Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

璀璨繽紛亮麗之中的顯微攝影 – 沙語者

espa.taipei
・2012/03/28 ・1017字 ・閱讀時間約 2 分鐘 ・SR值 528 ・七年級

-----廣告,請繼續往下閱讀-----

今天來分享在中國顯微攝影中相當有名氣(搖光)老師的作品之一,沙語者

世界,無數沙礫,你所看見的沙子是什麼顏色?
討厭的蚊蟲為什麼總是打不著?
曾經風靡於牛奶行業的三聚氰胺真面目是怎樣?
飛落的雪花,每一片是否都各有不同?
醬油是黑色的嗎?

一切科學和詩意的答案都在中國微博紅人 張超(搖光)夫婦的顯微攝影裡,神秘而又無以倫比的美麗,將為你打開看世界的另一扇窗。 中國顯微攝影界的「神鵰俠侶」張超(搖光)夫婦,多次憑藉出色的創意和技術在國際顯微攝影比賽中獲獎,利用入門級的 Olympus CHC 顯微鏡拍攝了許多顯微世界裡的美麗照片。 從雪花、種子到昆蟲臉譜、沙子,令人大開眼界。

張超(搖光)老師的簡介:

中國國家地理雜誌社博物編輯,自然之心自然體驗 ​​講師,多次在中國顯微攝影大賽中獲獎,曾接受中央電視台記錄頻道、北京電視台科教頻道的顯微攝影專題訪談。 王燕平:即搖光夫人 北京師範大學天文系天體物理學碩士,於北京天文館從事天象節目編導工作,自2009年開始參加國際顯微攝影大賽和國際生物顯微攝影大賽,連續三年獲得優異成績。

張超(搖光)老師的博客:摇光的植物笔记

-----廣告,請繼續往下閱讀-----

說實話,沙的拍攝是在顯微攝影中比較困難的,光源照射角度問題,景深問題,等等…….,沒一項是可以快速解決的。沙子的樣本也很講究,我看過幾十種沙子樣本,但拍出來好看的並不很多。為了保證沙子的細節和數量,一般用兩種辦法拍攝:

  1. 對於一把沙子,對裡面每一個或幾個拍攝,最後合成為一張大圖
  2. 將幾顆或十幾顆沙子擺放在一起,利用 3×3 9宮格拍攝法,然後拼接為一張大圖,無論哪種方法,拍攝都非常費時費力,有時一個白天拍一張,有時幾個晚上拍一張。

以下是(搖光)老師幾個比較典型的照片:

 

鳴沙山的沙子,會叫的沙子。裡面有很多黑色的礦物顆粒
欽州灣的沙子,粗粗的海灘沙子,有很多動物的殘體
銀灘的沙子,非常小非常細,都是純淨的石英質地沙子,造型讓人想起施華洛世奇
從安提瓜和巴布達採來的著名粉紅色沙灘的沙子,都是生物殘體,粉紅色的主要是貝類殘體

下一頁

-----廣告,請繼續往下閱讀-----
文章難易度
espa.taipei
12 篇文章 ・ 0 位粉絲
顯微攝影也可以是一門藝術!顯微鏡不是單單的工具而已,其實只要善加利用,也能變成一幅美麗的藝術作品!

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

5
1

文字

分享

0
5
1
在連接體迷宮尋找生命意義——專訪 2023 Taiwan 顯微攝影競賽銀獎得主劉柏亨
顯微觀點_96
・2024/04/29 ・4856字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

擴張顯微術、免疫螢光標記搭配雷射共軛焦顯微鏡,果蠅腦部緻密的多巴胺神經網路展開在我們眼前。初看猶如璀璨星雲,接近端詳就能發現神經束繁複清晰,聯繫著綻放光芒的神經元,猶如從太空站觀看的都會夜景。

