0

4
1

文字

分享

0
4
1

台灣蝙蝠知多少?沿著蘇花公路,探尋豐富的蝙蝠多樣性(下)——蘇花改特輯(二)

自然保育季刊_96
・2021/05/14 ・4772字 ・閱讀時間約 9 分鐘 ・SR值 589 ・九年級

  • 本文轉載自特有生物研究保育中心,《自然保育季刊》第 112 期
  • 作者 / 鄭錫奇|行政院農業委員會特有生物研究保育中心研究員兼主任秘書、陳宏彰|行政院農業委員會特有生物研究保育中心計畫助理、周政翰|台灣蝙蝠學會理事

台 9 線蘇花公路山區路段改善工程歷時 9 年的努力終於在 2020 年 1 月 6 日全線通車。近年政府進行重大建設時日益重視工程對環境及生物多樣性的影響評估,蝙蝠類因其物種繁多、族群數量龐大、食性獨特、活動範圍廣泛且對環境變化敏感,其生存棲地品質攸關族群存續狀況,因此相當適合作為反應環境變化的類群。

上一篇〈台灣蝙蝠知多少?沿著蘇花公路,探尋豐富的蝙蝠多樣性(上)——蘇花改特輯(二)〉我們介紹了許多種臺灣蝙蝠以及調查過程,這篇我們將探討這些資料的分析結果。

棲所難尋但資料珍貴

蝙蝠棲息的處所通常隱密而不易探尋。不過, 一旦發現某種蝙蝠的棲所及族群,則可以進行深入研究以獲得許多生態相關的珍貴資訊。除了在夜間外飛覓食時段,蝙蝠在棲所度過很長的時間,包括其生活史的不同階段,諸如白天休息、尋覓伴侶交配、生殖育幼、日間休眠或冬季冬眠等。棲所還能提供保護的功能,降低蝙蝠被天敵掠食或人類干擾的機會,以及抵禦外界環境或氣候變化的影響,可見適當的棲所對涵養蝙蝠族群而言相當重要。

身形嬌小的玄彩蝠。 圖/鄭錫奇攝

本計畫歷年陸續在調查樣區中發現蝙蝠的棲所,諸如群居型的臺灣葉鼻蝠、臺灣小蹄鼻蝠,以及獨居型的臺灣大蹄鼻蝠喜歡陰暗潮濕的洞穴、隧道、涵洞等處;日間棲息在林道旁新生芭蕉捲葉中的玄彩蝠;會利用東岳冷泉鐵路高架橋橋墩下作為夜間棲所的堀川氏棕蝠。當發現臺灣葉鼻蝠或臺灣小蹄鼻蝠的族群時,我們會持續瞭解其族群量的變動趨勢,以及生殖育幼的季節;相對而言,獨居的臺灣大蹄鼻蝠雖較不容易發現,然而我們曾觀察到有 1 隻雌性個體居然連續使用同一處廢棄木屋長達 3 年之久, 而在春季時又發現另 1 隻雌性個體共棲,這種現象相當罕見;依據尤宣亞 (2015) 針對臺灣大蹄鼻蝠配對系統的研究指出,成體雌蝠間並不會共處於同一 棲所,但在懷孕期(4-5 月)則會和去年生產的幼蝠(或亞成蝠)共棲,因而推測牠們可能是去年繁殖的 一對母女蝠。

棲所勘查法—玄彩蝠喜棲於芭蕉捲葉中。圖/鄭錫奇攝

地區新紀錄種的發現

我們執行計畫的第一 (2012) 年即發現了 17 種蝙蝠,之後每年均可調查到 17-19 種之多,而且在前 5 年幾乎每年都有地區新種類的發現,譬如 2013 年增加了東方寬耳蝠(網具捕捉)及臺灣家蝠(音頻判識)而達 19 種;2014 年增加寬吻鼠耳蝠(網具捕捉)達 20 種;2015 年則再增加金芒管鼻蝠(網具捕捉)達 21 種;2016 年新增毛翼管鼻蝠(網具捕捉)後使得物種累積達 22 種至今 (2020) 年上半年。

