0

0
0

文字

分享

0
0
0

第一次看見大腦神經元:高爾基誕辰 │ 科學史上的今天:07/07

張瑞棋_96
・2015/07/07 ・1009字 ・閱讀時間約 2 分鐘 ・SR值 547 ・八年級

-----廣告,請繼續往下閱讀-----

自從虎克於 1665 年看見顯微鏡底下的軟木塞有一個個小格子,並將之命名為細胞後,科學家們繼續用倍率更高的顯微鏡探索各種動植物的細部構造,果然也一一發現了細胞。人體也不例外,無論是血液、皮膚、肌肉,乃至各個器官,都可見到細胞構造,但唯獨大腦例外。

雖然當時已經知道身體各部位的神經最後都通往大腦,但大腦切片在顯微鏡下只呈現出灰白色的均勻物質,即使用各種染色法也看不出是否有任何神經細胞。這個不解之謎直到 1873 年才被義大利醫生高爾基(Camillo Golgi, 1843-1926)破解。

高爾基只是一位住院醫生,閒暇時喜歡在醫院一間由廚房改造的實驗室裡做研究。有一次他將腦塊浸在硝酸銀溶液中好幾天後,拿出來用顯微鏡觀察,結果出現了複雜的網狀圖案,點綴著黑色的斑點。這是人類史上第一次看見大腦的神經網路與神經元細胞,而這多少有點幸運的成分,因為這個「黑色反應法」有個至今仍不明所以的神祕機制,每次只會隨機地對 1%~10% 的神經元染色。所幸如此,才能看得清楚,否則大腦一千億個神經元細胞如果都被染成黑色,那麼錯綜複雜、層層相疊的神經網路看起來只是一團黑,根本無法分辨。

不過高爾基本身是「網狀理論」的信徒,相信心智是大腦整體網路共同運作的結果,並非當時主流的「功能區域論」所主張的大腦不同部位掌管不同功能。因此高爾基並未深入鑽研神經元的構造,反倒是幾年後,主張功能區域論的西班牙神經學家卡哈爾(Santiago Ramon y Cajal)改良了高爾基的黑色反應法,將小雞等小型動物的腦部組織染色,再用細膩的筆觸一一畫出顯微鏡下腦部的神經元構造與神經網路,並推論出神經訊號的電脈衝從神經細胞本體經由軸突傳給下一個神經元的樹突,因而奠定了神經元學說。

-----廣告,請繼續往下閱讀-----

高爾基於 1897 年用黑色反應法在細胞內找到一個之前從未被發現的胞器,負責包裹、運送細胞製造的蛋白質與脂質。這個胞器就稱為「高爾基體」,成為唯一以發現者姓氏命名的胞器。

不過令他得獎的還是他所發明的黑色反應法。1906 年,他與卡哈爾共同獲頒諾貝爾生理或醫學獎,以表揚他們在神經系統研究上的貢獻。這是第一次將同一個諾貝爾獎項頒給兩人以上,更特別的是,兩人的主張完全相反。事實上,目前對於大腦的研究也的確顯示兩種理論都各有千秋,大腦的奧秘仍有待發掘呢。

 

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
張瑞棋_96
423 篇文章 ・ 951 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
1

文字

分享

0
1
1
發育中胚胎如何淘汰異常細胞?——《生命之舞》
商周出版_96
・2023/10/21 ・2937字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

為了理解染色體異常細胞對鑲嵌型胚胎的影響,我們必須要創造出數百個小鼠胚胎,並研究數千個胚胎不同部位的細胞。這麼龐大的工作量需要有一位專職的科學家,也需要資金。

在匯整如何測試這個假設的思緒時,我在絨毛膜採樣檢查後又進行了另一個羊膜穿刺檢查,這個檢查一樣在超音波影像的引導下,將針插入包圍發育胎兒的羊膜囊中,以取得少量的透明羊水樣本來進行分析。保護胎兒的羊水會帶有胎兒細胞,可以用來確認是否具有染色體問題。這次的檢查結果是沒有問題的,我們都鬆了一口氣。不過,得要到我把孩子抱在手上那時,我才能百分之百地放心。