這張精彩的作品「Wiring the Brain」,是以果蠅大腦探索連接體學,尋找腦部運作奧秘的路線圖之一,由清華大學腦科學中心的博士生劉柏亨拍攝。獲得 2023 Taiwan 顯微攝影競賽銀獎,不僅是劉柏亨在追求科學真相途中的額外收穫,也是他對自己多元興趣的重要實踐。

從材料工程到腦神經 追求變化的躍動旅程

大學時主修材料科學的劉柏亨,從「自修復材料」開始,研究興趣逐漸從工程領域轉向仿生(Bio-inspired)科技。他的碩士班題目是以生物晶片模仿心臟,作為藥物篩選平台。對他自己和指導教授都是嶄新的題目。

-----廣告,請繼續往下閱讀-----
清大腦科學中心是劉柏亨建立神經生物學知識與系統性思考的地方
清大腦科學中心是劉柏亨建立神經生物學知識與系統性思考模式的殿堂,也是每天磨練科學技藝的工作坊。 攝影:楊雅棠

「我是個很好動的人,因此選擇了一個全天都在活動的器官。」

——劉柏亨說,當時雖有學長研究細胞遷移,但對他來說還不夠「動感」,因此選擇團隊中沒有先例的心臟作為研發目標。

以仿生材料模擬心臟的過程中,劉柏亨意識到,「我對細胞、組織的基本原理還不夠了解,容易以工程師的觀念模擬心臟特性,有時會違反真實、整體的生理學。」他因此萌生了建立生醫知識基礎的求知慾。

劉柏亨想要挑戰更複雜的器官,進入江安世院士領導的清華大學腦科學研究中心攻讀博士,將短期具體研究目標放在「腦神經的影像化」,長期的探索方向則是「系統性地理解『生命現象』」。

電子顯微鏡下的果蠅
電子顯微鏡下的果蠅。果蠅的基因與人類同源性高,遺傳工程易於操作,並能呈現複雜多樣的行為,是研究腦科學的關鍵模式生物。Courtesy of Wellcome Collection.

無畏複雜 以系統視野理解生命

劉柏亨說明,上一階段的生命科學著重精準分析特定分子的功能,逐步研究細胞生理的單一面向。但人體不只由數種分子或細胞組成,而是上兆個細胞形成群體、互相影響,才展現出人類個體的生命表現。

系統生物學(Systems Biology)觀念,整合地理解人類生命,是劉柏亨著迷的目標。他說,因為分子與細胞生物學研究充分累積,現今的生醫知識基礎與技術成熟,已形成科學家投入系統生物學的良好時機。

-----廣告,請繼續往下閱讀-----

其中最吸引他的,是呈現腦神經系統的「連接體(Connectome)」及探究其整體運作的「連接體學(Connectomics)」。

連接體學是探究精神官能症狀、神經性疼痛、認知退化等腦部相關疾病的最新路徑。解碼線蟲、果蠅等模式生物較為簡單的神經連接體,將能推動對人類腦部運作方式的理解,也是神經生物學與醫學的關鍵方向。

系統生物學重視聯繫與整合的思維,不僅是劉柏亨追求知識的途徑,也延伸了他對生物學專業與社會的觀點。

這位接連跨足不同領域的博士生說,擷取腦神經影像的程序從前端的生物材料製備,到後端影像系統的工程科技都不可或缺,不是一個人的專業能力能夠包辦。

-----廣告,請繼續往下閱讀-----

他因此體悟,每張顯微影像都結合多種專業,而生物學的每一步進展也是不同領域科學家努力的整體成果,並非一個天才在單一領域獨力鑽研而成。

「許多不同的神經細胞彼此透過突觸聯繫彼此,建構出有神奇功能的腦。就像是人與人建立連結,建構社群與社會。」

——劉柏亨在頒獎典禮現場如此介紹自己獲獎的顯微影像。
果蠅腦連接體
果蠅幼蟲腦連接體的全腦圖譜,終於在 2023 年上旬由霍華.休斯醫學研究所、約翰.霍普金斯大學與劍橋大學的團隊合作完成。加入線蟲、海鞘幼蟲(Ciona intestinalis larva)、沙蠶幼蟲(Platynereis dumerilii larva)等生物的行列,達到突觸等級的完全連接體地圖。 Courtesy of Science