參考特生中心於 2007 至 2010 年間在雲林縣斗六丘陵湖山水庫預定地與周邊區域所進行的多年蝙蝠調查結果,亦呈現類似的物種數累加趨勢,即幾乎每年都會有 1-2 種地區新紀錄種蝙蝠的發現 (鄭錫奇等 2010)。也就是說,若要確切得到一個地區相對完整的蝙蝠相,不僅需要運用多樣化的調查方法,而且須按季節持續 進行多年(至少 5 年)的調查始能達成。然而,納悶的 是,雖然我們努力調查多年,除了顯著地增加調查區域內 15 種蝙蝠的新發現紀錄外,迄今仍無發現弘益生態有限公司於 2010 年在同一區域調查所得之高頭蝠 (Scotophilus kuhlii) 分布資料。

-----廣告,請繼續往下閱讀-----

與昔日調查資料比較

特生中心 2003 年在宜蘭與花蓮兩縣市進行的蝙蝠類調查,總計發現了 19 種蝙蝠(鄭錫奇與張簡琳玟 2003),然而若只篩選該成果中,沿蘇花公路及兩側延伸海拔 500m 以下區域(因本蘇花改計畫調查範圍低於海拔 500m),則為 12 種;另於 2004 年執行宜蘭縣和花蓮縣野生哺乳類動物及花東地區的翼手目調查,共發現 20 種蝙蝠,而在低於 500m 的區域則僅發現 9 種(鄭錫奇等 2004);而 2006 年進行花蓮縣野生哺乳類動物調查時,於秀林鄉發現了臺灣葉鼻蝠與渡瀨氏鼠耳蝠(現稱赤黑鼠耳蝠)2 種蝙蝠 (鄭錫奇等 2006)。

根據上述文獻所發現的物種與本計畫多年 (2012-2019 年) 的結果比較,同一海拔區域內僅臺灣無尾葉鼻蝠為本計畫迄今尚未有記錄的種類,而本計畫所發現的堀川氏棕蝠、絨山蝠、東方寬耳蝠、寬吻鼠耳蝠、毛翼管鼻蝠、金芒管鼻蝠、 黃胸管鼻蝠、隱姬管鼻蝠及東亞游離尾蝠等 9 種則為昔日文獻未曾記錄的地區新紀錄種。

太魯閣國家公園管理處曾委辦執行「太魯閣國家公園蝙蝠族群動態智慧監控規劃」(謝伯娟與陳宏彰 2016),該計畫同樣採網具捕捉、超音波測錄及棲所探查等 3 種調查方法進行調查,惟其執行範圍(於花蓮縣山區)沿台 8 線中橫公路東段涵蓋園區內低、中、高海拔區域,結果發現 5 科 15 屬 24 種,其中除了分布於中高海拔的臺灣長耳蝠、紅棕鼠耳蝠與姬管鼻蝠外,其他 21 種在本計畫皆有發現。可見台 9 線蘇花公路沿線及周邊範圍的蝙蝠物種多樣性堪稱豐富。

施工初期造成的棲地切割現象 2013。圖/周政翰攝
橋梁施工中棲地變化情形 2014。圖/鄭錫奇攝
橋梁完工後棲地恢復情形 2019。圖/鄭錫奇攝

蝙蝠的季節性遷移行為

由近 8 個年度的調查結果顯示,雖然不同季節發現之種數不盡相同,然而春、夏、秋季為物種出現較多的季節(2018 年春季最多可達 17 種),蝙蝠活動力較低的冬季則相對較少(2015 年最少僅發現 8 種)。雖然至少 15 種蝙蝠四季均可在調查範圍中發現,但部分物種僅於特定季節出現,如黃頸蝠和絨山蝠只零星於春、夏、秋季發現(音頻資料),在冬季則無任何紀錄。

-----廣告,請繼續往下閱讀-----

臺灣的蝙蝠會隨著季節的更迭而進行海拔垂直遷徙現象陸續被發現 (鄭錫奇及張簡琳玟 2008;鄭錫奇等 2009),其中以黃胸管鼻蝠最為典型,牠們在溫暖的季節 (如夏季) 通常會在低海拔區域棲息、活動及繁殖育幼,而在冬季時則遷到高海拔超過 3,000m 的山區度冬,年復一年地在不同海拔間遷移。

然而,我們調查捕獲的資料顯示,在 2013 年秋季及 2017 年冬季在花蓮秀林鄉同一樣區 (海拔 120m) 各捕獲 1 隻東方寬耳蝠,這 2 筆資料為該物種目前全臺海拔分布最低紀錄;同樣地於 2014、2017 年冬季及 2019 年秋季分別在花蓮秀林鄉樣區內各捕獲 4 隻、1 隻及 1 隻的寬吻鼠耳蝠雄性個體,此紀錄亦為寬吻鼠耳蝠於臺灣的最低海拔 (120m) 分布資料;另外也於 2015 年秋季及 2018 年度春季於花蓮秀林鄉和平地區的不同樣區內捕獲各 1 隻個體的金芒管鼻蝠。唯一 1 隻毛翼管鼻蝠則在 2016 年秋季以網具捕獲。這些溫暖季節主要分布於中高海拔的物種竟然在冬季時逆向降遷至蘇花改低海拔區域活動,其原因仍不清楚。