圖/unsplash

還有其他的好消息是,我有了資源可以進行了解我檢查結果的研究。我在發現懷孕那天所進行的面試,讓我獲得惠康基金會的資深研究補助金。這筆補助金原本打算用在另一個計畫上,不過他們給我足夠的自由度,可以直接挪用其中部分資金來為鑲嵌型胚胎建立模型。

如何製造染色體異常的細胞?

我們有一大堆事情要做。首先,我們得要找到一種可信的方式(最好不只一種)來製造染色體異常的細胞。然後我們還要找到一種方式來標記這些細胞,好讓它們在正常細胞旁發育時,我們可以追蹤到它們。製造異常細胞比我們原先所想得更加困難。海倫測試許多種不同的方法來干擾染色體分離的過程,我們最後用到一種名為逆轉素(reversine)的藥物,這是我們實驗室中另一個研究計畫使用過的藥物。

-----廣告,請繼續往下閱讀-----

逆轉素是種小分子抑制劑。我們想要使用逆轉素來抑制染色體分離中的一個關鍵過程。那是一個分子檢查點,在正常情況下會暫停細胞分裂(有絲分裂),直到有正確數目的染色體(帶有 DNA)被拉開,並分離到兩個不同的子細胞間為止。逆轉素會阻斷名為單極紡錘體蛋白激酶(monopolar spindle 1 kinase)的酵素,而這種酵素會在細胞分裂時確保染色體公平分配。

圖/unsplash

為了確認逆轉素確實會造成染色體異常,我們經由標記隨機選出的三個染色體來分析有用藥及無用藥的胚胎。我們所使用的標記方法名為螢光原位雜合技術(fluorescence in situ hybridization, FISH),這種技術會外加一個探針(短 DNA 序列)及一個螢光標記。當探針在樣本中碰到類似的 DNA 片段時,就會在螢光顯微鏡下發光。經由螢光原位雜合技術的追蹤,確認了海倫使用逆轉素後,確實會增加染色體異常胚胎的數量。

逆轉素的效用是暫時性的,海倫一把藥劑洗掉,檢查點就恢復正常功能。這很重要,因為這表示我們可以將胚胎染色體異常的發生限制在特定的發育期間內。

染色體異常的胚胎能正常發育嗎?

確信可以製造出染色體異常的胚胎後,我們需要確定這些施用過逆轉素的胚胎是否會完全發育。海倫對四細胞胚胎施用逆轉素,並觀察到在發育 4 天後,它們的細胞數量比未施藥的胚胎要來得少。不過雖然細胞數量較少,還是可以形成三組基本的細胞世系。

-----廣告,請繼續往下閱讀-----

為了找出施用內逆轉素的胚胎是否可以長成小鼠,我們將這些胚胎植入母體中。這個時間點是在我們創造出體外培養胚胎的技術之前。每 10 個正常胚胎有 7 個會著床,而這個比例在施藥後的胚胎上則降了一半。最重要的是,施用逆轉素的胚胎沒有一個能夠成長為活生生的老鼠。這個實驗顯示,當胚胎中大多數的細胞都出現染色體異常時,它們的發育最終會以失敗收場,即使它們著床了、也發育了一陣子。

圖/unsplash

製造同時有異常與正常細胞的胚胎

現在我們可以進一步來探討那個重要的問題:若是只有部分胚胎細胞帶有染色體異常,發育又會受到何種程度的影響?為了找出答案,我們必須製造出鑲嵌型胚胎,也就是混合了染色體異常細胞與染色體正常細胞的胚胎。因此我們決定經由製造嵌合體來達到這個目的。

