0

0
0

文字

分享

0
0
0

超音波聚焦的光學探針

peregrine
・2011/03/03 ・497字 ・閱讀時間約 1 分鐘 ・SR值 632 ・十年級

-----廣告,請繼續往下閱讀-----

當造影、監視或刺激散射介質(scattering medium)中的樣本時,即使最強力的光學顯微鏡及探針也遭到擴散極限(diffusion limit)的阻礙,超出此極限的入射光會失控散射。為了克服上述極限,有些技術將通過樣本時的波陣面(wavefront)集中。其他技術則反複使光定形,來放大目標信號。

Lihong Wang及美國華盛頓大學(Washington University:位於密蘇里州聖路易斯市)的同僚們業已研發出一種新方法,此法結合了時間倒轉(time reversal)與在生物組織中輕微散射之超音波,將光聚焦於可控制的位置。

於該團隊的裝置中,由兩個串聯之聲光調變器(acousto-optic modulators)頻移的雷射光進入樣本介質中,在此,漫射光(diffused light)由被調到頻移的超音波進一步調變。於樣本中,上述光與超音波間的交互作用產生了虛點源(virtual point source)。從經調變之漫射光的全像立體攝影術記錄(holographic record),研究人員們獲得於虛擬源位置產生光學聚焦的時間倒轉軌跡(time-reversed trajectory)。

對合成生物組織中的物體而言,這個被通稱為「時間倒轉超音波編碼光學聚焦」(time-reversed ultrasonically encoded optical focusing)的新技術,顯著產生了比使用無法聚焦光線之傳統超音波調變光學斷層掃瞄術(ultrasound-modulated optical tomography)所獲得的更高反差(contrast)。

-----廣告,請繼續往下閱讀-----

原文網址:An ultrasonically focused optical probe
翻譯:peregrine
本文原發表於PEREGRINE科學點滴

文章難易度
peregrine
38 篇文章 ・ 0 位粉絲

0

5
2

文字

分享

0
5
2
植物口渴就喊:「啵、啵、啵~」
胡中行_96
・2023/04/06 ・2954字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

久旱不雨,植物悲鳴,[1, 2]類似教育部《臺灣閩南語常用詞辭典》所謂「因飢餓而吵鬧」的「哭枵」(khàu-iau)。[3]別問為何沒聽過,也不怪天地寡情,人類無義,從來漠不關心。植物叫那種超音波,傳至咱們耳裡就只剩寧靜。幸好靠著以色列科學家幫忙,轉換到常人的聽覺範圍,並分享於 2023 年 3 月底的《細胞》(Cell)期刊,才廣為周知。[1]

轉換到人類聽力範圍的番茄「叫聲」。音/參考資料 1,Audio S1(CC BY 4.0)

傾聽植物的聲音

面臨乾旱或草食動物的威脅,植物會做出多種反應,例如:改變外貌,或是以揮發性有機化合物影響鄰居等。[1]過去的文獻指出,缺水引發空蝕現象(cavitation),使植物負責輸送水份的木質部,因氣泡形成、擴張和破裂而震動。[1, 4]現在科學家想知道,這是否也會產生在特定距離內,能被其他物種聽見的聲音。[1]

受試的對象是番茄菸草,分別拆成乾旱、修剪和對照 3 組。對照組又有常態生長的一般對照、有土卻無植物的盆器,以及每株植物實驗前的自體對照 3 種。實驗大致有幾個階段:首先,在隔音箱裡,距離每個受試對象 10 公分處,各立 2 支麥克風收音。將聲音的紀錄分類後,拿去進行機器學習。接著移駕溫室,讓訓練好的模型,分辨雜音和不同情況下植物的聲音。再來,觀察乾旱程度與植物發聲的關係。最後,也測試其他的植物和狀態。[1]

麥克風對著乾旱、修剪和對照組的植物收音。圖/參考資料 1,Graphical Abstract局部(CC BY 4.0)

植物錄音與機器學習

隔音箱裡常態生長的植物,每小時平均發聲少於一次;而沒植物的盆器當然完全無聲。相對地,遭受乾旱或修剪壓力的實驗組植物,反應則十分劇烈:[1]

-----廣告,請繼續往下閱讀-----
 平均值(單位)番茄菸草
乾旱發聲頻率(次/小時)35.4 ± 6.111.0 ± 1.4
 音量(聲壓分貝;dBSPL)61.6 ± 0.165.6 ± 0.4
 聲波頻率(千赫茲;kHz)49.6 ± 0.454.8 ± 1.1
修剪發聲頻率(次/小時)25.2 ± 3.215.2 ± 2.6
 音量(聲壓分貝;dBSPL)65.6 ± 0.263.3 ± 0.2
 聲波頻率(千赫茲;kHz)57.3 ± 0.757.8 ± 0.7

