0

0
0

文字

分享

0
0
0

胚胎發育必不可少的兩位舞者:胚胎幹細胞與滋養層幹細胞——《生命之舞》

商周出版_96
・2023/10/22 ・2668字 ・閱讀時間約 5 分鐘

細胞工程如何進行?

如果我們真的要進行細胞工程的話,我們就得要以孩童拼樂高積木的方式,一次一個地將細胞組合成胚胎。但我們並沒有經由口吸管的方式(請參考第五章)來這樣做,而是把一切都留給機率來決定。

我們在培養皿中混合了不同濃度的兩種細胞,並讓它們自由接觸。我們在第二天透過顯微鏡看到,有些細胞確實開始相互作用並形成結構。但為數不多,因為這取決於無法預測的機率。不過當胚胎幹細胞與滋養層幹細胞結合時,它們就會以驚人的方式進行自我建構,它們好像知道自己要做什麼,也有個目標。

胚胎發育過程經歷了什麼?

我們在實驗室暗房的顯微鏡下,看到許多胚胎發育的基本過程。我們首先看到細胞極化。接著幹細胞會自我建構,胚胎幹細胞會聚集在一端,而滋養層幹細胞則聚集在另一端。由於胚胎幹細胞衍生出的胚胎部分與滋養層幹細胞衍生出的胚外部分會進行對話,所以在每個細胞群中的空腔後續會打開並創造出三維的 8 字形。我們發現這涉及到一個名為 Nodal 的蛋白所傳送的訊號。這兩個空腔之後會融為一體,最終形成一個對胚胎發育至關重要的大型羊膜腔。這種體腔形成的過程似乎就跟真正胚胎在著床不久後會發生的情況一樣。我們看見了自我建構的驚人創舉。

不過,我們當然總是想要更進一步,讓合成胚胎中胚胎幹細胞所衍生部位裡的那些類胚胎細胞,能夠適當地打破對稱性。我們的意思是讓這些細胞設法進行原腸化,也就是提供未來身體體制基礎的關鍵步驟。
我們發現若是可以讓胚胎幹細胞與滋養層幹細胞結構再發育久一點,它們確實會打破對稱性。

-----廣告,請繼續往下閱讀-----

像 Brachyury 這類基因就會在胚胎與胚外部位之間開始表現,就跟真正胚胎的情況一樣。Brachyury 基因至關重要,因為它會影響中胚層的形成與前後軸線。 這個發現不但讓我的心跳差點停止,也讓實驗室中的每個人都大為驚奇。

這些類胚胎結構與正常胚胎結構非常相像,足以用於揭開在母體著床時期的某些發育謎團。很明顯地,胚胎幹細胞與滋養層幹細胞一同建造的結構所模擬出的胚胎形態與結構模式,要比只使用胚胎幹細胞要來得精確許多——這是更值得信賴的發育模型。

圖/unsplash

感覺起來,這兩種幹細胞就好像兩名舞者彼此都告訴對方,自己在胚胎中的所在位置。沒有這場雙人舞,正確形狀與形式的發育以及關鍵生物機制的適時運作就不會適當發生。我們也發現這個結構模式的發育,得仰賴 Wnt 與骨成形性蛋白質(bone morphogenetic protein, BMP)的訊號路徑,這與真正胚胎的發育情況一樣。

投稿論文的種種阻力與助力

我們將這篇論文投稿至《自然》。由於許多論文在初始階段就會被退回,所以我們知道編輯將稿子送去審閱時,士氣不由得為之一振。編輯們的知識淵博,經驗也豐富,能走到這一步就是一種重要的認可,所以我們有場小小的慶祝活動,因為即使是小小的成功也能做出改變。

-----廣告,請繼續往下閱讀-----

不過最終他們沒有接受我們的論文,除非得像一位審稿人要求的那樣,提供合成胚胎在自我建構時所用基因的詳細資料,以及這些基因的表現模式在自我建構的每個階段是如何變化的。這將會是一件大工程。然而這彷彿算不上是什麼壞消息,因為我的實驗室中並沒有技術可以研究這些基因所運用的轉變形態模式。我需要尋求經費來購買我負擔不起的設備,我們也需要找到合作夥伴。

我受邀到澳洲獵人谷為歐洲分子生物學組織大會進行講座。那時正值學校放假,所以我帶著賽門一起踏上這次的冒險旅途。我們在香港轉機,順便停留一天拜訪當時的行政長官梁振英,他是我最好的前博士生之一梁傳昕的父親。