因為我們無法在對同個胚胎施用逆轉素時只讓其中一些細胞出現染色體異常,所以無法經由這個方式製造出鑲嵌型胚胎,因此我們想到了運用嵌合體的作法,將來自不同胚胎的細胞結合建構成嵌合體(鑲嵌型胚胎是由單顆受精卵生長發育而成的)。創造嵌合體而非鑲嵌型胚胎的好處是,我們可以系統性地去研究要具有多少異常細胞才會干擾到發育。很幸運地,這個作法成功了。

圖/unsplash

海倫在小鼠胚胎從兩細胞階段分裂到四細胞階段時,經由口吸管的方式施用逆轉素,並在八細胞階段將細胞一個個地分開。然後她將來自正常胚胎的四個細胞與來自施藥胚胎的四個細胞結合創造出八細胞嵌合體胚胎。

-----廣告,請繼續往下閱讀-----

我們要追蹤細胞的命運就需要標記。我朋友凱特.哈迪安東納基斯(Kat Hadjantonakis)與金妮.帕帕約安努在紐約對小鼠進行基因改良,讓牠們的細胞核具有綠色螢光蛋白,所以我們就採用了具有這種特性的小鼠。我們將這類小鼠胚胎施予逆轉素,施過藥的細胞會與未施過藥的細胞有不同的顏色,這樣我們就可以做出區別。具有綠色螢光蛋白的細胞讓我們可以明確看到新細胞是在何時與何處誕生以及新細胞的後續分裂,還有,若是細胞死亡了,我們也可以看到是在何時與何處死亡的。我們可用此種方式為個別細胞建立「譜系圖」。

染色體異常細胞在胚胎發育過程中會被清除嗎?

我們為這些鑲嵌型胚胎拍攝了影片,以精準追蹤每個細胞的命運。海倫在螢幕上看見,異常細胞數量的下降主要發生在產生新個體組織的那一部分胚胎,也就是上胚層。這些異常細胞會在凋亡的過程中死去,也就是經歷程序性的細胞死亡。在注定成為胚胎本體的那一部分胚胎中,施用過逆轉素的細胞經歷凋亡的頻率是未施藥細胞的兩倍以上。

圖/unsplash

這個結果表示,在注定成為胎兒的那一部分胚胎中,異常細胞有被清除的傾向。這支持了我的假設,也就是在這一部分的胚胎中,異常細胞競爭不過正常細胞,不過實際運用的機制跟我原來所想的不一樣。

我簡直不敢相信。這是我們真的會研究出重要成果的第一個徵兆,發育中的胚胎不僅可以自我建構,也同樣可以自我修復。幾年前當我懷著賽門那時,絨毛膜採樣檢查所檢測到的染色體異常細胞的後代,有沒有可能在成長為賽門的那部分胚胎中自我毀滅了呢?

-----廣告,請繼續往下閱讀-----
這張圖片的 alt 屬性值為空,它的檔案名稱為 0823--300.jpg

——本文摘自《生命之舞》,2023 年 9 月,出版,未經同意請勿轉載。

商周出版_96
119 篇文章 ・ 360 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

4
4

文字

分享

0
4
4
【2003 諾貝爾化學獎】細胞膜的分子通道
諾貝爾化學獎譯文_96
・2022/06/03 ・4659字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自諾貝爾化學獎專題系列,原文為《【2003 諾貝爾化學獎】細胞膜的分子通道

  • 譯者/蔡蘊明|台大化學系名譽教授

譯者前言:今年的諾貝爾化學獎頒給了兩位醫生,或許有些奇怪,然而仔細的去瞭解他們所做的工作就會發現,其實他們的研究已經深入到了原子的層次,那不是化學又會是什麼呢!這其實也告訴了眾多對生命科學有興趣的年輕人,其實真正精采的還是在這個化學的層次。考慮加入我們吧。

