停機觀察、12 年的拆除,以及 5 年的觀察及復原階段。在漫長的退役過程中,除了審慎評估核污染的狀況以外,衍生出的核廢料去留,更是大家最關心的事情。

核能發電過程中,所產生的放射性廢棄物主要分兩種:半衰期長,以鈾、鈽、超鈾元素為主的燃料棒,屬於高階核廢料;其餘的核廢料,都屬於低階核廢料,像是發電廠使用的機具和產生的廢液,廠區內受污染的衣物、手套、紙張等。

而存放在蘭嶼「低放射性核廢料貯存場」的,並非是那些處理起來最棘手的燃料棒。實際上,不論是核一廠還是核二廠,真正的高階核廢料現在都正躺在燃料池內。當然,那裡不會是高階核廢料最後該待的地方,只是因為種種因素,導致下一階段的乾式儲存場遲遲未能啟用;核二廠甚至在 1991 年和 2003 年調整、擴充核電廠內的燃料池,才勉強塞進所有燃料棒。現在燃料池內擁擠的情況,一號機最後一批燃料棒甚至因為燃料池空間不足,至今仍卡在反應爐內,無法退出。

蘭嶼貯存場是臺灣唯一的核廢料貯存場。圖/維基百科

雖然不會爆炸,但是放在地表的核燃料棒,真的沒有輻射的風險嗎?在討論輻射量時,除了半衰期外,還要考慮不同元素在衰變時產生的能量大小。高階核廢料中,大約有 95% 是輻射量低,半衰期 45 億年的鈾 -238 與鈾 -235,而在剩餘材料中輻射較強的,是大部分不存在於自然界,因為核反應才誕生的人工產品超鈾元素。例如錼 -237、鈽 -239、鋂 -243 與鋦 -247,這些超鈾元素衰變時產生的輻射能量較大,半衰期也較長,是比較需要警戒的對象。

那這些高階核廢料究竟該到哪呢?根據國際原子能總署(IAEA)對於核廢棄物的管理規範,儲存核廢料時不只應考慮到對人類,還要同時考慮對環境的影響,盡可能減少廢棄物的總量,並確保最終處置場所的安全性。

台灣參考其他國家作法,燃料棒首先會在燃料池內以濕式儲存的方式繼續待數年,確定降溫、反應下降後,轉移到能讓核廢料存放超過 40 年的「乾式儲存場」,再來則是要能建立一個遠離所有生物生存環境的「最終處置場」。

乾式儲存場與最終處置場

這邊我們要先搞清楚,在反應爐中,鈾 235 是因為吸收中子才變得不穩定,進而引發一系列的連鎖反應;當我們拿掉這些亂源中子,鈾 235 是相對穩定的,半衰期甚至長達 7 億年,這也是為什麼鈾 235 能在大自然中存在,至今而沒有因為衰變而消失。

在核廢料儲存階段,還會通過放置大量的中子吸收材料在燃料棒之間,確保高階核廢料產生的中子不會引發連鎖反應。實際上,到了乾式儲存階段,僅有微弱的連鎖反應和自身衰變產生的過程會產生熱量,產生熱的速度光靠空氣的自然流動就能維持穩定。

整個乾式儲存場的設計,在經過層層阻絕後,廠區邊界的輻射標準值為每年 0.05 毫西弗。台灣人平均每年接受的背景輻射劑量約為 1.6 毫西弗,扣掉背景輻射,每年因為醫療、搭飛機所接受的背景輻射建議值建議不超過 1 毫西弗;以乾式儲存場的設計標準來說,其實不需要恐慌。另外,美國核能設備和系統供應商 Holtec 甚至做過時速 965 公里的火箭撞擊試驗,證實自家乾式儲存槽的安全性。

即便如此,有人還是會擔心天災等意外產生不可預期的後果。為了安心,我們是否能找個遠離人類的地方,永遠將這些核廢料藏起來,眼不見為淨呢?