冬季時降遷至低海拔區域活動的東方寬耳蝠。圖/周政翰攝

捕捉標放探討時空變動

歷年研究人員以網具捕獲或棲所探查捕撈的個體都會以具號碼的翼標標示個體,並在原地釋放, 之後藉由再捕獲紀錄探討其不同時空下的變動情形。近 8 個年度本計畫總共捕捉標放了 17 種共 580 隻的蝙蝠,其中以臺灣管鼻蝠 219 隻最多,其次為玄彩蝠 (85 隻)、隱姬管鼻蝠 (66隻)、長趾鼠耳蝠 (64 隻)、長尾鼠耳蝠 (36 隻)、赤黑鼠耳蝠 (25 隻)、堀川氏棕蝠 (24 隻)、臺灣小蹄鼻蝠 (22 隻) 等,其餘如臺灣葉鼻蝠、東亞摺翅蝠、黃胸管鼻蝠、寬吻鼠耳蝠、臺灣大蹄鼻蝠、東方寬耳蝠、山家蝠、金芒管鼻蝠及臺灣家蝠之標放個體都少於 10 隻。

標放個體中有 8 種 78 隻陸續再被重複捕捉,最多者為臺灣管鼻蝠 31 隻,其中有 2 隻重複捕捉 4 次,10 隻 3 次,再捕捉間隔時間最長為標放 3 年後於相同樣點再次捕獲。這些重復捕捉資料顯示, 臺灣管鼻蝠對於當地棲地有明顯的棲地重複利用習性,牠們會棲息的處所包括乾枯的香蕉捲葉叢 (周政翰等 2008)、戶外枯木燈罩 (謝伯娟與陳宏彰等 2016)、枯萎的月桃捲葉 (鄭錫奇等 2017) 等。次多者為玄彩蝠,有 22 隻個體被重覆捕捉,有 3 隻捕捉紀錄達 5 次 (次數最多者),其中 1 隻連續 4 年 (2012- 2015) 在相同樣區的新生芭蕉捲葉中被發現,其餘達 4 次者有 4 隻、3 次者 1 隻、2 次者有 13 隻。

-----廣告,請繼續往下閱讀-----

換言之,這些玄彩蝠經常出現在捕捉標放的地點或鄰近區域內。根據許家維 (2016) 在臺中烏石坑地區的研究,玄彩蝠對於當地蕉叢棲所及棲息環境有相當程度的依賴性,因此一旦蕉叢大量消失,都將影響玄彩蝠族群的存續。此外,有 4 隻長趾鼠耳蝠在不同年間於相同樣點捕獲,其中間隔年度最長為第一次捕捉標放 (2012年) 後的第 6 年 (2018)(間隔年度最長紀錄)。

另如前述,我們也曾發現臺灣大蹄鼻蝠會連續數年四季中均棲息在同一洞穴中、堀川氏棕蝠會多年重複利用一處橋墩下作為夜間休息處;其他較零星的捕捉標放資料尚包括赤黑鼠耳蝠、長尾鼠耳蝠、隱姬管鼻蝠等亦會經常使用某些棲地與處所 而被重複捕捉。這些現象顯示出蝙蝠對特定棲息地具有相當高的忠誠度 (fidelity)。

蘇花改工程會影響蝙蝠嗎?

由 8 個年度 (2012-2019) 的調查結果顯示,以年間蝙蝠組成而言尚稱穩定,雖然蘇花改不同路段的工程施工時程有別,而不同蝙蝠物種對於棲地工程干擾的反應也可能不一。蘇澳~東澳路段(本計畫北段)共計發現 5 科 10 屬 18 種蝙蝠,南澳~和平路段(中段)5 科 14 屬 22 種蝙蝠,而在和中~大清水路段(南段)則發現 5 科 10 屬 18 種蝙蝠,中段樣區內記錄的種類較多,主要差異為捕捉到一些主要分布於中高海拔山區的物種,如東方寬耳蝠、寬吻鼠耳蝠、毛翼管鼻蝠及金芒管鼻蝠等。