所有的生命體都是由細胞所構成,一個人身上所擁有的細胞數目就好像銀河中的星星一般,約有上千億個,在每一個人身上,例如肌肉,腎臟與神經等不同的細胞,聯合的運作而形成一個精密的系統。透過他們有關細胞中水與離子通道的開創性發現,今年的化學諾貝爾獎得主, Peter Agre 與 Roderick MacKinnon,在增進瞭解細胞如何運作的基礎化學知識方面,有重要的貢獻。他們讓大家看到一個精采的分子機器家族:通道、閘門與活栓,這些元件是細胞功能所必須的。

通過細胞膜的分子通道

為了維持細胞內外壓力的平衡,讓水能通過細胞膜是非常重要的,這是早為大家所熟知的。然而這種通道的形狀與功能,卻成為生物化學中一個典型的久未解開的問題,一直等到約 1990 年 Peter Agre 發現了第一個水的通道,就如同細胞中許多其它功能所需一般,都是由於一個蛋白質。

水分子並非唯一能進出細胞的分子,為了讓成千上萬的細胞成功的運作而非聚集在一起的肉塊而已,協調是很重要的,因此細胞之間必須溝通,而細胞之間的訊號傳遞則是靠著離子或是一些小分子,由此導致一系列的化學反應,造成我們的肌肉緊繃,眼睛濕潤 ─ 實際上包括了整個身體的運作。在我們腦部的訊號亦與這些化學反應有關。當我們弄斷了一個腳趾時,一個訊號就會上傳至腦部,透過一連串的神經細胞以及化學訊號及離子的流動,訊息就好像接力賽的棒子般在細胞間傳遞。

-----廣告,請繼續往下閱讀-----

在 1998 年 Roderick MacKinnon 第一次成功的展示了離子通道在原子的層次到底長的是什麼樣子 ─ 這個成就加上 Agre 的水通道之發現,打開了生化與生物學中一個嶄新的研究領域。

Agre 與 MacKinnon 的發現在醫學上的貢獻也是很重要的,有一些疾病的成因就是因為水與離子的通道不能流暢的運作有關。隨著逐漸的瞭解這些通道的長相以及它們如何運作,我們就有機會發展更新更有效率的藥物。

水通道

搜尋水通道

早在 19 世紀中葉,人們就知道細胞一定有一個管道讓水與鹽類流通。在 1950 年代中期,發現有一個只能讓水分子迅速進出細胞的通道存在,在這之後的三十年間,透過詳細的研究,結論是一定有某種選擇性的過濾裝置能阻斷離子通過細胞膜,但卻能讓中性的水分子自由通過,而且每秒鐘有成千上萬的水分子通過一個單一的通道!

雖然知道這些,但一直等到 1992 年都尚無人能指出這個分子機器到底長相如何;換言之,就是能找到一個或多個蛋白質所構成的真正通道。在 1980 年代中期,Peter Agre 研究紅血球細胞上的各種細胞膜蛋白質(插在細胞膜上),他也在腎臟中發現一個同類型的蛋白質,在解開了這個蛋白質的序列以及相對應的 DNA 序列之後,他體認到這一定就是在他之前的眾多學者所搜尋的那個蛋白質:細胞的水通道。

-----廣告,請繼續往下閱讀-----

Agre 利用一個簡單的實驗(圖 1)來測試他的假設,在此實驗中,他比較含有此膜蛋白與不含此膜蛋白的細胞,當這些細胞放入水中時,那些含有此膜蛋白的細胞因為滲透壓之故會吸收水分而漲大,而那些沒有此膜蛋白者則聞風不動。Agre 又利用一種稱為 liposome 的人造細胞來測試,那是一種內外都是水的一種肥皂泡泡,他發現當此肥皂泡的膜上植有此膜蛋白時,水就可以自由進出。

(圖 1)Agre 在含有 aquaporin 與不含 aquaporin 的細胞所做的實驗。要有 aquaporin 在細胞上才能吸水而脹大。

由於 Agre 知道汞離子會阻礙細胞吸收及釋放水,因此他也證明了這個他所發現能控制水進出細胞的蛋白質,也會因為汞離子的存在而無法讓水通過。這使得他更確定這個蛋白質就是真正的水通道,他命其名為 aquaporin,即"水洞"之意。

一個結構與功能的問題:水通道如何運作?

