0

0
0

文字

分享

0
0
0

《經度法案》開啟航海不迷航的新紀元 │ 科學史上的今天:07/08

張瑞棋_96
・2015/07/08 ・1164字 ・閱讀時間約 2 分鐘 ・SR值 517 ・六年級

-----廣告,請繼續往下閱讀-----

Image creator :Mark Morgan© 2010 Flickr

1497 年的今天,葡萄牙航海家達伽馬(Vasco da Gama)從里斯本啟航,成功開啟了連結歐、非、亞洲的航線,成為歐洲第一位繞過非洲南端的好望角,抵達印度的人。達伽馬與哥倫布、麥哲倫等人為大航海時代揭開了序幕,然而當時的航海技術仍無法精確掌握所在位置,每次出航都是生死未卜,迷航或觸礁等事故時有所聞。直到 1714 年,同樣是 7 月 8 日這一天,英國國會通過《經度法案》,重金懸賞在海上測量經度的方法,才終於覓得良方,開啟航海時代的新紀元。

為什麼經度這麼難測量?因為在不同緯度仰望天體的仰角大小不同,還可以藉此得知身處哪個緯度,但東西向的經度並不會有此差異,無法單靠觀測天體就可得知,必須根據當下與出發地的時間差異才能推算出相隔多少經度(地球自轉一圈 24 小時,而東西經各 180 度,所以每差一小時就是相隔 15 度)。但問題就在於如何得知出發地現在幾點?

雖然十五世紀就已經發明用發條驅動的時鐘,但很不準確,一天誤差 15 分鐘以上,直到惠更斯(Christiaan Huygens)在 1656 年發現可以利用鐘擺加以校正,才將誤差縮小每週一分鐘。然而,鐘擺到了搖晃不止的海上根本毫無用武之地,雖然惠更斯後來又發明了可以取代鐘擺的螺旋平衡彈簧,但誤差卻又變大,無法滿足航海的要求。

重賞之下,必有勇夫。年輕的英國鐘錶匠哈里森(John Harrison, 1693-1776)聽聞懸賞之後,決心投入研究。1735 年,他終於推出第一代航海計時器 H1,用平衡彈簧取代鐘擺,經海上實測有不錯的表現,而獲得官方挹注經費繼續研發。1757 年,取得重大突破的 H3 完工,使用膨脹係數不同的兩個金屬片補償彈簧熱脹冷縮所導致的誤差。

-----廣告,請繼續往下閱讀-----

不過他發現三年前所設計的懷錶竟然與 H3 的準確性不相上下,除了錶中有他設計的特殊擒縱輪,小型的懷錶也的確比時鐘更能精密加工。於是他予以改良後,於 1761 年發明了 H4 航海錶,經過 81 天航行到牙買加後只慢了 5 秒鐘,經度誤差僅 0.02 度,遠遠優於《經度法案》要求的 0.5 度誤差。

但評審之一的天文學家馬斯基林卻對這奇技淫巧相當反感,認為觀測月亮與恆星夾角的「月角距法」才是正統,因此故意刁難,扣住獎金不發,即使哈里森終於答應要求,於 1765 年交出 H1 到 H4 的設計圖,仍只拿到一半的獎金,另一半要他再做出更優異的 H5 才給。但他與兒子於 1770 年完工後仍被刁難,直到向國會申訴後,才於 1773 年拿到應得的獎金。

1775 年,三年前帶著 H4 的複製品出航的庫克船長(James Cook)完成遍及大洋洲與南極洲的航程返國,極力讚譽哈里森的計時器,讓哈里森得以在隔年離開人世之前見賭自己的發明獲得最大的肯定。他的計時器從此成為標定經度的最佳工具,讓航海不再有迷失方向的危險;而哈里森的許多設計至今也仍在現代鐘錶中繼續運作著。

 

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 998 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
娜美的海圖是怎麼來的?看歐洲世界地圖的發展史——《獻給國王的世界》上
PanSci_96
・2019/07/02 ・2886字 ・閱讀時間約 6 分鐘 ・SR值 553 ・八年級

第一張世界地圖

本書的主題,是現存十六世紀地圖中最教人讚嘆的一張——亦即諾曼製圖師皮耶.迪塞利耶(Pierre Desceliers)為呈獻給法蘭西國王亨利二世(Henry II),而在一五五○年製作的世界地圖。