工程師的生物學 如調酒般逐步改良

這張螢光染色的果蠅腦神經多巴胺網路圖,輸出到超過人腦的截面積,依然清楚呈現星羅棋布的迴路與神經元。跨越繞射極限的清晰成像,要歸功於擴張顯微術(Expansion Microscopy)與劉柏亨逐步改良工法的耐心。

劉柏亨解釋,擴張顯微術中「分解」步驟對螢光訊號最為關鍵。蛋白酶能夠有效分解(digest)樣本的蛋白質骨架,讓樣本順利擴張,但是會犧牲不少螢光蛋白與解析度。

替代方法是以藥物促使蛋白質變性(denature)降低張力,維持螢光訊號強度,但是樣本擴張過程會有較多阻撓,導致結構變形。劉柏亨說,

-----廣告,請繼續往下閱讀-----

「結構變形,就不是原本要追求的東西,訊號再強也沒有用。」

劉柏亨與擴張後只有灰塵大小的果蠅腦樣本。
劉柏亨與擴張後依然只有灰塵大小的果蠅腦樣本。 攝影:楊雅棠

他笑稱自己「『像個工程師』地追求實驗最佳化,把兩種分解途徑混成雞尾酒,每一杯都稍微調整改良。」他調和兩種分解概念,嘗試不同藥劑濃度、工序、實驗溫度;或以生物素化(Biotinylation, 在樣本擴張前使用), 鍵擊化學(Click Chemistry, 在樣本擴張後使用)放大螢光訊號。

經過了近四十份的樣本製作與拍攝,終於得到滿意的影像。他敘述製作過程的語氣輕快,其實每一次擴張顯微術的製備與拍攝,都是漫長嚴謹的科學工作。

每一組樣本(大約十顆果蠅腦)的免疫螢光染色工期大約一週,擴張過程耗時三至四天;以轉盤式共軛焦顯微鏡拍攝單顆擴張的果蠅腦樣本,則需要 18 小時左右;接著要花上一整天,等待軟體拼接壓縮上萬張圖片。

獲獎的「Wiring the Brain」就是超過 10 萬張顯微照片的拼接疊合而成,包含將原本立體的影像透過專用軟體壓縮成平面。劉柏亨譬喻,「打開全新的 iPhone15 Pro,按住快門連拍直到記憶體滿載罷工,就是一張果蠅連接體影像需要的容量。」

-----廣告,請繼續往下閱讀-----

繁密的連接體影像,不僅讓劉柏亨在連接體學的迷宮中前進,也能滿足他對美感與藝術的追求。在實驗室外也是攝影愛好者的劉柏亨,本學期正在修習清大科技藝術研究所曹存慧老師的生物藝術課程。

藝術家的生物學實驗室:向外延伸感官 向內反思存在

劉柏亨興奮地分享,他正與組員規劃虛擬展覽「藝術家的生物學實驗室」,模擬一個身懷生物科技的藝術家,會如何規劃他的實驗室。

腦機介面、組織再生、基因工程,是三個劉柏亨想要優先呈現的技術。

從編輯 DNA,改變蛋白質,最後型態出現差異,基因工程是現代生物技術的基礎。組織再生可以展現生物體修復能力與生醫工程的可能性。腦機介面則是最直接觸及心智能力、感官範疇,也結合最多精密工程技術的領域。

-----廣告,請繼續往下閱讀-----

「這個藝術家本身帶有基因或感官的缺陷,試圖用生物科技延伸他的感官。參觀者能體驗生物科技延伸感官、改變身體的能力,並從中反思我們作為個體存在於環境中,與環境互動的關係。」