在 2000 年,透過與其他研究團隊的合作,Agre 發表了一個 aquaporin 的高解析度 3D 圖像,藉這這些數據,就能按圖索驥,仔細的描繪出一個水通道是如何運作的(圖 2)。為何它只讓水通過而不讓其它的分子或離子放行?例如細胞膜是不允許質子(H+)滲漏的,這點非常重要,因為細胞就是靠著內外質子濃度的差異來維持細胞能量儲存的系統。

(圖 2)水分子通過 aquaporin AQP2 。由於通道中心的正電荷,如 H3O+ 般帶正電荷的離子會被驅逐,這可避免質子的滲漏。

選擇性是這個通道的主要性質,水分子必須順著由構成通道壁的原子所形成的電場方向,鑽過一個狹窄的通道,質子(或應稱之為 oxonium 離子,H3O+)將會在中途因為其所帶的正電荷而被驅逐。

-----廣告,請繼續往下閱讀-----

水通道在醫學上的重要性

在過去十年裡,水通道已發展成為一個不斷被討論的研究領域。大家發現 aquaporin 是屬於一個蛋白質大家族的成員,它們存在於細菌與動植物中;僅在人體就發現至少有七種不同的變體。

這些蛋白質在細菌與動植物中的功能正被勘測中,特別集中在企圖瞭解它們在生理上扮演的角色。在人體的各組織中,水通道在腎臟扮演了重要的角色。

腎臟是一個人體用來排除廢棄物的精巧裝置,在它做為篩子用的線圈中(稱為絲球體),水、離子與其它的小分子與血液分離成為所謂的初尿,在 24 小時中,約生成 170公升的初尿,其中大部分透過一系列靈巧的機制被重新吸收,最終每日產生約 1 公升的尿排出體外。

初尿通過絲球體後繼續通過一個彎管,在其中約 70% 的水通過 aquaporin AQP1 而被重新吸收回血液中,在此管的末端,另外 10% 的水通過另一個類似的 aquaporin AQP2 而被吸收。除此之外,鈉、鉀與氯離子亦被吸收回血液中。抑制尿分泌荷爾蒙(vasopressin)的功能,是促進 AQP2 傳送到腎管壁的細胞膜,因此增加了初尿中水的回收,如果一個人缺乏這種荷爾蒙,將會得到一種稱為 diabetes insipidus 的疾病,每天產生10-15 公升的尿。

-----廣告,請繼續往下閱讀-----

離子通道

鹽類產生的細胞訊號

第一個物理化學家奧斯華(Wilhelm Ostwald , 1909 年諾貝爾化學獎)在 1890 年就認為在活體組織中所量到的電流訊號,應該是來自於離子透過細胞的進出,這個電化學的想法很快的廣為接受。到了 1920 年代,又興起了一種看法,認為有某種狹窄的離子通道存在,有兩位英國的學者 Alan Hodgkin 與 Andrew Huxley 在 1950 年代初期得到了一項重大的突破,因此得到了 1963 年的諾貝爾醫學獎,他們的研究顯示,透過神經細胞膜的離子傳輸,所產生的訊號可透過一個個神經細胞,以接力賽的方式傳遞,這些反應裡面最主要的角色就是鈉離子(Na+)與鉀離子(K+)。

這也就是說,早在 50 年前就已經充分瞭解了離子通道的主要功能,這些通道必須選擇性的只讓一種離子通過,同樣的這些通道也必須有能力打開、關閉或只讓離子往一個方向流動。然而這個分子機器到底真正是如何運作的,卻長久以來一直是個謎團。