隔音箱中實驗組的錄音,被依照植物品種以及所受的待遇,歸納為 4 個組別,各組別再彼此配對比較,例如:乾旱的番茄對修剪的番茄等。以此資料訓練出來的機器學習模型,判別配對中各組別的準確率為 70%。第二階段在溫室中進行,自然較隔音箱嘈雜。科學家拿空蕩溫室的環境錄音,來教模型分辨並過濾雜訊。訓練後,令其區別乾旱與對照組番茄的聲音,結果 84% 正確。[1]既然能聽得出基本的差別,下一步就是了解水量對番茄發聲的影響。

體積含水量

為了操縱體積含水量(volumetric water content,縮寫VWC),即水份與泥土體積的比值或百分比,[1, 5]科學家狠下心,連續幾天都不給溫室裡的番茄植栽喝水。一邊觀察 VWC 的變化;一邊錄下它們的聲音。起先水份充足,番茄不太吵鬧;4、5 天下來,發聲的次數逐漸增加至高峰;然後應該是快渴死了,有氣無力,所以次數又開始減少。此外,番茄通常都在早上 8 點(圖表較像 7 點)到中午 12 點,以及下午 4 點至晚上 7 點,這兩個時段出聲。[1]科學家覺得這般作息,可能與規律的氣孔導度(stomatal conductance),也就是跟光合作用的換氣以及蒸散作用的水份蒸發,兩個透過氣孔進行的動作有關。[1, 6]

大部份的聲音都是在 VWC < 0.05 時出現;當 VWC > 0.1,水份還足夠,就幾乎無聲。科學家將比較的條件進一步分成 VWC < 0.01 與 VWC > 0.05、VWC < 0.05 跟 VWC > 0.05,以及 VWC < 0.01、VWC > 0.05 和淨空溫室的聲音。機器學習模型分辨起來,都有七、八成的準確率。[1]

縱軸為每日發聲次數;橫軸為缺乏灌溉的天數。圖/參考資料 1,Figure 3A(CC BY 4.0)
乾旱狀態下,番茄發聲的時段。縱軸為每小時發聲次數;橫軸為 24 小時制的時間。圖/參考資料 1,Figure 3B(CC BY 4.0)

植物發聲的原理

實驗觀察所得,都將植物發聲的機制,指向木質部導管中氣體的運動,也就是科學家先前預期的空蝕現象[1]下面為支持這項推論的理由:

-----廣告,請繼續往下閱讀-----
  1. 木質部導管的口徑,與植物被錄到的聲波頻率相關:寬的低;而窄的高。[1]
  2. 乾旱與修剪所造成的聲音不同:在木質部導管中,前者氣泡形成緩慢,發聲時數較長;而後者則相當迅速,時數較短。[1]
  3. 聲音是由植物的莖,向四面八方傳播。[1]
  4. 空蝕現象造成的震動,跟記錄到的超音波,部份頻率重疊;而沒有重疊的,其實已經超出其他物種的聽力以及麥克風收音的範圍。[1]
葡萄、菸草和番茄木質部導管的水平橫截面。圖/參考資料 1,Figure S4B(CC BY 4.0)
葡萄(綠色)、菸草(灰色)和番茄(橙色)的差異:縱軸為聲波頻率;橫軸是木質部導管的平均口徑。圖/參考資料 1,Figure S4A(CC BY 4.0)

問誰未發聲

觀察完番茄和菸草之後,科學家不禁好奇,別的植物是否也會為自己的處境發聲?還是它們都默默受苦,無聲地承擔?研究團隊拿小麥玉米卡本內蘇維濃葡萄(Cabernet Sauvignon grapevine)、奇隆丸仙人掌(Mammillaria spinosissima)與寶蓋草(henbit)來測試,發現它們果然有聲音。不過,像杏仁樹之類的木本植物,還有木質化的葡萄藤就沒有了。另外,科學家又監聽感染菸草嵌紋病毒(tobacco mosaic virus)的番茄,並錄到它們的病中呻吟。[1]