目前國際上普遍認為,核廢料的最終去處將採用深層地質處置;將核廢料埋進 300 公尺以上的深度,數萬年甚至數十萬年。

從 1980 年代就開始,就有不少的地下示範場域進行相關研究;直到現在,預計於明年啟用、位於芬蘭地底 430 公尺的深層地質處置場 Onkalo(芬蘭語中的意思為空腔之意),最有望成為大家參考的對象。為了減少容器的腐蝕現象,核廢料會被裝在含硼的鋼罐中,外面再套一層銅膠囊,並使用膨潤土妥善密封;整座如蟻穴般的儲存場預計可以收納上方核電廠 100 年份的核廢料,並在被塞滿後,將剩餘的通道與設施重新填平。

核二廠還得要再花 25 年,才能完成全部的退役工作。圖/維基百科

至於台灣核廢料的最終處置場該設在哪呢?專家評估,核一、核二廠靠近第二類斷層山腳斷層,不適合作為核廢料的最終儲存場所;目前原能會還在調查適合的地點,預計 2038 年才會選定最終場所。

第四代核反應爐

核廢料這個棘手問題,除了封存以外,我們有沒有從根本解決,減少「量」的方法呢?可能還真的有,比爾蓋茲投資開發的第四代核反應爐——行波反應爐有可能可以解決這個問題。

為有效解決核廢料問題,在這個反應爐中,將過去無法作為發電原料的鈾 238 與其他核廢料作為原料。這對核分裂發電廠來說絕對是個好消息!現在的核燃料棒中能參與反應的鈾 235 僅佔 3~5%,其他 95% 都是鮮少參與反應的鈾 238,在自然界中鈾 238 的占比更高達 99.3%,如果行波反應爐可使用鈾 238 作為原料,絕對能大幅減少核廢料與需開採的鈾原料。

除了行波反應爐外,還有許多不需要持續添加核燃料、能循環發電的第四代核反應爐也正在研發當中,像是熔鹽反應爐,以及鈉冷快中子反應爐。

芬蘭深層地質處置場 Onkalo 也引出不同的聲音,畢竟如果未來第四代核電廠真的能將高階核廢料循環再使用,我們現在真的應該將之徹底封死嗎?

最後,我們還是要強調,台灣核一、核二、核三廠最後留下總計約 5000 噸的高階核廢料問題,仍不會改變。但將核廢料埋起來眼不見為淨,真的是最好的辦法嗎?你覺得這些高階核廢料又該如何處理呢?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

所有討論 2

2

8
3

文字

分享

2
8
3
【從中國經典認識大腦系列】人之所以異於禽於獸者幾希
YTC_96
・2023/03/23 ・3766字 ・閱讀時間約 7 分鐘

中國古代思想家透過觀察及反思,提出許多做人處事的道理,成為許多經典流傳給數千年後的我們。現代人也許會質疑,那些古老智慧早已過時不適用,甚至不符合科學以及時代潮流。有趣的是,許多經典的背後與現代科學理論相差不遠,甚至能啟發科學家重新詮釋心理學以及大腦運作的理論。

透過這個專題系列,我希望以中國經典當作出發點,讓讀者能從另一個角度認識我們的大腦以及心智的運作,從中體會古老智慧帶給我們的啟示。

或許我們可以從中國經典角度,認識大腦運作。 圖/pixabay

人≠禽獸?

「禽獸不如」是一句常見不過的罵人成語,用來形容品格低下、行為不端正的人。禽指的是鳥類的總稱,而獸指的是四足的哺乳動物,通常指野獸。禽獸兩字的合用,通常指的是鳥類和獸類的合稱。

從字源來看,禽始見於甲骨文,形象是下部有柄的網,一開始是作為動詞指擒拿的行為,並衍伸至指捕捉到的鳥獸,《説文解字》則是以走獸總名定義之,因此一開始禽是用來概括稱呼擒獲到的獵物,並非單指鳥類。一直到數千年前的戰國時期,才開始有禽獸兩字的連用。

「禽」字的甲骨文字型。 圖/小學堂甲骨文

《孟子.滕文公上》:「草木暢茂,禽獸繁殖;五穀不登,禽獸偪人。」

《莊子.馬蹄》:「禽獸成羣,草木遂長。」

這時的禽則專指鳥類,獸字也初見於甲骨文,會意字,從單和犬兩字組合成,單是狩獵工具而犬也是用來協助狩獵,因此一開始是動詞,指打獵。而後定義也包含打獵的對象,即野獸。