選擇性的離子通道

在 1970 年代的研究就已顯示,離子通道只能讓某些離子通過,是因為它裝有某種"離子過濾器"。特別有趣的是,雖然鈉離子比鉀離子要小,卻發現有一種通道只能讓鉀離子通過,卻不會讓鈉離子通過。猜測這可能是由於蛋白質中的氧原子們扮演了一個重要的"取代角色",取代了原先溶於水中的鉀離子周圍所包的水分子層,當鉀離子要進入通道中,必須先脫離這個水層的包圍。

但是進一部要證實這個猜測卻很困難,因為真正需要做的是需取得只有 X-射線晶體繞射才能得到的清楚圖像,問題是運用這種方式去解膜蛋白的結構是非常困難的,當然要去解鉀離子通道的結構也不會例外。動植物的膜蛋白比細菌中者要更複雜而更難研究,但是藉著與人類離子通道非常類似的細菌通道蛋白質之研究,或許能提供進一步的瞭解。

-----廣告,請繼續往下閱讀-----

許多研究人員在這個方面的努力均無功而返,可是卻在另一個方向的研究中意外的得到了突破。 Roderick MacKinnon 在修完生化的學位後,轉入了醫學的領域,成為一個合格的醫師。在成為醫師之後若干年,他開始對離子通道產生極高的興趣,並開始了這方面的研究。他自承"我的研究生涯從 30 歲才開始",不過他的研究卻快速的起飛。由於體認到要瞭解離子通道如何運作,必須要有更好而且更高解析度的結構圖像,他決定從最基本的 X-射線結晶學開始學起,在短短的數年之後,他提出了一個清楚的離子通道圖像而震撼了整個學界,這個重要的事件正是發生在 1998 年的一個四月天。

(圖 3)離子通道只允許鉀離子通過而非鈉離子。在過濾器中的氧原子形成的環境與過濾器外的水中環境類似。細胞也可以透過閘門控制通道的開啟與關閉。

第一個被圖解的離子通道

在 1998 年 MacKinnon 所決定的第一個高解析度的離子通道結構稱為 KcsA,乃是由一個稱為 Streptomyces liridans 的菌株得到的。 MacKinnon 第一次展示了在原子的層次,一個離子通道是如何運作的,那個只允許鉀離子通過而拒絕鈉離子的離子過濾器,現在可以仔細的去研究,他不僅能弄清楚離子如何通過這個通道,其實在其晶體結構中甚至於可看到正在通道前被水包圍著的離子,在過濾器之中的離子,以及離開過濾器的離子,水是如何的來迎接它們(圖 3)。 MacKinnon 也能解釋為何是鉀離子而非鈉離子被允許通過此過濾器,說穿了,這主要是由於鉀離子在過濾器中,周圍所圍繞的氧原子之位置,與在外面被水分子包圍著時,水分子的氧原子之位置是相同的,但是對較小的鈉離子而言,它在過濾器中與氧原子的相對位置,就無法與在水中時一樣(圖 4),因此就較喜歡留在水中(因為有較佳的水合能)。這種能讓鉀離子脫離水層,通過通道而且不損失能量的做法,屬於一種所謂選擇性催化的離子傳輸。

圖 4. 上方為通道外,離子被一層水分子包圍著。下方為通道內,由於鈉離子太小,而與氧原子形成的孔洞不能搭配,造成了鈉離子因為能量的原因不願進入。

細胞也需要能控制通道的開啟與關閉, MacKinnon 也說明了這是藉著一個通道下方的閘門,這個閘門可開啟或關閉一個分子"感知器",這個感知器就在門的附近。不同的感知器會回應於不同的訊號,例如,鈣離子濃度的增加,或一個細胞膜兩邊的電壓差異,或與某種訊息分子的螫合,藉著不同的感知器與離子通道的連接,大自然創造了能回應於眾多不同訊號的各種通道。

