分享本文至 E-mail 信箱
學術引用格式
MLA
APA
EndNote(.enw)

超音波聚焦的光學探針

2011/03/03 | | 標籤:

當造影、監視或刺激散射介質(scattering medium)中的樣本時,即使最強力的光學顯微鏡及探針也遭到擴散極限(diffusion limit)的阻礙,超出此極限的入射光會失控散射。為了克服上述極限,有些技術將通過樣本時的波陣面(wavefront)集中。其他技術則反複使光定形,來放大目標信號。

Lihong Wang及美國華盛頓大學(Washington University:位於密蘇里州聖路易斯市)的同僚們業已研發出一種新方法,此法結合了時間倒轉(time reversal)與在生物組織中輕微散射之超音波,將光聚焦於可控制的位置。

於該團隊的裝置中,由兩個串聯之聲光調變器(acousto-optic modulators)頻移的雷射光進入樣本介質中,在此,漫射光(diffused light)由被調到頻移的超音波進一步調變。於樣本中,上述光與超音波間的交互作用產生了虛點源(virtual point source)。從經調變之漫射光的全像立體攝影術記錄(holographic record),研究人員們獲得於虛擬源位置產生光學聚焦的時間倒轉軌跡(time-reversed trajectory)。

對合成生物組織中的物體而言,這個被通稱為「時間倒轉超音波編碼光學聚焦」(time-reversed ultrasonically encoded optical focusing)的新技術,顯著產生了比使用無法聚焦光線之傳統超音波調變光學斷層掃瞄術(ultrasound-modulated optical tomography)所獲得的更高反差(contrast)。

原文網址:An ultrasonically focused optical probe
翻譯:peregrine
本文原發表於PEREGRINE科學點滴

 

您最近是不是也有以下的感受?

1.各類議題中的科學及專業知識日益複雜,想懂實在太難。

2.資訊爆炸、真假難辨、覺得無所適從,甚至想不聽不看。

3.擔心身邊的人受偽科學與謠言所誤,但不知道該怎麼辦。

這時候你需要「科學思辨力」幫助你,建立自己的邏輯、跨過複雜議題討論的門檻、提升資訊選擇、處理與溝通的能力。

用 12 堂課讓你成為更能面對未來變化的公民吧!

課程內容詳見:《科學思辨力》

關於作者

網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策