——劉柏亨解釋藝術計畫的初衷,一如對顯微技術的投入。
劉柏亨善於以日常生活譬喻科學知識。圖為20203顯微攝影競賽作品展覽現場
劉柏亨善於以日常生活譬喻科學知識。圖為 2023顯微攝影競賽作品展覽現場。攝影:林任遠

與藝術學院同學合作的過程中,劉柏亨發現組員們對生物學的知識足夠,較為不同的是,藝術領域的組員對於色彩組合或實驗操作,常常比科學領域的學生更加直覺,帶來浪漫的不確定性及意外的創造性。這種風格能與劉柏亨的藝術追求產生共鳴,但是科學研究必須要求精確,在浪漫與精確之間拿捏,也是他練習的目標。

另一方面,藝術學院的組員也常引導劉柏亨設計出更簡潔的生物學科普展示;或是透過討論,讓他想傳達的科學概念更具體明確。

使新奇成為日常元素 顯微鏡是好奇心泉源

從攝影、腦神經到生物藝術,劉柏亨喜歡讓心智保持活躍與好奇。他形容自己,「每天我都需要新的刺激,我喜歡讓學習新事物成為生活的常態。」他對顯微技術的投入,也是由碩士班期間的好奇心開啟。

當時的實驗室備有共軛焦顯微鏡,劉柏亨並不負責保養,也不須理解光路,但是好奇心驅使他向前來校正的工程師陳正義學習。劉柏亨說「正義哥算是我的顯微技術啟蒙老師,只要他出現在實驗室,我就會站在旁邊追問。」

-----廣告,請繼續往下閱讀-----

現在劉柏亨遇到超越既有能力的顯微技術問題,不僅會和團隊成員討論,也會向其他實驗室的技術人員,甚至教授求教。參與不同團隊合作架設光學系統的過程,讓他深入了解雷射共軛焦顯微技術的原理,並體驗以精密工程逐步實現理論。

劉柏亨認為,顯微技術不僅是延伸感官的工具,更提供理解周遭世界的全新方式。隨著理解方式改變,好奇心與探索的內在動力會源源不絕地湧出。

「顯微鏡其實是激起好奇心的動力引擎。」

——劉柏亨認為從日常生活進入微觀世界,最重要的回饋是對人內在的激勵,不只是外在的觀察。

從機器管家出發 追問生命的意義

對自己的研究目標轉換,劉柏亨說「心臟的細胞運作起來具有高協同性,像是訓練有素的樂儀隊。但腦神經的運作瞬息萬變,隨時變化,更像是社會中的人際連結。」儘管像是越級打怪,他仍想探索更複雜的生命系統。

說到自己對生物學的內在動機,劉柏亨回憶,「我一直記得電影《機器管家》(Bicentennial Man,1999 年上映)。透過機械工程組合無機的零件,可以模擬一個真實的人類,與人建立感情。其中一定需要對生命原理的了解,非常神秘。」

對複雜生命現象進行整合研究,進而建立精密的仿生系統,這個系統不僅可能成為藥品篩選、器官再生平台,在更遠的未來可能成為人的延伸,甚至模仿人的整體生命表現。

機器管家
《機器管家》以晶片使機器得到情感能力的技術令人神往,同時也不斷促使觀眾反思「人」與「生命」的定義。 Courtesy of Wikipedia

這個猶如科幻小說楔子的目標,由劉柏亨敏銳的好奇心與多元的科學技藝積累堆砌而成。他說,

「在理解、實現這個系統的過程中,我會掌握生命的意義。」

查看原始文章

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
0

文字

分享

0
1
0
筆耕卅五載,洞鑒電路板春秋——專訪PCB切片權威白蓉生
顯微觀點_96
・2024/03/30 ・4463字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