圖/unsplash

我的演講是由小鼠發育生物學家譚秉亮(Patrick Tam)開場,我感到非常榮幸,因為我向來就對譚秉亮的研究極為崇拜。賽門與我加入譚秉亮與他太太伊莉莎白(Elizabeth)的行列,一起到雪梨的海邊走走,一路上譚秉亮告訴我有關他與上海生命科學研究院景乃禾(Naihe Jing)的合作,景乃禾利用雷射切割胚胎,揭露了胚胎基因的表現模式。我非常幸運,因為在我回到劍橋不久後,景乃禾就到劍橋來拜訪,所以我能夠親自與他見上一面。我們同意一起合作揭開我們類胚胎結構中基因表現的模式。景乃禾團隊的貢獻將是我下一章故事的重心。那時我們才意識到,可能要花上一年的時間才有辧法確實做到這一點,而我也不確定我們是否願意為了讓《自然》的編輯滿意(或者還是不滿意,誰知道呢)而等這麼久。

那時,莎拉與柏娜已經累積了更多的數據,所以我們決定將研究結果投稿到我比較不熟悉的《科學》。事實證明這是正確的選擇。跟過往一樣,審稿人要求我們再多做一點實驗。但這次的要求還做得到,只是我們就得在 2016 年的聖誕節假期長時間的工作,以便在新學期開始前完成手稿。大衛也一起下來幫忙,他成為這篇論文的共同作者。

-----廣告,請繼續往下閱讀-----

為「類胚胎模型」命名也是一門大學問

命名很重要,因為「珠子」那個命名的前車之鑑,所以我們對於要怎麼為我們的類胚胎模型命名進行了漫長的討論。這些模型讓我們知道胚胎結構是如何從幹細胞自我建構而成,所以我們想要給它們取個特別的名字。但是我們最後沒有得到共識。

圖/imdb

《科學》的編輯不喜歡「合成」類胚胎結構這個名字。我在期中假期得知這個消息,那時我正與家人及朋友滑雪度假中,所以我請他們一起來想想其他的名字。這或許就是為何我們會想到「ETs」這個名字的原因之一。史蒂芬.史匹柏有部科幻電影講述到從異世界來的訪客,而從幹細胞自我建構出的第一個類胚胎結構似乎也帶給我們這樣的感受。不過這個 E 不是代表「另外(extra)」的意思,而 T 也不是「地球人(terrestrials)」的意思。E 代表的是胚胎幹細胞(ES),而 T 代表的則是滋養層細胞(TS)。

——本文摘自《生命之舞》,2023 年 9 月,出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
文章難易度
商周出版_96
119 篇文章 ・ 362 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

0
0

文字

分享

0
0
0
從「衛生紙」開始的環保行動:一起愛地球,從i開始
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/03 ・1604字 ・閱讀時間約 3 分鐘

你是否也曾在抽衛生紙的瞬間,心頭閃過「這會不會讓更多森林消失」的擔憂?當最後一張衛生紙用完,內心的愧疚感也油然而生……但先別急著責怪自己,事實上,使用木製品和紙張也能很永續!只要我們選對來源、支持永續木材,你的每一個購物決策,都能將對地球的影響降到最低。

二氧化碳是「植物的食物」:碳的循環旅程

樹木的主食是水與二氧化碳,它們從空氣中吸收二氧化碳,並利用這些碳元素形成枝葉與樹幹。最終這些樹木會被砍伐,切成木材或搗成紙漿,用於各種紙張與木製品的製造。

木製品在到達其使用年限後,無論是被燃燒還是自然分解,都會重新釋放出二氧化碳。不過在碳循環中,這些釋出的二氧化碳,來自於原本被樹木「吸收」的那些二氧化碳,因此並不會增加大氣中的碳總量。

只要我們持續種植新樹,碳循環就能不斷延續,二氧化碳在不同型態間流轉,而不會大量增加溫室氣體在大氣中的總量。因為具備循環再生的特性,讓木材成為相對環保的資源。

但,為了木製品而砍伐森林,真的沒問題嗎?當然會有問題!