你敢有聽著咱的歌

之前有研究指出,海邊月見草(Oenothera drummondii)暴露於蜜蜂的聲音時,會產出較甜的花蜜。[2]若將角色對調過來:植物在乾旱、修剪或感染等壓力下釋出的超音波,頻率約在 20 至 100 kHz 之間,理論上 3 到 5 公尺內的某些哺乳動物或昆蟲,例如:蝙蝠、老鼠和飛蛾,應該聽得到。[1, 2]以色列科學家認為幼蟲會寄住在番茄或菸草上的飛蛾,或許能辨識植物的聲波,並做出某些反應。同理,人類可以用機器學習模型,分辨農作物的聲音,再給予相應的照顧。如此不僅節省水源,精準培育,還能預防氣候變遷所導致的糧食危機。[1]

  

備註

本文最後兩個子標題,借用音樂劇《Les Misérables》歌曲〈Do You Hear the People Sing?〉的粵語和臺語版曲名。[7]

-----廣告,請繼續往下閱讀-----

參考資料

  1. Khait I, Lewin-Epstein O, Sharon R. (2023) ‘Sounds emitted by plants under stress are airborne and informative’. Cell, 106(7): 1328-1336.
  2. Marris E. (30 MAR 2023) ‘Stressed plants ‘cry’ — and some animals can probably hear them’. Nature.
  3. 教育部「哭枵」臺灣閩南語常用詞辭典(Accessed on 01 APR 2023)
  4. McElrone A J, Choat B, Gambetta GA, et al. (2013) ‘Water Uptake and Transport in Vascular Plants’. Nature Education Knowledge, 4(5):6.
  5. Datta S, Taghvaeian S, Stivers J. (AUG 2018) ‘Understanding Soil Water Content and Thresholds for Irrigation Management’. OSU Extension of Oklahoma State University.
  6. Murray M, Soh WK, Yiotis C, et al. (2020) ‘Consistent Relationship between Field-Measured Stomatal Conductance and Theoretical Maximum Stomatal Conductance in C3 Woody Angiosperms in Four Major Biomes’. International Journal of Plant Sciences, 181, 1.
  7. FireRock Music.(16 JUN 2019)「【問誰未發聲】歌詞 Mix全民超長版 粵+國+台+英 口琴+小童+學生+市民 Do you hear the people sing?」YouTube.
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

2

10
2

文字

分享

2
10
2
素養不是知識,是讓孩子像科學家一樣思考——LIS 創辦人嚴天浩專訪
PanSci_96
・2021/09/24 ・2101字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

近年來,在新課綱推行之下,「素養」這個詞成為熱門關鍵字,「對我來說,素養就是面對世界的行為模式,在面臨問題時,一個人會抱著什麼樣的態度去解決問題。而科學素養就是『像科學家一樣思考』」LIS 科學情境教材(台灣線上教育發展協會)創辦人嚴天浩這麼說。

嚴天浩在大學時開始製作教學影片,最初的動機來自上大學後體會到城鄉差距、資源落差,想藉由線上教材擴大影響力,然而觀看次數卻不如預期。

2013 年起,嚴天浩和夥伴到台東,向「孩子的書屋」負責人陳爸(陳俊朗)請益,並長期蹲點接觸孩子,發現學生們面臨最大的問題不在於「學什麼」,而在於「為什麼要學」,因此意識到若要改變孩子的學習狀態,不能只是單方面灌輸「老師想教的」,而要從學生的需求出發,了解「孩子想學什麼」。

七年來,LIS 拍攝超過 100 支線上科學影片,包括將科學家的思想歷程、時代背景融入角色劇情的科學史,以及結合時事、生活情境的科學實驗,目前已經超過 250 萬觀看人次,也成為全台許多中小學的教材。

這次,LIS 歷時三年研發出一套科學實境解謎遊戲,不只在玩遊戲的過程中學科學,也引導孩子練習「像科學家一樣思考」。

什麼是「像科學家一樣思考」?

過去,我們在國中課本裡學到的科學方法「觀察、提出假說、進行實驗、得到結論」,然而許多學生能對步驟琅琅上口,卻不見得理解背後的邏輯。LIS 分析百位科學家的思考歷程以及參考教育學者的理論,設計出適合培養國小學生科學思維的「科學推理階梯」,共有四個步驟,包括「發現問題」、「聯想原因」、「大膽假設」、「實際驗證」。

-----廣告,請繼續往下閱讀-----

嚴天浩坦言,對於國小的孩子來說,他認為最難的在於——第一步「發現問題」,這取決於孩子過去是否累積足夠的觀察經驗,因此,如何訓練孩子觀察是培養探究學習的重點。然而,在沒有老師的引導下,要怎麼讓孩子能聚焦在實驗的現象上,成為開發遊戲過程中的一大考驗,後來,團隊想出了運用 RPG 中的角色對話,設計句子讓玩家將注意力集中在現象上的差異,「當孩子觀察到的與他原本的認知有所不同,產生衝突時才會進而發現問題。」嚴天浩說。