瞭解疾病

膜上的通道是所有生命體的基本要件,由於此,增加對它們的認識就成為瞭解許多疾病狀態的重要基礎。各種不同的脫水現象,以及對熱的敏感度,就與 aquaporin 的效率有關;例如最近幾年歐洲的熱浪,導致了許多的死亡,這些死亡,有部分是歸諸於無法保持體液的平衡,在這些過程中 aquaporin 是非常重要的。

-----廣告,請繼續往下閱讀-----

離子通道的功能一但受到干擾,就會導致神經系統方面的疾病,以及肌肉,例如心肌,方面的問題,這使得離子通道成為一個製藥界開發新藥的重要目標。

參考資料

這份文章是譯自諾貝爾獎委員會公佈給大眾的閱讀資料:

http://www.nobel.se/chemistry/laureates/2003/public.html

有意進一步的瞭解就得詳讀以下資訊:

-----廣告,請繼續往下閱讀-----

http://www.nobel.se/chemistry/laureates/2003/public.html

諾貝爾化學獎譯文_96
15 篇文章 ・ 23 位粉絲
「諾貝爾化學獎專題」系列文章,為臺大化學系名譽教授蔡蘊明等譯者,依諾貝爾化學獎委員會的新聞稿編譯而成。泛科學獲得蔡蘊明老師授權,將多年來的編譯文章收錄於此。 原文請參見:諾貝爾化學獎專題系列

2

15
10

文字

分享

2
15
10
顛覆過去發現!中研院團隊首揭細胞「無合成分裂」登上《Nature》期刊
PanSci_96
・2022/05/04 ・2311字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/中研院新聞稿

德國植物學家馮莫爾 (Hugo von Mohl) 在 1835 年首次觀察到細胞分裂後,過去 180 年來,大家只知道兩種細胞分裂方式──有絲分裂、減數分裂。透過製造新的細胞,讓生物體的發育、生長與繁殖成為可能。

中央研究院 細胞與個體生物學研究所助理研究員 陳振輝團隊 在研究斑馬魚發育時,意外發現另一種獨特的細胞分裂方式,其分裂過程不需要進行遺傳物質(DNA)複製,因此命名為「無合成分裂」,於今(111) 年 4 月登上知名國際期刊《自然》(Nature),並獲專文推薦。

中研院 細生所 李奇鴻所長 表示,此研究顛覆過去百年來的細胞分裂發現,有助於後續對其他生物體進行深入探究,進一步了解其詳細的細胞生理調控機制。

「細胞分裂」是所有生命的基礎,長久以來,科學家認為細胞分裂方式有兩種:

-----廣告,請繼續往下閱讀-----

第一,體細胞(如皮膚細胞、肌肉細胞、幹細胞等)要進行「有絲分裂」,1 個母細胞分裂為 2 個具有相同染色體數量的子細胞,讓個體發育生長。

第二,生殖細胞則透過「減數分裂」,將母細胞分裂成 4 個具有一半染色體數量的子細胞(如精子和卵子細胞),有性繁殖才有可能發生。

首度發現體細胞進行「無合成分裂」:僅增生、無 DNA 複製 

陳振輝以斑馬魚為研究對象,長期深入探索生物再生過程的細胞和分子機制,研發多顏色活細胞標誌工具(Palmskin),用上百種不同顏色來標誌不同的表皮細胞,並能即時、高解析度追蹤斑馬魚體表所有皮膚細胞的動態行為。

透過多顏色活細胞標誌(Palmskin),產生上百種不同顏色來標誌不同的表皮細胞,即時、高解析度追蹤斑馬魚體表所有皮膚細胞的動態行為。

團隊意外發現,當斑馬魚在個體發育的特定階段,最表層的皮膚細胞──原被認為是不會分裂增生的體細胞,其單一母細胞竟然可以分裂 2 次,共產生 4 個子細胞,且這些子細胞皆不具有完整的母細胞 DNA。