-----廣告,請繼續往下閱讀-----
圖說:從吸碳到固碳的循環

砍對樹,很重要

實際上,有不少木材來自於樹木豐富的熱帶雨林。然而,熱帶雨林是無數動植物的棲息地,它們承載著地球豐富的生物多樣性。當這些森林被非法砍伐,不僅生態系統遭到破壞,還有一個嚴重的問題–黃碳,也就是那些大量儲存在落葉與土壤有機質中的碳,會因為上方森林的消失重新將碳釋放進大氣之中。這些原本是森林的土地,將從固碳變成排碳大戶。

不論是黃碳問題,還是要確保雨林珍貴的生物多樣性不被影響,經營得當的人工永續林,能將對環境的影響降到最低,是紙漿和木材的理想來源。永續林的經營者通常需要注重環境保護與生態管理,確保砍下每顆樹木後,都有新的樹木接續成長。木材反覆在同一片土地上生成,因此不用再砍伐更多的原始林。在這樣的循環經營下,我們才能不必冒著破壞原始林的風險,繼續享用木製品。

圖說:人工永續林的經營者需要注重環境保護與生態管理,確保砍下每顆樹木後,都有新的樹木接續成長。

如何確保你手中的紙張來自永續林?

如果你擔心自己無意中購買了對環境不友善的商品,而不敢下手,只要認明FSC(森林管理委員會)認證與PEFC(森林認證制度)認證標章,就能確保紙漿來源不是來自原始林。並且從森林到工廠、再到產品,流程都能被追蹤,為你把關每一張紙的生產過程合乎永續。

圖說:只要認明FSC(森林管理委員會)認證與PEFC(森林認證制度)認證標章,就能確保紙漿來源不是來自原始林。

家樂福「從 i 開始」:環境友善購物新選擇

不僅是紙張,家樂福自有品牌的產品都已經通過了環保認證,幫助消費者在日常生活中輕鬆實踐環保。選擇 FSC 與 PEFC 標章只是第一步,你還可以在購物時認明家樂福的「從 i 開始」價格牌,這代表商品在生產過程中已經符合多項國際認證永續發展標準。

-----廣告,請繼續往下閱讀-----

「從 i 開始」涵蓋十大環保行動,從營養飲食、無添加物、有機產品,到生態農業、動物福利、永續漁業、減少塑料與森林保育,讓你每一項購物選擇都能與環境保護密切相關。無論是買菜、買肉,還是日常生活用品,都能透過簡單的選擇,為地球盡一份力。

圖說:選擇 FSC 與 PEFC 標章只是第一步,你還可以在購物時認明家樂福的「從 i 開始」價格牌
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
212 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

8
1

文字

分享

1
8
1
侏羅紀公園的場景可能真實發生?生物複製技術有哪些發展?複製人要出現了嗎?
PanSci_96
・2024/06/15 ・5062字 ・閱讀時間約 10 分鐘

如果用我們的基因製造複製人,可以代替我們上班上課嗎?想像一下,如果世界上每個人都有一個雙胞胎分身?或者,如果我們可以克隆出已故的名人?甚至複製已故的寵物或親人?

當然,這些都是幻想,但複製生物技術的發展正在讓這個幻想漸漸變為現實⋯⋯

科幻小說的故事照進現實,在技術層面上有哪些困難?道德上又會引發哪些問題呢?

讓我們一起探索這項驚人技術的曲折歷程吧!

-----廣告,請繼續往下閱讀-----

今天的文章將會回答以下問題:

  1. 複製生物技術的早期實驗有哪些?又帶來什麼影響?
  2. 基因複製技術最大的困難是什麼?
  3. 複製技術面臨哪些主要挑戰和倫理道德問題呢?
  4. 複製生物技術除了複製生物還能有哪些應用?

克隆實驗早期的探索與突破?

複製生物技術的發展是一個漫長而曲折的過程,從 19 世紀末的早期實驗,到 20 世紀中葉的技術突破,再到 21 世紀的應用與挑戰。

胚胎實驗的歷史可以追溯到 19 世紀末,當時德國生物學家杜里舒(Hans Driesch,1867-1941)進行了一項開創性的實驗。他通過搖晃的方式將四個海膽胚胎細胞分離,並觀察到每個分離的細胞都能發育成完整的幼體,儘管體型較小。這一實驗證明了早期胚胎細胞具有全能性(totipotency),即早期胚胎的每個細胞都能發展成完整個體,這為後來的細胞核移植技術奠定了基礎。

圖/giphy

在 20 世紀初,植物學家發現通過嫁接和分裂植物組織可以產生與母體相同的植物。奧地利植物學家戈特利・哈伯蘭特(Gottlieb Haberlandt,1854-1945)提出了「植物細胞全能性」(totipotency)的概念,即每個植物細胞都具有發育成完整植物的潛力。哈伯蘭特的實驗主要是通過無菌技術培養植物細胞,雖然當時他並未成功培育出完整的植物,但他的理論和研究為後來的植物組織培養和克隆技術奠定了基礎。