低調的電子產品之母

拆開任何現代電子產品,都可以發現印刷電路板(Printed Circuit Board, PCB)的踪影。從地球外的人造衛星、最新款 iPhone 到傳統桌上型電話,印刷電路板都在其中乘載元件、傳遞訊號,因此也被稱為「電子產品之母」。

臺灣是舉世聞名的 PCB 出口大國,儘管出現廠商逐廉價勞動力外移的趨勢,臺灣企業的市占率依然超過三成,位居全球第一。

在追求精密化、提高良率的產業進步過程中,分析 PCB 切片顯微影像是不可或缺的步驟。要看得細膩真確,則有賴 PCB 樣本製備及影像判讀,兩項需要精密操作、耐心和敏銳判斷力的技術。

-----廣告,請繼續往下閱讀-----

從拋光臺到編輯臺

現年 85 歲的白蓉生,是兩岸 PCB 業界備受尊敬的分析技術權威,曾獨立經營《電路板資訊雜誌》8 年,並擔任臺灣電路板協會《電路板季刊》總編輯 25 年。他磨練 PCB 切片檢驗與判讀能力 40 餘年,持續對業界分享他的獨門 PCB 顯微分析心得。

影像來源:顯微觀點

自 1980 年代以來,白蓉生公開發表超過 800 篇圖文並茂的 PCB 檢測技術文章,並擔任國內外重要廠商的技術顧問。他不藏私的經驗分享,促成 PCB 製造商的技術躍進與營業成長。

PCB 檢測過程中,光學顯微檢驗是最為基礎,也提供最多資訊的步驟。進入顯微載物台之前,PCB 需要經過切片取樣、封膠、研磨、拋光、微蝕等步驟。其中切片與研磨、拋光需要格外細緻的操作能力,才能在顯微鏡下呈現清晰平整的切面。

良好的 PCB 切片樣本,可以將整個切面維持在同一個焦平面,均勻呈現孔道的鍍銅品質、不同金屬間介面的良窳,整個水平面上的顯微景觀都維持清晰對焦。透過尋找細微瑕疵,來改進 PCB 的製造過程。

-----廣告,請繼續往下閱讀-----

「在放大 1000 倍、3000 倍後,都可以維持切面對焦的樣本,才是合格的切片樣本。」

—在每一篇技術文章都分享數十張顯微影像的白蓉生如此強調。
平焦與起伏對比切片小圖20231013163621
圖 1 與圖 2 是常見 QA 等級的切片,同一個視野中就出現失焦。圖 3 與圖 4 則整個視野都能清晰成像,符合白蓉生要求的 FA 切片標準。影像來源:白蓉生

精細樣本製備與多重顯微技巧

白蓉生以業界檢驗分級 QC(Quality Control, 品質管理), QA(Quality Assurance, 品質保證), FA(Failure Analysis,故障分析)為案例,「合格的 FA,追求整個切片視野的焦聚一致,一覽無遺。一般 QC 或 QA 人員,慣於接受觀察球面樣品,對於看不清楚的部分不了了之。」

他指出,業界常見的球面切片無法得到清晰的全面影像,是研磨與拋光的技術與耐心不足。焦點起伏不定的切面無法展現細節中的魔鬼,工程師自然也無法精進製程、更換材料以祛除瑕疵,。

現任職欣興電子技術顧問的白蓉生,在廠內建立 FA 切片師的培訓與考試機制,30 年來僅有 20 多人合格。製備合格切片之後,影像判讀是分析製程的必須能力,因此白蓉生設立與 FA 切片師並行的 FA 判讀師制度,迄今也只有 20 多人合格。