圖上有城市、君王、異族、動物、船隻與海怪的圖案,還有二十六大段說明文字,內容似乎是專為這張地圖而寫的。圖/wikipedia

這張地圖由四張羊皮紙拼成,圖幅驚人,達 135 × 215  公分(4 呎 5 吋× 7 呎 1 吋),以精緻的筆法手繪而成。圖上不僅有城市、君王、異族、動物、船隻與海怪的圖案,還有二十六大段說明文字,內容似乎是專為這張地圖而寫的。這張地圖引人入勝之處,在於其精美,在於其不下於民族誌的插圖,更在於其(一如當時的其他諾曼地圖)對於假設性的巨大南方大陸所做的描繪——有些人認為,圖上的南方大陸透露出歐洲人對澳大利亞的「早期發現」,早於傳統上以威廉.楊頌(Willem Janszoon)在一六○六年發現澳洲的看法。

本書不僅首度以全彩、全幅方式帶來該地圖的複製圖,更是頭一遭以此圖為題所做的系統性研究,探討其繪製圖像的出處、地圖如何製作,同時還提供圖上長篇說明文字的完整謄寫與譯文。我希望,本書的研究不僅能呈現這張一五五○年地圖的細節、該圖與其他十六世紀地圖的關係,更能使我們對皮耶.迪塞利耶的手法、偏好,甚至是他的藏書有所了解,畢竟我們對此人仍知之甚微。

-----廣告,請繼續往下閱讀-----

航海圖的起源

圖/wikipedia

迪塞利耶的一五五○年世界地圖,是以實際用於地中海海域與東大西洋的航海圖作為製圖架構。這一類航海圖(又稱港灣關係圖〔portolanchart〕)起源不明,但帕特里克.古提耶.德契(Patrick Gautier Dalché)曾表示雖然現存最早的海圖出自十三世紀晚期,但海圖早在一二○○年便已問世,他的說法也深具說服力。

海圖通常畫在獸皮上,圖中呈現地中海與鄰近地區,西起愛爾蘭,東至聖地耶路撒冷,北起北歐,南至北非。海圖非常著重海岸特色,岸邊的地名以垂直於海岸線的方式書寫,內陸的地理細節則少之又少。圖上畫的不是經、緯度格線,而是方位線構成的網。方位線從節點往基本方位發散出去,各節點則圍繞海圖中心,呈環狀排列。

方位線具備的領航功能並不清楚,很可能是藉由指出羅盤方位,幫助制定航線。製作這類海圖的重鎮,是下列地中海港口城市(以興起的順序排列):威尼斯、熱那亞、馬約卡的帕爾瑪(Palmade Mallorca)、安科納(Ancona),以及後起之秀墨西拿(Messina)和馬賽。

-----廣告,請繼續往下閱讀-----

海圖的各種用途

未經裝飾的海圖是讓人在船上使用的。由於飽經摧殘,這種海圖通常都用不久。但在純粹的海圖之外,製圖師也為顧客提供程度不一的插圖,而這類裝飾性元素若非出於製圖師本人之手,就是由製圖作坊中專司插圖的畫家所繪。可資選購的裝飾圖案包括城市、旗幟(藉此點出控制城鎮的政治勢力)、羅經花,以及山川、樹木、君王、動物和船隻的圖案。顧客還能選添圖說,用來描述圖上各地不同的風土人情。這種海圖更為精緻,因此也更為昂貴——添飾豐富的地圖有可能比實用版的海圖貴上十倍,其用途不在航海,而是供王室與貴族蒐藏、展示之用(見下圖 )。

繪有精美插圖的海圖,孔特.奧托瑪諾. 弗雷杜奇(Conte Ottomanno Freducci)製於一五三九年(London, British Library, Add. MS 11548)。圖/麥田出版提供

到了十四與十五世紀,有人試著拓展海圖體系,將圖上呈現的空間推向已知(或部分已知)世界的邊緣。一三七五年的加泰隆尼亞地圖集(Catalan Atlas)是現存裝飾最精美的航海圖之一,其描繪的不光是東大西洋、歐洲與北非,還畫了中東與整個亞洲,直至亞洲大陸的東端。至於製作時間約為一四六○年的加泰隆尼亞埃斯特地圖(Catalan-Estense map),圖面上除了歐亞兩洲的全貌之外,連整個非洲都畫了進去。

這些地圖顯然有著混和的特質:圖上有些區域的地理資訊出自航海圖傳統,而該處的海岸就會有密密麻麻的地名;但在其他區域,也就是地理資訊採自馬可.波羅(Marco Polo)等人的旅行記述、海岸線乃出於推測之處,海岸地區就不會有大量的地名。此類進階版的十四、十五世紀海圖少有實例——它們是權貴的珍玩,想當然耳也少有人製作。