-----廣告,請繼續往下閱讀-----

1914 年,德國生物學家漢斯・斯佩(Hans Speman,1869-1941)進行了另一個具有里程碑意義的實驗。他利用了一根嬰兒頭髮製作的環狀結,將其繫在受精的蠑螈卵細胞上,並將細胞核推到一側。當細胞核所在的一側開始分裂成多個細胞後,他鬆開結讓一個細胞核滑回未分裂的細胞一側,從而產生了兩個獨立的細胞群,這些細胞群最後發育成了兩個完整的胚胎。這是最早的核移植(nuclear transfer)實驗,顯示了細胞核在胚胎發育中的重要性​。

20 世紀中葉,科學家們進一步推動了克隆技術的發展。1952 年,美國科學家羅伯特・布里格斯(Robert Briggs,1911-1983)和湯瑪斯・金恩(Thomas Joseph King,1921-2000)首次成功地將青蛙胚胎細胞的細胞核移植到去核的卵細胞中,並培育出蝌蚪,雖然這些克隆青蛙無法存活至成年,但這實驗證明了細胞核可以在去核卵母細胞中重新編程,進而發育成新個體。

圖/giphy

桃莉羊的誕生:克隆技術的重要里程碑

克隆技術的重大突破出現在 1996 年,當時英國羅斯林研究所的伊恩・威爾穆特(Ian Wilmut,1944-2023)和基思·坎貝爾(Keith Campbell,1954-2012)成功地克隆了第一個成年哺乳動物,也就是廣為人知的——桃莉羊(Dolly)。他們使用的是一隻成年綿羊的乳腺細胞核,將其移植到一個去核的卵細胞中,最終培育出桃莉。這一成就震驚了全世界,因為它證明了成體細胞的基因信息可以被重置為胚胎狀態,並成功發育成為一個完整的生物體,標誌著克隆技術的一個重要里程碑​。

1996 年,成功地克隆了第一個成年哺乳動物,也就是廣為人知的——桃莉羊(Dolly)。圖/wikipedia

桃莉羊的誕生引發了廣泛的科學和倫理討論。一方面,科學家看到了複製技術在醫學研究、保護瀕危物種以及農業中的潛力。另一方面,社會各界對複製技術的倫理問題表示擔憂,特別是人類複製的可能性。

-----廣告,請繼續往下閱讀-----

桃莉羊的成功開啟了克隆技術的新篇章,此後,小鼠、牛、山羊等多種哺乳動物相繼被成功複製,展示了這一技術的廣泛應用潛力。同時,科學家們將目光投向了更為複雜的靈長類動物。

靈長類動物的複製技術在 21 世紀取得了進一步的突破。2018年,中國科學家成功利用與桃莉羊相同的「體細胞核轉植」技術複製出兩隻有相同基因的長尾彌猴「中中」和「華華」,標誌著克隆技術的又一個突破​。2020年中國又成功複製了恆河猴,並取名為「ReTro」,不同於印象中印象中複製動物壽命都很短或是飽受疾病之苦,ReTro 在今年(2024年)已經要滿四歲了,是首隻平安長大成年的複製恆河猴。

複製技術的挑戰?

儘管克隆技術在基因層面上已經相對成熟,但要複製出健康的個體仍然面臨巨大挑戰。許多克隆動物都表現出健康問題,如免疫系統缺陷、心血管問題、早衰、壽命縮短或在在肝、腎、肺、大腦、關節等地方產生發育上的缺陷,也有部分出現體型異常巨大的問題​​。例如綿羊的正常壽命約在 12 年左右,但桃莉羊在 6 歲時,就因關節炎與肺部感染而去世。

這主要是因為,細胞核在卵細胞中的重新啟動過程容易出現問題,導致克隆個體可能存在基因表達異常。即便是中國科學院成功複製的 ReTro 也只是難得成功的個案。

-----廣告,請繼續往下閱讀-----

基因複製出的人類會和本人完全一模一樣嗎?

克隆技術,特別是克隆人類,涉及複雜的倫理和道德問題。一方面,克隆技術可能會被用來治療某些疾病,或是用於治療遺傳疾病和器官移植,甚至延長壽命;但另一方面,它也可能被濫用,導致倫理危機。例如,克隆人類可能引發身份認同問題,並挑戰現有的社會和家庭結構​,反對者擔心擔心這樣的技術會對社會和人類本質造成不可預見的影響。

如果突破細胞核重新啟動的困境,複製出來的克隆人會和本人完全一樣嗎?