然而,陳振輝一開始也百思不得其解,為什麼斑馬魚的皮膚細胞需要這樣分裂?而且分裂後的子細胞形狀變小也變扁?多年來與斑馬魚為伍的他,認為答案可能與個體發育成長所遇到的特殊挑戰有關。

細胞由 1 增 4:有效增加斑馬魚體表覆蓋面積

研究團隊利用一個數學幾何模型作為基礎,與中研院 化學研究所 研究員許昭萍、顏清哲博士 跨領域合作,進行細胞體積變化的定量分析,他們發現斑馬魚單一表皮細胞經過兩次「無合成分裂」之後,整體的表面積可增加 6 成。

-----廣告,請繼續往下閱讀-----
實驗觀察到斑馬魚表皮細胞由1增4的過程。圖/nature video Youtube 截圖

陳振輝表示,由於斑馬魚幼魚在特定的發育階段長得很快,體表面積需要快速增加。為了維持一個穩定的皮膚雙層結構,下層的表皮幹細胞以正常的「有絲分裂」來增生,但是上層已分化的表皮細胞,恐已失去此選項,轉而進行「無合成分裂」。

這種分裂方式能讓表皮細胞在資源有限的情況下,有彈性的快速延展,使生物個體有效率地增加體表局部面積,以維持表皮細胞穩定的覆蓋率。此為斑馬魚幼魚在特定發育階段所利用的應急策略。

研究團隊表示,目前對「無合成分裂」的了解尚在初步階段。由於斑馬魚是脊椎動物,也是科學家研究個體發育、再生反應及人類疾病常用的模式生物,他們預測此一新型的細胞分裂方式,或許不只限於斑馬魚體表的表皮細胞,仍有待更多研究探索。

投稿過程艱辛 屢屢重複多次實驗 

陳振輝回憶,此篇論文的投稿時間已經是前(109)年底的事,由於顛覆大家過去對於細胞分裂的認識,初期就收到很多審查意見,「但不只審稿人有意見,我們自己也想知道是否還有其它可能的解釋。」

-----廣告,請繼續往下閱讀-----

一開始,陳振輝團隊原本只想觀察表皮細胞如何移動或脫落,沒想到卻看到此獨特現象,還以為會不會是研究工具出了錯,「怎麼跟教科書教的完全不同!」重複做了多次對照實驗。

本論文第一作者 陳潔盈,現為 中研院國際研究生學程 博士生,也在其中付出許多心力。面對長度僅約 0.5 公分的斑馬魚幼魚,為了反覆觀察其表皮細胞的分裂過程,她必須每 12 小時麻醉幼魚一次,小心翼翼地置於高倍顯微鏡下拍照,並且確定它在鏡頭下的姿勢每次都相同,結束後還得把麻醉後的幼魚喚醒,以持續進行活體實驗。像這樣的過程整整連續十天,重複循環多次。

即使投稿歷程艱辛,團隊成員們興致勃勃,畢竟不是常有這樣的機會可以跟大家分享,「嘿,我想告訴你還有另一種細胞分裂方式的可能。」陳振輝笑說,原來在太陽底下真的能發現新鮮事! 

  • 本論文第一作者為陳潔盈,研究團隊包括顏清哲、阮筱彧、許紹君、曾子倫、蕭崇德、許昭萍、陳振輝,經費由中研院及科技部支持。

延伸閱讀

-----廣告,請繼續往下閱讀-----

新聞連絡人:
陳振輝助研究員,中央研究院細胞與個體生物學研究所
(Tel) 02-2789-9537,chcchen@gate.sinica.edu.tw
郭姵君,中央研究院秘書處媒體小組
(Tel) 02-2789-8821,deartree@gate.sinica.edu.tw
陳昶宏,中央研究院秘書處媒體小組
(Tel)02-2789-8059,changhung@gate.sinica.edu.tw

所有討論 2
PanSci_96
1219 篇文章 ・ 2173 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。