2

0
0

文字

分享

2
0
0

粒線體一定是母系遺傳?爸爸偶爾也是有戲份的!

活躍星系核_96
・2019/01/16 ・2023字 ・閱讀時間約 4 分鐘
  • 文/楊宜蓓
圖/芝加哥美術館

一直以來,我們從課本上學到:人類的粒線體只會來自母親。

但是,在 2018 年十一月,科學家在 PNAS 科學期刊上發表了新的發現:粒線體也會遺傳自父親1。研究報導發現了 17 位來自三個不同家族的病人都擁有來自雙親的粒線體。這關乎到哪些科學基礎? 又為什麼粒線體DNA 在多數的情況下都來自母親呢?

粒線體,細胞的發電廠

粒線體 (mitochondrion)是細胞中的胞器,擁有不同於染色體的DNA 4

人類的身體就像是一個分工精密、24 小時作業的工廠,而粒線體就像是工廠裡的發電機,它提供了細胞所需要的基本能量,讓你的身體能夠正常運作。

每個細胞擁有數個粒線體,不同於細胞核,粒線體擁有獨立的 DNA (mitochondrial DNA, mtDNA),為什麼呢? 這要回溯到生命的起源:粒線體其實是被其他細胞吞下去的細菌,但它順利的和原始細胞共生,保留了自己的 DNA,而最後演化成粒線體。

為什麼我們的粒線體都來自母親?

圖/pexels

我們的基因經過重組,一半來自父親、一半來自母親,但為什麼唯獨粒線體 DNA 一定來自母親呢?在受精的過程當中,精子的粒線體基本上是不會進入卵子,那些不小心進入卵子的精子粒線體 (paternal leakage),會被標記,這些被標記的粒線體最終只會走向死亡,被分解。身體有如此的保護機制的可能原因是:

  • 第一,精子的mtDNA突變的機率比較高,因為精子在衝向卵子前,靠著粒線體全力衝刺,想像一個被操到爆的車子,引擎難免有些受損,如果這些突變的 mtDNA 被保留,對細胞造成危害的風險也會提高2
  • 第二,細胞內的粒線體 DNA 必須保持均一性 (homoplasmy),別忘了細胞就是個小工廠,細胞核和粒線體需要完美的配合,如果一個細胞中含有不一樣的粒線體,使細胞核和粒線體無法有效的合作,可能會造成粒線體失去功能,甚至造成糖尿病或癌症等疾病2。這個嚴謹的母系遺傳機制,也讓科學家可以追溯粒線體夏娃,建構出母系遺傳的祖譜

來自父親的粒線體

圖/pixabay

作者黃醫生(Taosheng Huang)在 PNAS 發表了新的發現,他有一位四歲的病人居然帶有雙親的粒線體DNA,緊接著他的團隊發現了三個家族中, 17 個病人都有一樣的現象,這三個家族並無血緣關係,且父系粒線體的存在率為 24-76%。

這位四歲的病人因為粒線體疾病,出現疲倦和肌肉無力的症狀,經過黃醫生的檢查後,發現此病人擁有兩種不同的 mtDNA。黃醫生也很驚訝,繼續往上追溯病人的家族,發現這個病人的母親除了其母親的粒線體,也擁有其父親的粒線體,並同時將兩組粒線體遺傳給了兒子。緊接著,他的團隊在其他病人中,發現了另外二個家族也有一樣的現象。

除此之外,雖然黃醫生的病人皆出現粒線體的疾病,但是其他擁有混合粒線體的家人都很健康。這項特殊的粒線體遺傳能力似乎是因為染色體的突變,除了消滅精子粒線體的機制失靈了,身體還允許雙親的粒線體共存,且這個能力能夠被遺傳給下一代。但目前為止,仍需要更多實驗去證實背後的機制,到底為什麼精子的粒線體能夠躲過摧毀機制,並且被細胞保留。

這個新發現也許能提供粒線體疾病一種新療法

圖/pixabay

這個新發現也許能提供粒線體疾病一種新療法。3,4現行的技術下,若母親的粒線體有缺陷,為了避免其遺傳至小孩,有種療法可以將母親卵子的細胞核放入另一個已剔除核且擁有健康粒線體的卵子,再將其混合的卵子與父親的精子受精,形成「三個父母的小孩 (three-parent baby)」,如此,小孩就會擁有健康的粒線體。但這項療法目前仍存在道德爭議性,而且美國仍禁止此種技術,但是,如果能使用父親的 mtDNA 改善或取代有缺陷的粒線體,當母親的粒線體有問題時,父親的就可以派上用場!但這個理論也需要更多的實驗去證實,畢竟精子的 mtDNA 產生的突變機率更大,會帶來更多的風險。

人類的粒線體母系遺傳仍是主流,作者也認為未來的路還很長,還需要更多的研究去證實遺傳方式,不過,這個發現仍帶給科學界相當多的震撼,也許未來會有更多的案例被發現也不一定。

參考文獻

  1. Shiyu Luo, C. Alexander Valencia, Jinglan Zhang, Ni-Chung Lee, Jesse Slone, Baoheng Gui, Xinjian Wang, Zhuo Li, Sarah Dell, Jenice Brown, Stella Maris Chen, Yin-Hsiu Chien, Wuh-Liang Hwu, Pi-Chuan Fan, Lee-Jun Wong, Paldeep S. Atwal, and Taosheng Huang (2018) Biparental Inheritance of Mitochondrial DNA in Humans, PNAS 115 (51) 13039-13044
  2. Sophie Breton and Donald T. Stewart (2015) Atypical mitochondrial inheritance patterns in eukaryotes, Genome, 2015, 58(10): 423-431,
  3. Not Your Mom’s Genes: Mitochondrial DNA Can Come from Dad, NOVA, 2018
  4. How to make a “three-parent” baby, Science News for Students, 2017