「禽」字的甲骨文字型。 圖/小學堂甲骨文

關於人類與禽獸的類比,孟子或許是最早也是最愛用的聖賢之一。

《孟子.滕文公下》:「無父無君,是禽獸也。」

孟子斥責眼中沒有父母、目無君上的人,就像是禽獸一般。孟子強調人與禽獸不同之處,彰顯人類獨有的品德仁義。孟子在《離婁下》更提到:

「人之所以異於禽獸者幾希,庶民去之,君子存之。舜明於庶物,察於人倫,由行義行,非行仁義也。」

人類和禽獸的差異其實只有一點點,一般人把和禽獸不同的地方給丟棄了,而君子則是把差異給留了下來。舜對世間的事物以及人際關係了解相當透徹且明察於心,是遵照仁義之心來處理所有事情,而不是勉強為了行仁義而行仁義。

以上可見孟子強調人與禽獸的差異在於仁義道德價值,而摒棄該中心思想的人則與禽獸並無不同。

西方哲學對於人與動物的論點

不同於東方的中國經典強調人類與禽獸的類比,西方哲學早期就將人類與動物區分開來。

十七世紀的勒內·笛卡兒(René Descartes)把動物稱作是動物機器(animal machine)或是自動機(automata),認為動物沒有思考能力與意識,是沒有靈魂與心智的物質機器。

相比之下的,他的心物二元論(Mind–body dualism)則認為人類是有非物理性的思維物(res cogitans),以及有物質實體的廣延物( res extensa)。笛卡爾的理論也受到唯物論者的挑戰,十八世紀的唯物論代表人物之一,法國醫生和哲學家朱利安.奧弗雷.拉.美特利(Julien Offray de La Mettrie)在《著作人是機器》(Man a Machine :法文:L’homme Machine)中反對物質與靈魂分離的二元論,認為人也是機器,且物質的不同組合能產生人的思想。

法國醫生和哲學家朱利安.奧弗雷.拉.美特利。 圖/wiki

拉美特利的想法也影響後續心理學以及行為理論的發展,20 世紀著名的哲學家,卡爾.雷蒙德.波普爾(Karl Raimund Popper)也討論拉美特利在演化論以及量子力學上的相關,並讚賞拉美特利能在現代科學理論發展前提出一套符合讓科學家以及物理學家們支持的觀點。

演化論說明人與動物的相似性

在科學研究以及演化論尚未發展的時期,神創論(Creationism)解釋人的誕生。創世記 1:26-31提到上帝照自己的形像造人,上帝說:

「我們要照著我們的形像,按著我們的樣子造人,讓他們管理海裡的魚、空中的鳥和地上的牲畜及一切爬蟲。」

這樣的描述也使得人類認為自己在物種上有另一層次的地位,並認為人類與動物是不同的。但從演化論來說,人類在生物學上的歸類是哺乳綱、靈長目、人科、人屬的物種。

我們的大腦也非一開始就如此的發達,這一切還須要歸功於演化上各式各類的動物以及漫長的時間。光從人類的神經解剖構造來看,人腦的神經迴路與老鼠有非常多像似之處,甚至科學家們也能透過研究果蠅大腦來試圖破解人腦的運算機制。

人類大腦與禽獸最大不同是新皮質區域尤其是前腦的部分。

十九世紀的三重腦假說(Triune brain)認為脊椎動物的前腦與行為的演化過程是由爬蟲腦複合區 (Reptilian)、古哺乳動物腦(邊緣系統)(Paleomammalian (limbic system))、新哺乳動物腦(Neomammalian)的三個結構疊加而成[1] (圖一)。人腦的皮質區域非常的發達,甚至演化上必須透過皺褶來增加表面積讓更多腦組織能裝在我們的頭殼內,如此也代表著能在有更多神經細胞存在於每體積單位的腦組織(圖二)。

圖一,三重腦的假說示意圖。 圖/wiki
圖二,右側的人腦與左側的鼠腦比較,可以發現人腦的表面有較多的皺摺。圖/Elizabeth Atkinson, Washington University in St. Louis.