答案是:「不會」。

圖/imdb

美國演化生物學家阿亞拉(Francisco J. Ayala,1934-2023)在《美國國家科學院院刊》上提出,我們目前進行的生物複製實驗複製的只是「基因型」而非「表現型」。基因型指的是基因組成;而表現型指的是包含個體外表、解剖結構、生理機能以及智力、道德觀、審美、宗教價值觀等行為傾向和屬性,還有透過經驗、模仿、學習所獲得的特徵。表現型是基因與環境間複雜作用下的產物。基因型的複製就像是同卵雙胞胎,就算長得再像,他們怎麼樣都不會是「同一個人」。透過生物複製技術基因複製出的克隆人,其實也只不過是跟你擁有相同基因的雙胞胎而已。

-----廣告,請繼續往下閱讀-----

不過目前世界上也存在一種能複製表現型的技術,那就是——「AI」。

隨著人工智能技術的進步,模擬人類個性和行為變得越來越現實。例如,AI 可以通過學習大量數據來模擬特定個體的行為模式,甚至在某些情況下,AI 克隆可能會比生物克隆更具實用性。然而,這也帶來了新的風險,包括隱私泄露、數據濫用等​​。

複製技術在生物醫學領域來能有哪些應用?

複製技術的應用範圍廣泛,涵蓋了醫學研究、農業、生態保護等多個領域。

複製技術在生物醫學領域具有巨大的潛力。幹細胞治療可以利用克隆技術培育出患者自身的幹細胞,從而避免免疫排斥反應。製藥公司可以利用克隆動物來進行藥物測試,提高藥物研發的效率和準確性​。科學家也可以生產出大量具有相同基因組的細胞,用於研究疾病機制和開發新藥。克隆技術被用於創建動物模型,這些模型有助於研究人類疾病的機制和治療方法。例如,科學家利用克隆技術創建了患有阿爾茨海默症和帕金森症的動物模型,這些模型為藥物開發和治療策略的研究提供了重要的工具。

-----廣告,請繼續往下閱讀-----

在農業領域,複製技術被用於繁殖優良品種,增加牲畜的生產力和抗病能力。通過克隆優秀的畜禽個體,農民可以提高產量,降低疾病風險,從而提高農業生產的效益。

此外,複製技術在生態保護方面也有重要的應用。許多瀕危物種由於種群數量減少,面臨滅絕的危險。科學家們利用複製技術試圖保護這些物種,例如,已經有研究成功克隆了瀕危的野生動物,為保護生物多樣性提供了新的方法。

圖/imdb

結論

總結而言,複製生物技術的發展歷程充滿了挑戰和機遇。從早期的胚胎細胞分離實驗,到 20 世紀中葉的核移植技術,再到 1996 年桃莉羊的成功,科學家們在不斷探索和突破。儘管技術上取得了許多進展,但複製健康個體的挑戰仍然存在。此外,倫理和道德問題也不容忽視。未來,隨著技術的不斷進步,克隆技術在生物醫學領域的應用將更加廣泛,但我們也必須謹慎對待其可能帶來的社會和倫理影響,我們需要謹慎管理這項強大的技術,在發揮其潛力的同時,避免可能帶來的社會和倫理風險。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

-----廣告,請繼續往下閱讀-----
所有討論 1

0

5
2

文字

分享

0
5
2
我們可以怎麼運用幹細胞?克隆技術可以解決同性生殖問題嗎?
賴昭正_96
・2023/12/27 ・5121字 ・閱讀時間約 10 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

因被極有彈性的膜和果凍層包圍著,非洲爪蟾的卵與其它兩棲動物的卵不同,使得微量移液器無法穿透,所以我第一次嘗試在非洲爪蟾中移植細胞核完全不成功。⋯⋯如果實驗——或其他事情——沒有立即成功,請不要放棄!