有適當的引導,才能從問題中學習

在發現問題之後,還須激發玩家思索問題的意願,因此在遊戲中便成為一個個解謎關卡,玩家為了破關、練等會主動尋找答案,在玩完遊戲後得到的成就感,會讓孩子對科學產生動機,在未來有自信用這樣的方式去思考、面對問題。

嚴天浩說:「大學時我修過教育學的課,設計課程的第一步往往是『引起動機』,但我們認為應該從遊戲開始到結束的每一個動作,都需要一個『引起動機』,目前玩過這套遊戲的孩子有持續玩過兩個小時以上,玩得越久代表引起的學習動機越強烈。」

了解背後的意義才是學科學

然而,有時在做完實驗後,學生只會記得當時看到的實驗結果或現象,卻沒有把背後的邏輯和原理帶走,關於這部分,嚴天浩分享,「玩實驗」和「學科學」最大的差別在於,是否了解每個步驟的意義,如同以往「食譜式實驗」,照著課本一步一步做,卻不知道為什麼這麼做。

因此,他們把演示型實驗設計成遊戲,將探究歷程拆分成關卡,透過與 NPC 對話帶領玩家思考,並預想玩家可能卡關的地方,就像是在蓋房子時的鷹架,一層層建構、支持,逐漸將學習的責任放回孩子身上,傳統課堂中搭鷹架的角色可能是老師,而在這個遊戲裡,是精心設計過的關卡提示。

讀到這裡,或許你會想問,在探究式的學習中,真的能夠學會「像科學家一樣思考」嗎?

「我認為探究學習中,知識其實只是附帶的。」嚴天浩解釋:「我們想告訴孩子的是,科學家最厲害的並不是他成功發現了什麼,而是他在失敗了那麼多次之後,還是願意繼續努力。」

-----廣告,請繼續往下閱讀-----

如果現在的台灣是二十年前教育的結果,那麼 LIS 正在改變的是二十年後的台灣,那時的每個人在面對問題時都能有邏輯地看待、抱著自信的態度去解決,這是 LIS 的憧憬,也是我們對於台灣未來世代的期盼。


所有討論 2
PanSci_96
1219 篇文章 ・ 2179 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

9
0

文字

分享

0
9
0
不只能「透視海底」還可判釋水稻田!淺談福衛五號的影像多元應用
科技大觀園_96
・2021/08/23 ・2533字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

福衛五號幫助研究人員算出海底地形、找出稻田分布。圖/fatcat11 繪

「透視」海底,用福五影像逆推東沙環礁水底地形

中央大學太空及遙測中心的副教授黃智遠、副教授任玄及副教授曾國欣選定東沙環礁,測試福衛五號影像反演水底地形的能力。成果顯示,在訓練資料品質佳的情況下,以福五影像建置水底地形的精度與超高解析度衛星影像的成果相當,可協助內政部產製電子航行圖、環境監測、生物棲地研究等。 

傳統常以船隻搭載聲納,或飛機搭載光達的方式量測水深,這兩種方式皆須現地量測,精度高,但成本也高,且淺海與爭議水區的量測會受限。多光譜光學衛星影像能穿透約 20 公尺深的潔淨水體,成為廣泛調查淺水域的潛力方式。

要以衛星光譜影像反演水深,仍需收集訓練資料(例如地形的現地量測資訊)當作「教材」,讓電腦建立正確的模式參數。「沒有太多人為擾動影響、卻又要有高品質的訓練資料 ,同時符合這兩個條件的就選東沙環礁了!」東沙環礁有精密的光達測深資料,還有海水潔淨、淺水域面積廣大等優點。

此項技術的訓練方式是,輸入衛星影像各波段數值(主要為透水較佳的綠光波段)及其對應的實際水深訓練網路,網路模式訓練完成之後,輸入目標區域的衛星影像數值,就能推算出每個像素對應的水深資訊。

-----廣告,請繼續往下閱讀-----
福衛五號衛星於 2018 年 3 月 2 日所攝得東沙環礁影像。圖/國家太空中心提供

為了衡量福五影像的表現,團隊也拿超高解析度商用衛星 WorldView2 的影像反演水深,比較兩者成果。福五反演的水深成果精度達 1.62 公尺,雖略遜於 WorldView2 的 1.26 公尺,但相差不遠。

黃智遠解釋,相較於房屋、橋梁等地物地貌,水下自然地形的局部變化通常較小,所以對於衛星影像空間解析度的要求也較低。在反演水深的應用上,使用福五或超高解析度衛星的差異不大,福五反演僅局部區域比實際地形略深。