文章難易度
所有討論 2
活躍星系核_96
759 篇文章 ・ 70 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

2

0
0

文字

分享

2
0
0

被始祖人類收編的去勢病毒,竟成為人類繁衍的關鍵基因 ?——《我們身體裡的生命演化史》

鷹出版_96
・2021/09/19 ・1916字 ・閱讀時間約 3 分鐘

胎盤中母體細胞和胎兒細胞的交界處,有一種蛋白質具有非常特殊的功能。合胞素(syncytin)位於這個介面上,在母體與胎兒交換養分和廢棄物時,擔任像是分子交通警察的工作。許多研究指出,這種蛋白質對於胚胎的健康極為重要。有一群科學家製造了合胞素基因有缺陷的小鼠,這種小鼠的生長活動一切正常,但卻無法生育。在受孕之後,胎盤無法成型, 因此胚胎不能存活。

母體如果少了合胞素,製造不出具有功能的胎盤,胚胎也就無法得到養分。人類如果缺少合胞素,也會產生許多和懷孕相關的問題。患有子癲前症(preeclampsia)的女性,身上的合胞素基因就有缺陷,以致可以製造出蛋白質, 卻無法好好完成工作,結果在胎盤中引發出一連串反應,導致了極危險的高血壓。

法國一個生物化學實驗室,透過合胞素基因的 DNA 序列,來研究這個蛋白質的結構。就如同林區的研究當中所看到的, 當一個基因被定序出來,就可以把遺傳編碼傳送到電腦中,與其他生物所具備的基因序列進行比對。這種辨認出模式的交互檢查,能比對整個基因,也能找出其他基因序列中是否有類似的小片段。幾十年來,資料庫中的基因序列資料來自各式各樣的生物,小至細菌,大到大象,有數百萬份。比對工作揭露出許多基因是複製而擴大的基因家族,這在第五章談到了。在合胞素基因中,研究人員找尋的是其他相似的蛋白質,想說可以從中發現合胞素在懷孕期間發揮功能的方式。

發現的結果是個謎。搜尋資料庫後顯示的結果是,合胞素和其他動物中的蛋白質都沒有任何相似之處。在植物與細菌中也沒有發現到相似的序列。最後電腦比對出來的結果讓人驚訝與困惑:合胞素的基因序列,看起來非常像是某種病毒中的序列,並且像是造成愛滋病的人類免疫缺陷病毒(HIV)。這種病毒為什麼會有類似哺乳動物的蛋白質,而且那種蛋白質對於懷孕還很重要?

從人工培養的淋巴細胞中出芽的 HIV病毒 (綠色部分)。圖/WIKIPEDIA

研究人員在繼續探究合胞素之前,要先成為病毒專家。病毒是狡猾的分子寄生物。它們的基因組非常精簡,只含有感染和複製所需的資訊。病毒入侵細胞後,進入細胞核,並且進入基因組本身,一旦進入 DNA 裡面,它們會接掌主權,利用宿主的基因組製造更多病毒,並且生產病毒的蛋白質而不是宿主的蛋白質。宿主細胞受到病毒感染後,就成為製造千千萬萬病毒的工廠。人類免疫缺陷病毒這類病毒,為了從一個細胞傳播到另一個,它們會製造出讓宿主細胞黏在一起的蛋白質。這種蛋白質能夠把細胞併在一起,並建立通道,病毒藉此可以從一個細胞移動到另一個細胞中。為了達到這個目的,那種蛋白質會位於兩個細胞的交界處,控制兩者之間的交通。聽起來似曾相識?當然,因為合胞素在胎盤中做了同樣的事情:合胞素把細胞併在一起,控制胎兒細胞和母體細胞之間的分子交通。

合胞素作用於胎盤中的合胞體滋胚層 Syncytiotrophoblast (淺藍綠色處) ,讓母體細胞與胎兒細胞能夠相連通。 圖/WIKIPEDIA

研究團隊越是深入,越是發覺合胞素其實是來自失去感染其他細胞能力的病毒。哺乳動物蛋白質和病毒蛋白質的類似性,引導出一個新觀念——在遙遠過往的某個時間,一個病毒入侵了人類祖先的基因組,這個病毒含有某種類型的合胞素, 但它並沒有指揮細胞造出千千萬萬個病毒,而是遭受去勢,沒有感染能力,反而被新的宿主利用上了。人類的基因組是與病毒持續較勁的戰場。在合胞素這個例子中,因為尚未發現的機制,病毒中負責感染的部位被刪除了,其餘部位則被留下來製造胎盤所需的合胞素。病毒把蛋白質帶到了基因組中,本來是要攻擊基因組,後來卻受到劫持而為宿主效力。

科學家接著研究各種不同哺乳動物中的合胞素結構,發現小鼠的版本和哺乳動物的版本不同。比對了資料庫後,他們發現在不同的哺乳動物中,不同的病毒入侵產生了不同的合胞素。靈長類動物的來自入侵所有靈長類祖先的病毒;嚙齒類和其他哺乳動物的來自另一個感染事件,使得牠們有不同版本的合胞素。結果就是:靈長類、嚙齒類和其他哺乳動物,各有來自不同入侵者的不同合胞素。

人類的DNA 並非完全繼承自祖先,入侵的病毒會插入基因組中,產生功用。人類祖先和病毒的戰鬥,也是眾多創新的起源之一。

——本文摘自《我們身體裡的生命演化史》,2021 年 月,鷹出版

所有討論 2
鷹出版_96
4 篇文章 ・ 7 位粉絲
在絕壁和雲層之上,開通想法的路。 鷹出版將聚焦在自然、科普、哲學等知識領域,以超克的視野,提供生活之慧眼與洞見。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策