——格登(John Gurdon)2012 年諾貝爾醫學獎

在「認識病毒全攻略!病毒的發現、與細菌的不同、科赫假說和致病機制」一文裡,筆者提到細胞是生命的基本單位,它主要由基因組(genome)、細胞膜(cell membrane)、細胞質(cytoplasm)、和核醣體 (ribosome)組成。細胞質為執行細胞生長、代謝、和複製功能的地方,為細胞中的微觀工廠;核醣體將遺傳密碼從核酸的分子語言翻譯為氨基酸的分子。細胞本身含有代謝酶,因此有營養系統;不需宿主活細胞,即可自行繁殖。

高等動植物的細胞不像細菌,具有真正的細胞核(nucleus),故稱為真核細胞(eukaryotic cell)。它們沒有細菌的「質粒」(plasmid),但卻有像消化系統一樣的「線粒體」(mitochondria)來吸收營養,分解營養,並為細胞創造能量豐富的分子。

幹細胞

在大多數物種中,只有兩種完全不同類型稱為「配子(gamete)」的生殖細胞:卵子與精子。卵子是生物體中最大的細胞,而精子則是最小的;它們可以說是「發育不完全」的精簡細胞:卵子只具有細胞核及細胞質,精子則只具有細胞核及粒線體;它們的細胞核內均只有一半的染色體(稱為「單倍體基因組」)。儘管如此,卵子還是是最引人注目的動物細胞:因為一旦被精子活化(精子與卵子融合,稱為「受精」1),它可以在幾週內產生一個全新的個體。

圖/作者提供

人類的卵子受精後約五到六天,就會分裂形成大約一百個細胞的囊胚(blastocyst),見上圖右半。囊胚由內部細胞群(inner cell mass)及囊胚外層(trophectoderm)組成:前者將繼續分裂發展成胚胎(embryo 2),後者則將附著在子宮內膜成為胎盤 (placenta),保護和滋養發育中的胚胎。因為受精卵(zygote)可以分裂產生所有的細胞(包括胎盤),故稱為「全能幹細胞(totipotent stem cell)」。內部細胞群的細胞則因能繼續分裂發展成生殖細胞及體細胞(somatic cell)的人體各部位器官,故稱為「多能幹細胞 (pluripotent stem cell)」,又稱為「胚胎幹細胞(embryo stem cell)」,簡寫為 ES。

-----廣告,請繼續往下閱讀-----

生殖細胞及體細胞一旦形成後,就有其特定「專業化」的功能,不能再如幹細胞一樣轉換成其它細胞。因此自 20 世紀初以來,一直困擾細胞生物學家的問題是:體細胞在基因上與它們所源自的受精卵相同嗎?一個受精卵如何會在胚胎分化中形成許多功能完全不同的體細胞呢?這些體細胞又如何記得繼續分裂成同樣的體細胞呢?

布里格斯(Robert Briggs)和金 (Thomas King)於 1952 年在活體生物體中進行了首次青蛙核移植 (nuclear transfer)實驗:將一個早期胚胎細胞核移植到去核的卵細胞中。他們發現不同發展階段的胚胎核可以造成非常不同的結果:早一天的可以繼續發展成青蛙,晚一天的則胎死腹中。此結果顯然回答了第一個問題:細胞核的遺傳物質在開始分化時會發生不可逆轉的改變,如重新排列遺傳物質使其變得更加專業化、永遠有效地關閉不使用的基因、甚或拋棄數百個不再需要的基因等等。

克隆教父——約翰.格登爵士

格登(John Gurdon)1933 年出生於英國漢普郡(Hampshire)迪彭霍爾(Dippenhall)。就讀於伊頓公學 (Eton College)寄宿學校時,成績不是特別好。在上了一學期的生物學後,老師寫了一份報告說:「我相信格登想成為科學家,但從目前的情況來看,這是相當可笑的。如果他不能學習簡單的生物學事實,他就沒有機會從事專家的工作,這對他和那些必須教他的人來說都純粹是浪費時間。」所以格登畢業後申請了牛津大學的古典學課程,但招生導師因為缺少理科生,告訴他說:「我很高興地告訴你,我們可以接受你,但有兩個條件:一是你得立即開始,第二是你不要學習你參加入學考試的科目。」就這樣,格登終於追求到他的夢想,最後在牛津大學取得發育生物學博士學位。你說人生不是一連串的巧合與意外麼?

約翰.伯特蘭.格登爵士(Sir John Bertrand Gurdon) 圖/wikimedia

1956 年格登開始了核移植的博士研究:但不是移植正在發展中的胚胎細胞核,而是移植已經發展完全的體細胞核到去核的未受精卵內——稱為「體細胞核移植 (somatic cell nuclear transfer,SCNT,見上圖左半 )」。格登早期得到的結論因與布里格斯和金的結論相左,因此受到了強烈的批評。1962 年,格登將西部矮爪蛙(學名 Hymenochirus curtipes)的腸細胞核移植到未受精、去核的非洲爪蟾卵中,竟然發現這種經過改造的卵細胞可以長成一隻新的西部矮爪蛙!這毫無疑問地證明了:(1) 成熟的細胞核仍含有形成所有類型細胞所需的遺傳訊息(即與受精卵具有同樣的基因),(2) 幹細胞在發展中專業化成體細胞是可逆的。