-----廣告,請繼續往下閱讀-----

地圖再進階:加入經緯度

大約在十五世紀中葉,製圖師開始作實驗,將當時新的地理發現與另一種製圖素材——克勞狄烏斯.托勒密(Claudius Ptolemy)的《地理學指南》(Geography)融為一爐。西元二世紀,亞歷山卓學者托勒密寫了這本《地理學指南》,根據經緯度來劃分空間;拜占庭學者馬克西莫斯.普蘭努德斯在一三○○年前後重新找到這部著作,旋即在十四世紀初將之譯為拉丁文。

克勞狄烏斯.托勒密。圖/wikimedia

有些十五世紀中葉的《地理學指南》手稿不僅收錄了托勒密的地圖,還加入當代的地圖,更新托勒密一書的資訊;某些手稿中的地圖甚至涵蓋了托勒密當時不曉得的地區,但也仍然沿用托勒密的經緯度體系。一四九一年前後,人在佛羅倫斯就業的日耳曼製圖師恩里克斯.馬爾特盧斯(Henricus Martellus),便將當時有關非洲南部與亞洲東部的新知識,
與建立在托勒密架構的地圖合而為一。馬爾特盧斯根據托勒密體系繪製的掛牆地圖有複本傳世,大小為 122 × 201 公分(4 呎× 6 呎 7 吋)。

一五○七年,日耳曼製圖師馬丁.瓦爾特澤穆勒(Martin Waldseemüller)遵循馬爾特盧斯的模式,把更廣大的地表納入托勒密架構——包括新大陸,並且將地圖印在十二大張的紙上,拼合後達 128 × 233 公分(4 呎 2 吋× 7 呎 8吋)。

-----廣告,請繼續往下閱讀-----

正當此時,其他的製圖師則將新的地理發現加入「進階版」的海圖;事實證明,這種作法在十六世紀大受歡迎。一五○○年,西班牙航海家兼製圖師胡安.德.拉.科薩(Juan de la Cosa,他曾在哥倫布首度橫渡大西洋時與之同行)創造了這麼一種海圖——圖上畫了當時仍流於推測的新大陸輪廓,南向延伸涵蓋了整個非洲,並向東推進,只差亞洲東海岸沒畫。這張手繪地圖相當精緻,大小為 93 × 183 公分(3 呎 1 吋× 6呎)。

西班牙航海家兼製圖師胡安.德.拉.科薩的海圖。圖/wikimedia

圖中所繪的地表遠比傳統海圖遼闊,製圖師還加上一點托勒密經緯度體系的元素——赤道與北回歸線,好方便觀者領會地圖上畫的土地位於地球的哪個位置。到了一五○二年,費拉拉公爵埃爾科萊.埃斯特(Ercole d’Este, Duke of Ferrara)手下的間諜阿爾貝爾托.坎蒂諾(AlbertoCantino)將一張手繪世界地圖從葡萄牙偷渡到義大利,地圖的範圍東起
新大陸東海岸,直至亞洲東海岸,圖上的南方海洋也比胡安.德.拉.科薩的地圖更為廣大。

該圖長寬為 105 × 220 公分(3 呎 5 吋× 7 呎 3 吋),提供的內陸地理細節不多(不僅漏掉了非洲的尼羅河,亞洲大部分地區也留白),美術裝飾水準中下,但緯度資訊多於胡安.德.拉.科薩的地圖,畫出了赤道、北回歸線、南回歸線與北極圈。

-----廣告,請繼續往下閱讀-----

——本文摘自《獻給國王的世界:十六世紀製圖師眼中的地理大發現》,2019 年 2 月,麥田出版

PanSci_96
1226 篇文章 ・ 2337 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
2

文字

分享

0
3
2
張瑞棋:我想呈現科學家榮耀的背後,和常人無異的一面
梁晏慈
・2016/03/31 ・2235字 ・閱讀時間約 4 分鐘 ・SR值 517 ・六年級

「以古為鏡,可以知興替。」如果能在過去、現在兩點拉出一條直線的話,未來的趨勢也有機會在我們掌握之中;當我們遇到困難時可以透過過往的經驗,幫助我們下判斷。這就是歷史的重要性!同樣的,歷史的脈絡可以幫助我們學習科學,而且還有機會發現科學家並不是我們想像中的神聖不可侵。2015 年 12 月 22 日在胖地台北,泛科學的專欄作者張瑞棋帶著《科學史上的今天》,和我們分享科學家背後鮮為人知的小故事。