光譜反演的挑戰在於訓練資料蒐集困難,不過,透過衛星影像產製水深還有另一種稱為「立體對測量」的方法。福衛五號可以對地「立體取像」——人的視覺因左右眼視角差異而能感知立體,資料也能整合不同角度的衛星影像產生視差,萃取出目標物的數值地形模型,再以此當作訓練資料,進行模式訓練、反演水底地形。

過去團隊與內政部合作,在東海南海的許多島礁進行水深反演,已累積起一套決策樹,考量目標區域具備的資料庫、資料品質、成本等,可為不同地區挑選、整合不同的水深產製方式。

-----廣告,請繼續往下閱讀-----
東沙環礁水底地形。圖/研究團隊提供

雙衛星搭檔,提高水稻田判釋精度!

水稻田分佈判釋是行政院農委會農糧署年度重要工作項目,農糧署與臺灣大學理學院空間資訊研究中心教授朱子豪、遙測及資料加值組組長張家豪合作,以福衛五號影像結合合成孔徑雷達衛星影像判釋水稻田,正確性達 92%,大幅提高偵測精度。 

由於雲林有充足的基礎資料可供驗證與訓練模型,研究團隊選定雲林做為研究區域,試驗福五的影像用在水稻田判釋可達多少能力。 

團隊使用福衛五號影像,搭配 22 組歐洲太空總署合成孔徑雷達衛星「Sentinel-1」的開放資料,並試驗了三種方法:僅使用福五(光學)影像、僅用雷達影像、兩者相互搭配。結果顯示,整合兩者的效果最好,判釋正確性最高可達到 92%,高於單用光學或雷達影像的 90%、80%。

「光學衛星最大的限制就是雲!」雲會遮擋目標、影響判釋,而農作物判釋的取像時機又相當關鍵,取像時有雲就沒輒了;合成孔徑雷達衛星會主動發射微波到地面再接收反射波,可穿透雲層,不受雲覆與日照影響,可補強不同時期影像,取得水稻田從插秧、成長、結穗的時序變化資訊。

-----廣告,請繼續往下閱讀-----

本研究的突破在於,只用了單一分類器全自動判別的條件下,偵測精度大幅提升,更是首度只用一個時間點、單張光學影像就達到了。團隊對此也相當興奮,「可能因為福五當時在 11 月取像,剛好是水稻結穗時,影像特徵與其他作物差異較大。」張家豪解釋。 

推測了面積,可以進一步推估產量嗎?「一公頃稻作能收成 1,000 公斤或 4,000 公斤,有太多因素影響了。」朱子豪說。溫度、溼度、施肥、天災、病蟲害等都會影響收成,此類研究在平遂的情況下可大致估產,尚難達成精確估產。

福衛五號的自然彩色影像,綠色標記為水稻;黃色標記為非水稻。圖/研究團隊提供

掌握物候特徵是判釋關鍵

未來若要擴大範圍,判釋全國水稻田面積,由於各地農民栽種時序、田間管理多變,如何選擇適合的取像時間會是一大挑戰;若要擴展到判釋其他作物,則得視其生長特徵進行更多的分析比對。

張家豪舉例,判別柑橘類的常年果樹、葉菜類極困難,果樹在光學影像上看起永遠是綠色一片,也無足夠的栽種方式差異、生長週期特徵和其他特性可區辨;檳榔、椰子、香蕉從空中看都是放射狀葉片,雖可參考栽種密度與高度,但影像的空間解析度也得提高至 60 公分才能精確判別;蔥、蒜皆屬旱作,需要空間解析度優於 60 公分的影像,搭配如地區性栽種時序、田埂排列鮮明的地表特徵,有機會判釋成功,「但要是田裡混作個青江菜,就分不出來了。」

-----廣告,請繼續往下閱讀-----

梅樹是另個成功案例,它在 12 月下旬會落葉,隔年 2 月開花長葉結果。團隊曾執行判釋南投水里梅樹的研究,標定幾個時間取像,「若有某個區域在十月是綠葉、入冬出現裸露地特徵、然後變得白白的(開花)、四月又出現綠葉,那就很可能是梅樹!」但李子與梅樹的影像呈現類似,生長期也相近,要是沒在生長期重疊前順利取像,就會混淆兩者。

以衛星影像判釋作物不光是直白的「看照片」或分析光譜,掌握作物的「物候特徵」才是關鍵。

科技大觀園_96
82 篇文章 ・ 1124 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。