-----廣告,請繼續往下閱讀-----

克隆哺乳動物

格登成功地從體細胞核複製/克隆 (clone) 了兩棲類動物青蛙,當然立刻有科學家想到是否可以用同樣的方法來複製哺乳動物。可是為什麼要等到 30 多年才出現克隆的多莉羊 (Dolly the sheep 3 ) 呢?原來格登選青蛙是有其理由的:兩棲類動物的卵子都是透明、且非常大,一產就大量排出體外。即使這樣,他的成功率還是低的;還好正如筆者在「愛因斯坦所相信的上帝,是你以為的那位上帝嗎?」一文裡所說的「要證明上帝存在比證明祂不存在簡單多」,格登只要在幾百個實驗中不被合理質疑地克隆出一隻青蛙就夠了。

多莉的生命始於試管中的一個單細胞(取自芬蘭多塞特羊的乳腺細胞核和蘇格蘭黑臉羊的去核卵細胞),六天後在實驗室確認正常發育後,胚胎就被轉移到代孕母親體內,於 1996 年 7 月 5 日出生。但在英國羅斯林研究所 (Roslin Institute) 發表論文前,白臉多莉的出生一直被保密。1997 年 2 月 22 日宣布她的誕生後,全世界的媒體紛紛湧向羅斯林去一睹這只如今聞名的綿羊風采,也引發了媒體關於克隆倫理的爭論。

現在大部分先進國家都已經禁止克隆人的實驗,因此各地的實驗室大都只克隆人類胚胎細胞,作為研究及治療用。2018 年,中國科學院上海神經科學研究所首次利用 SCNT 成功克隆靈長類動物,誕生了兩隻名為「中中」和「華華」的食蟹雌獼猴。

誘導多能幹細胞

到了 21 世紀初,研究胚胎幹細胞的科學家已經鑑定出二十多個似乎對胚胎幹細胞至關重要的基因。這些基因的功能不一定相同:有些對於自我更新很重要(即一個 ES 細胞分裂形成兩個 ES 細胞),而另一些則用來阻止幹細胞分化。科學家也找到如何在培養皿中維持多能胚胎幹細胞的方法,及如何改變培養條件使其分化成各種細胞類型,如肝細胞、心臟細胞、和神經元等。但他們能否利用這些資訊將完全分化成熟的體細胞變成像胚胎一樣的幹細胞嗎?

-----廣告,請繼續往下閱讀-----

2006 年,日本京都大學的山中伸彌(Shinya Yamanaka)和博士後研究員高橋(Kazutoshi Takahashi)終於宣稱只要透過其中四個基因,即可將小鼠纖維母細胞(只能產生其它纖維母細胞)重新編程 (reprogramming),成為能產生多種不同類型細胞的多能幹細胞。他們將這樣製造出來的幹細胞稱為「誘導多能幹細胞(induced pluripotent stem cell, iPSC)」。山中伸彌與格登兩人因研究出如何將專業化的成熟細胞重新編程使其具有多能性,而一起榮獲 2012 年諾貝爾醫學獎。

重新編程

精子和卵子像體細胞一樣,也是由受精卵分化出來了,所以應該是一個高度專業化的細胞,但它們融合成受精卵後又變成全能幹細胞,因此顯然融合後的細胞核被卵子微觀工廠的細胞質重新編程,失去大部分分化時的分子記憶(尤其是精子核,變成一張幾乎完全空白的畫布)。格登與複製綿羊的維爾穆特(Ian Wilmut)和坎貝爾(Keith Campbell)就是利用了這種重新編程現象,將體細胞核插入卵細胞質中創造出了新的克隆。

卵子的細胞質顯然就像一個巨大的分子橡皮擦,它能非常迅速地在 36 小時內完成這個重新編程過程,擦掉了細胞分裂過程中專業化的修飾痕跡(imprinting)。在提高山中伸彌之體細胞重新編程為 iPSC 細胞的效率(遠低於1%)和速度(需要數週)上,分子生物學家雖然已經取得了很大進展,但與自然界一比,仍相差甚遠。