白蓉生感嘆,「切片與判讀都需要下苦功練習,30 年來只有 3 個人獲得切片師與判讀師雙料合格。」

—來向他學習切片與判讀技術的,往往是 PCB 業界的資深工匠或管理階級,要放下既有經驗與身段並不容易。

白蓉生笑說,「來學切片判讀的,常常是經理或副理,對專業經驗自視甚高。但他們所學愈深,就愈是謙遜。登堂入室,才發現前方學海無涯。」

-----廣告,請繼續往下閱讀-----
白蓉生善用多種顯微技巧,樣本中的細微差異都無法逃脫他的法眼。影像來源:白蓉生

隨著顯微技術演進,業界流行使用電子顯微鏡觀察切片,認為看愈小愈好。白蓉生卻堅持以光學顯微影像作為判讀依據。因為在電子顯微鏡下,只有黑白影像,無法利用顏色分辨不同材質。

白蓉生說「用電顯判讀的結果,無法分析顏色。我認為都是胡說,像是文盲在看書。儘管能看到很小的顆粒,分析人員也只能看著黑白影像說:『那是雜質』。」

切換明視野、暗視野、偏光干涉等光學技術,再搭配透視與立體顯微鏡的組合,PCB 切片中不同金屬在白蓉生鏡下呈現明顯對比,相同金屬也會因為歷經不同處理而呈現不同顏色。電鍍銅與化學銅的差異、電鍍與焊接的品質,都在白蓉生的顯微影像中一覽無遺。

領導業界規格 畢生追求精進

除了基本的明場自然光,白蓉生也分享他常用的顯微技巧:以明場光源搭配干涉,在最暗與最亮的偏光下可獲得透視效果。明場兼用偏光與干涉可以使銅面呈現立體效果,且電鍍銅會呈現藍色易於分辨。採用偏光與干涉的單純暗場則能呈現最佳的材質對比效果。

-----廣告,請繼續往下閱讀-----

白蓉生強調,「因為能看出金屬介面的細緻型態,我們才能知道技術要如何改進。」

—「而不是把顆粒都標籤為『異物』,說服自己製程、材料很完美,失去進步的機會。」

在白蓉生指引的工藝改革下,原本表現平庸的欣興電子成為精密載板的重要國際供應商。他得意地說,「我們製作的 Daisy Chain 載板佈線連貫強韌,承受 500 次熱漲冷縮測試之後,電阻增加不到 5%。技術紮實到連 Nvidia 這種頂級客戶都大吃一驚。」

欣興電子雇用白蓉生為顧問後,他追求精進的態度製程水準帶來革命般的改變。白蓉生回憶,早先欣興電子的產品良率不到八成,「或許剛好可以維持公司運作,但也無利可圖。」

現在欣興電子的高階 IC 載板良率已穩定超過 9 成 5,股價也成長超過十倍。白蓉生笑說,「我沒有因為公司股票賺錢!我原本就不想要賺大錢,因為錢多了沒用,只是徒增煩惱。」

電鍍銅細微變形
電動車用的 5G 通訊電路板,在 50 次回焊之後必須維持電阻值變化在 5% 之內。圖中的細小變形就會導致電阻值增加。影像來源:白蓉生
電鍍銅在50次回焊後軟化變形
電路板回焊 50 次後,電鍍銅軟化變形,可能導致電阻增加。業界進行品質管控時經常忽略這種細節。需要細緻的顯微觀察技術才能發現。影像來源:白蓉生

以紙上技藝傳遞電路板工藝

話雖如此,白蓉生也坦承,「當年創立《電路板資訊雜誌》是生活所需,因為從安培離職,沒工作就沒收入啦!」

-----廣告,請繼續往下閱讀-----

從資深工程師轉為科技月刊發行人兼總編輯,白蓉生的生活更加忙碌,全副精神都浸泡在 PCB 技術知識的研讀和傳遞中。

他回憶,當時他自己擔任總編輯兼送報生,手稿交由妻子與另一位打字員處理,在沒有網路的時代,每一期要繳出 5 萬字圖文並茂的稿子。除了努力訪問國內廠商、專家,也要大量編譯國外刊物內容。當年雜誌收入以廣告費為主,每個月可以得到超過 20 份廣告委託,在沒有前例的科技月刊市場上,開拓出意外佳績。