24032111600_eeb5011598_o

「從小到大,科學家在我們心中非常偉大,無論是哥白尼的日心說,或者證明地心引力作用一樣的伽利略。這些科學家閃耀著光芒,直到越讀越多書後才發現,光芒的背後其實存在著陰影。這些科學家們的陰影來自信仰權威以及性別。」

信仰

普遍認為哥白尼的日心說之所以不被認可,是因為宗教的打壓。然而另一種觀點是由於哥白尼認為上帝創造的宇宙應該存在著完美對稱的幾何關係,也就是軌道應該是圓形的!但這會和他觀察到的天文現象不吻合,因此與其說日心說的發表示因為教會的壓力,其實哥白尼本身的執迷才是造成學說延宕的原因。又比如提出滅絕說的居唯葉,他認為物種會因為某些災難而滅絕,另一方面在創世後仍物種繼續被創造。由於他深信聖經的創世論,甚至抨擊達爾文的演化論,導致演化論的發展備受阻礙。

23959901819_f62a99b171_o
讓我們一起來聽聽科學家背後鮮為人知的故事吧!

權威

除了信仰外,有時候科學家利用自身權威、堅持己見,抑制別派學說,亦會影響科學的發展。你能想像西元十六世紀,醫生們拿著的解剖經典是出自於西元二世紀的蓋倫,且內容漏洞百出嗎?蓋倫是根據其動物解剖的經驗來推斷人體的內部構造,當然和人體的構造有很大的出入。但許多人不改抵抗權威,使得錯誤流傳千年。直到維薩留斯的出現,人體的結構才終於被了解。維薩留斯憑藉著大量的人體解剖經驗,推翻了多年來的理論,加上他有美術的長才,得以將知識快速的更新、傳播。

-----廣告,請繼續往下閱讀-----

另一個為人所知的例子是牛頓萊布尼茲。在微積分發展上,英國推崇地位較高的牛頓提出的流數,而非萊布尼茲的微積分,這導致英國的數學研究落後其他歐陸國家。最後一個權威造成的悲劇,讓許多產婦賠上了性命。十九世紀,醫生塞默維斯發現由醫院接生的產婦死亡率遠遠高出了由助產士接生的。他推測原因是醫學系的學生在解剖完大體後沒有清潔,而將細菌帶給產婦。然而其他高傲的醫生們認為:醫生怎麼可能害人呢?而摒棄了塞默維斯的想法。

23699506794_7112b4cdaf_o

性別

女性在科學界受到的打壓也不少:在代數領域有傑出成就的埃米諾特,竟因其性別而無法擔任大學教授;華生看了羅莎琳.佛蘭克林的 DNA  X 光繞射圖片,終於發現了 DNA 的雙螺旋結構,並以此得到了諾貝爾獎。雖然華生得獎的時候佛蘭克林已過世,然而我們可以想像,在當時的社會氛圍下,即便她在世,女性科學家的得獎機率仍然很低;發現脈衝星的喬瑟琳貝爾其成就在天文界有目共睹,然而諾貝爾物理獎的獎座是被指導教授赫維許拿走;吳健雄透過實驗證實宇稱不守恆,但最後是理論學家楊振寧及李政道是拿到了諾貝爾物理獎。

有些時候科學家對抗的不是來自外界的輿論、權威,反對的力量反而是來自科學界:牛頓打壓虎克及萊布尼茲;愛迪生堅持使用直流電系統,並利用交流電椅製造世人對交流電的恐懼,藉此反對特斯拉的交流電系統;發明氫彈的泰勒對前主管歐本海默落井下石,聲稱歐本海默對美國不忠……

我想呈現的不只是科學家的榮耀,還有其與常人無異的一面

24327733915_4de03532ec_o

跟著《科學史上的今天》的腳步,我們可以發現科學家或許只在智力上比一般人高超,但其品性仍和常人一樣:他們也會忌妒、也會排擠別人、也會為了得到權力耍手段。如果大家能用平等的角度認識科學家,去了解理論後的時代背景,那學科學就不再只是背公式和定理,而是和一段段生命故事相遇的奇幻旅程。

-----廣告,請繼續往下閱讀-----

 

梁晏慈
8 篇文章 ・ 1 位粉絲
梁晏慈,台灣大學化學系研究所。 喜歡聽故事、說故事,還有貓。