筆者寫這篇文章的動機事實上是出於想解救同性戀的傳宗接代問題。研究顯示雖然不存在單一的同性戀基因,但來自數十萬人的 DNA 也揭示了一些與同性性行為有關的基因變異。在「同性戀、熊貓、與適者生存」(科學月刊 2014 年 7 月號,見《我愛科學》)一文裡,筆者提到:傳宗接代為「種族生存」的必要條件;同性戀者不能傳宗接代,不是遲早將從地球上絕跡嗎?一個筆者想到的解救的方法是:像體細胞核移植一樣,用同性「夫妻」的配子核取代受精卵中尚未融合的雌性與雄性原核 (pronuleus),希望它們融合後能繼續發展成胚胎⋯⋯。

-----廣告,請繼續往下閱讀-----

筆者正在幻想如何申請專利賺大錢時,卻發早在 1980 代,肯亞裔的英國發育生物學家蘇拉尼(Azim Surani 4)就已經開始了類似的研究。他以老鼠為對象的實驗毫無疑問地證明了哺乳動物的繁殖不只是傳遞系統的問題:不僅需要兩個單倍體基因組來融合形成一個二倍體核的受精卵,事實上其中一個必須來自母親,另一個來自父親!顯然卵子之細胞質的重新編程不是 100% 地擦掉了所有分裂過程中的修飾、專業化痕跡,而是至少保留了一些必要的基因來源資訊!⋯⋯夢想破滅,只好重做馮婦執筆寫文章(保證不是人工智能代寫的),悲哉!請點個「讚」以聊慰筆者之失望吧!先謝啦!

如果能解開幹細胞之謎,或許也能解開同性繁衍的問題。 圖/envato

結論

幹細胞具有非凡的自我更新潛力:在生命早期和生長過程中可以在體內發育成許多不同的細胞類型。幹細胞可以分成多能幹細胞和「成體幹細胞(adult stem cell)」兩類。前者就是我們討論過的胚胎幹細胞和誘導多能幹細胞;後者也稱為「體幹細胞(somatic stem cell)」,它們已在許多器官和組織中被發現(通常在特定的解剖位置5)。這些特定器官的體幹細胞雖然不是多能的,但在生物體的整個生命週期中,卻扮演著非常重要的內部修復工作:它們可能會長時間保持靜止(不分裂),直到需要替代因正常磨損或疾病而損失的細胞時才被活化。

即使法律上不准複製人,相信讀者早已看出幹細胞在醫療上的可能作用:如果我們能用與我們體內相同的新細胞來取代罹患第一型糖尿病時失去的胰島素分泌細胞、或阿茲海默症失去的腦細胞、或骨關節炎失去的軟骨生成細胞等,那就不必擔心器官移植所造成的免疫系統排斥問題,或缺乏可用來移植的器官的困擾。這種使用克隆幹細胞來作為醫學治療用的領域稱為「治療性克隆(therapeutic cloning)」。

本文只回答了 20 世紀初以來一直困擾細胞生物學家的第一個問題:體細胞在基因上與它們所源自的受精卵相同嗎?至於如何重新編程、一個受精卵如何在胚胎分化中形成許多功能完全不同的體細胞、這些體細胞又如何在分子層面上被修飾使其只能繼續分裂成同樣的體細胞等更複雜的問題,則需等待新興的「表觀遺傳學(epigenetics)」來回答。

-----廣告,請繼續往下閱讀-----

註解

  1. 在某些生物體中,精子並不是嚴格必需的,它們可以透過各種非特異性化學或物理處理來人工活化卵子;例如一些脊椎動物(如一些蜥蜴)的卵子通常是在沒有精子活化的情況下繁殖的,稱為「孤雌生殖(parthenogenesis)」 。
  2. 像胎兒(fetus)的生命從什麼時候開始一樣,胚胎從什麼時候開始也沒有嚴格一致的共識。因當囊胚成功地植入子宮內膜時,母體會立即開始產生荷爾蒙來支持懷孕,筆者認為這應該是很好的胚胎起始點。到受精後大約八個禮拜,大部分人體器官和系統均已成型,也可偵測到心跳。第八週後稱為胎兒。
  3. 以美國西部鄉村歌手 Dolly Parton 的名字命名。
  4. 因試管嬰兒而獲得 2010 年諾貝爾獎之愛德華茲(Robert Edwards)的博士學生。
  5. 不是所有的器官都有這些體幹細胞,例如心臟就沒有,因此一旦數以百萬計的心肌細胞因缺氧(心肌梗塞)而死亡時,人體內就沒有自然系統可以取代它們。反之,肝臟則是具有高度再生能力的內臟器官,它可以在化學損傷或手術切除後再生。

延伸閱讀

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
44 篇文章 ・ 58 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。