《電路板資訊雜誌》從 1988 年發行至 1996 年,白蓉生在 8 年間自力編譯、採訪、寫作,從早晨六點到午夜睡前,都在蒐集資料、勤奮筆耕。

「我一周六天都在編雜誌,沒有應酬娛樂,也沒請過病假,因為連生病的時間都沒有!」

—月刊生涯的辛勤讓白蓉生難以忘懷。

雜誌停刊之後,白蓉生享受了兩年退休生活,發現自己閒得發慌。他受邀擔任臺灣電路板協會(Taiwan Printed Circuit Association, TPCA)的顧問及《電路板季刊》總編輯,繼續研究、傳授電路板顯微影像的判讀方法,以及細緻的製程改善技巧。

-----廣告,請繼續往下閱讀-----
白蓉生老師 小圖

《電路板季刊》迄今已發行 100 期,白蓉生也成為華語世界最重要的電路板知識傳遞者。

懷有珍貴 PCB 分析知識與技術的白蓉生,在兩岸業界深受重視,是各大廠商極力邀請的講師。他的判斷力不是來自學校或公司的教育體系,而是靠著多年來的勤奮自學。

好學、勤奮與謙虛的自我養成

白蓉生說,他少時家貧,因此就讀師範學校以省下學費,還能領錢和白米幫助家境。但師範學校學歷不如一般大學(當時師範學校專門培育小學校教師,僅需 3 年教育),心有不甘的白蓉生在小學任教三年後,考上中興大學化學系,同時擔任小學老師和大學生。

白蓉生在大學畢業後進入中華航空擔任化學工程師,反覆的電鍍工作並未帶給他成就感,他於是轉職美商安培電子(Ampex)。1969 年起,白蓉生在安培電子大量接觸 PCB 製造與檢測的第一線作業,開啟了鑽研 PCB 分析判讀的專業道路。

-----廣告,請繼續往下閱讀-----

1969 年,安培電子於桃園設廠,是臺灣 PCB 生產王國的發軔時刻。白蓉生在此接觸到國內最先進的 PCB 工藝。他樂於在下班之後繼續研究檢測材料,探索各種慣例外的顯微方法,逐步建立自己的 PCB 切片檢查技巧。

手動拋光使刮痕消失
樣品拋光也是白蓉生長年執著而深入的技術。他對學生一概要求手動拋光,以免電動轉盤拋光機的力量導致表面起伏不平。他強調,要用衣物布料等級的棉質針織布輕柔拋光,才能得到平坦無刮痕的樣品。影像來源:白蓉生

除了 PCB 製造工藝的獨到見解,對文學的喜愛也是白蓉生筆耕不輟的動力來源。他說,自己求學時力求節儉,一直步行上學,超過 40 分鐘的漫漫路途是他背誦古文的時間,對文學的興趣、寫作的欲望隨著路程逐漸滋長。

對於中年轉行,成立沒有前例可循的專業技術雜誌,白蓉生笑稱,「當初發行頭幾期雜誌就燒完 6 萬塊積蓄,我還真不知道能不能回本。」

從技術專家、顧問到專業刊物總編輯,白蓉生拓展並傳承 PCB 分析工藝將近半世紀。他至今保持30年前「永晝方塊每隨飯,長夜蟹文伴枕眠」的強韌動力,投入 PCB 檢測、寫作與講課,建構低調踏實的臺灣電路板工藝文化。

他認為,電子產業是臺灣立國基礎,業界訓練可以彌補產學落差,但好學、勤奮與謙虛的心態是學校或企業不能代勞的,得要由年輕世代主動保持。端正的學習心態結合不藏私的深入技術指導,能養成更多專業人才,使電路板工藝精進,提升業界整體價值。

查看原始文章

-----廣告,請繼續往下閱讀-----

討論功能關閉中。