大腦如何進行道德仁義決策

人類與動物最大的不同之一,是道德決策的表現。

面對複雜的社會情境,我們時常會遇到沒有標準答案並讓人陷入兩難的困境,此時我們的大腦會對該情境進行運算,評估任何決定可能帶來的利弊。透過功能性磁振造影(fMRI)的研究發現,情緒是影響與人有關的道德兩難處境(personal moral dilemma)的決策重要因素之一。

當人們進行與人有關的道德兩難(例如:將超載的救生艇上的一個人趕出去來拯救其他人)和與人無關的道德兩難(例如:保留路上撿到的錢包)時,情緒性的處理程序會影響與人有關的道德兩難,並啟動重要相關的腦區包括內側前額(medial frontal gyrus)、後側扣帶皮質(posterior cingulate)以及左右兩側的角回 (left and right angular gyri)[2]

情緒不只表達我們現在想法,也是我們做決策時的重要影響因素之一。 圖/GIPHY

禽獸作為仁義道德的界線,很難想像比禽獸還不如的行為。不過,早在魏晉時期,《晉書.阮籍傳》就記載:

「禽獸知母而不知父,殺父,禽獸之類也,殺母,禽獸之不若。」

竹林七賢的阮籍認為,禽獸都是知道其母不知其父,因此弒殺父親的行爲,屬於禽獸一類,但弒殺其母,則是連禽獸都不如。

如此令人髮指的行為在人類社會上並非少數。反社會以及心理病態的道德淪喪者被認為與背側與腹側的前額葉腦區(dorsal and ventral PFC)、杏仁核 (amygdala)、以及角回(angular gyrus)受損有關[3]

此外,在大腦有不正常的單胺氧化酶 A (MAOA,monoamine oxidase A)基因表現,也影響杏仁核以及前額葉結構發展並導致反社會人格和高度心理病態特質有關[4]

總結

人類自詡為萬物之靈,認為自己優於其他物種。但數千年前的孟子卻已經觀察到人類與禽獸相似的行為表現,並提醒著我們合乎仁義道德的重要性。

大腦控制著情緒以及認知功能,是人體最複雜的器官。

 若大腦生病了,我們的心理健康也會出現問題。歸功於近代科學的發展,我們能透過精密的儀器進行觀察、實驗並提出理論來解釋大腦的運作。人腦是透過演化發展而來,因此與動物們有許多相似之處,而人類發達的前額葉皮質,是發展出意識、複雜認知及仁義道德的重要區域。

人類大腦中的前額葉皮質,是我們發展出意識、複雜認知及仁義道德的重要部位。 圖/GIPHY

由於道德價值是建立在原始的神經迴路之上,若沒有時常警惕以及約束自己,我們大腦與禽獸類似的部分則會有機會主控我們的行為,產生衝動後悔的決定或是失去理智的犯罪行為。

參考資料

  1. The Triune Brain in Evolution. Role in Paleocerebral Functions. Paul D. MacLean. Plenum, New York, 1990. xxiv, 672 pp., illus.
  2. Greene JD, Sommerville RB, Nystrom LE, Darley JM, Cohen JD. An fMRI investigation of emotional engagement in moral judgment. Science. 2001 Sep 14;293(5537):2105-8. doi: 10.1126/science.1062872. PMID: 11557895.
  3. Raine A, Yang Y. Neural foundations to moral reasoning and antisocial behavior. Soc Cogn Affect Neurosci. 2006 Dec;1(3):203-13. doi: 10.1093/scan/nsl033. PMID: 18985107; PMCID: PMC2555414.
  4. Kolla NJ, Patel R, Meyer JH, Chakravarty MM. Association of monoamine oxidase-A genetic variants and amygdala morphology in violent offenders with antisocial personality disorder and high psychopathic traits. Sci Rep. 2017 Aug 29;7(1):9607. doi: 10.1038/s41598-017-08351-w. PMID: 28851912; PMCID: PMC5575239.
所有討論 2
YTC_96
6 篇文章 ・ 6 位粉絲
從大學部到博士班,在神經科學界打滾超過十年,研究過果蠅、小鼠以及大鼠。在美國取得神經科學博士後決定先沉澱思考未來的下一步。現在於加勒比海擔任志工進行精神健康知識以及大腦科學教育推廣。有任何問題,歡迎來信討論 ytc329@gmail.com。