此外,由調查資料較多者之堀川氏棕蝠、長趾鼠耳蝠及山家蝠(視為指標物種)的 監測趨勢顯示,長期而言不同年間物種組成的差異 雖然不明顯,但在短期只要樣區環境發生突然的變化,如工程施作、棲地破壞(如林木大量砍除)、環境汙染(如除草劑或農藥噴灑),或每年的夏、秋季颱風來襲,常會立即反映在蝙蝠類群的調查結果(數量)上。

-----廣告,請繼續往下閱讀-----

因此,我們認為天災為自然現象,但人為的工程施作則應儘量縮小範圍,並避免非必要的植被移 除或破壞,因為森林型棲息地對某些蝙蝠(如臺灣管鼻蝠、隱姬管鼻蝠及玄彩蝠等)至關重要,一旦破壞則會嚴重影響其族群存續。事實上,每個物種對生態系都有牠們重要的功能,我們會在工程完成通車後持續瞭解蝙蝠利用棲地與棲所的狀況,咸信對物種的生活史及生態習性更為瞭解後,將可避免或降低人為工程施作對生物的干擾與傷害,以維持當地生物多樣性的豐富,達到與生態保育雙贏的局面。

(表2)2012-2019 年間於蘇花公路改善工程沿線發現之蝙蝠物種及其對應調查方法。圖/《自然保育季刊》第 112 期

後記

本文描述的年度主要為 2012 至 2019 年的調查結果,然而今 (2020) 年仲夏 7 月間研究人員特別在南澳至和平間新選一處樣點,利用網具進行捕捉調查,結果一夜間總計捕獲了 32 隻蝙蝠,其中還包括歷年只有超音波音頻資料的黃頸蝠,捕獲數量竟有 14 隻之多,同時亦捕獲 1 隻華南水鼠耳蝠,為本區域的新紀錄種,令人意外又驚喜。

這種結果除了直接證實以往僅利用音頻辨識發現的黃頸蝠的確存在蘇花公路沿線環境中外,更使得本計畫在蘇花公路沿線多年的蝙蝠調查紀錄(22 種)再添 1 種而達 5 科 14 屬 23 種,占臺灣本島食蟲性蝙蝠物種數之 72%,顯 示自然環境豐富而多樣的蘇花公路沿線所孕育的蝙蝠資源確實是多樣而特殊,值得我們持續瞭解並積極保育。

常活動於溪流環境的黃頸蝠。圖/周政翰攝

文章難易度
自然保育季刊_96
15 篇文章 ・ 14 位粉絲
自然保育季刊為推廣性刊物,以推廣自然教育為宗旨,收錄相關之資源調查研究、保育政策、經營管理及生態教育等成果,希望傳達自然科普知識並和大家一起關注自然!

0

2
2

文字

分享

0
2
2
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 54 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
1

文字

分享

0
1
1
大棕蝠大陰莖,插不進去仍射精?
胡中行_96
・2023/11/30 ・1880字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

瑞士洛桑大學(Université de Lausanne)生態暨演化學系的生物學家 Nicolas J. Fasel 博士,收到一封以荷蘭文書寫的電子郵件。[1]裏頭附帶的網址,據說能連結到,在某教堂閣樓裡偷拍的性交影片。[1, 2] Fasel 博士起先懷疑遇到詐騙,然而主旨寫著「大棕蝠陰莖」。他想若是投其所好,未免也太過精準。於是,Fasel 博士冒著風險點開。[1]

大棕蝠。圖/The Netherland’s Naturalis Biodiversity Center on Wikimedia Commons(Public Domain

大棕蝠的陰莖

大棕蝠(Eptesicus serotinus)分佈於歐洲和亞洲,偏好棲息在農田、林地附近的建物,或者直接住在樹上,方便捕捉昆蟲。牠們深褐色的毛髮覆蓋大部份的軀體,口鼻、翅膀與兩隻後腿間的尾膜(uropatagium;見上圖),則光禿無毛。身長 62 到 80 mm左右,翅膀攤開的寬度,大約 320 至 380 mm。成年的雌性就算沒懷孕,體型一般仍比雄性大些。[3]

大棕蝠的陰莖。圖/參考資料6,Figure 1(CC BY 4.0

性器,是雄性大棕蝠威猛之所在。綴飾著幾根短毛的陰莖,勃起時末端的兩團組織,會撐成愛心的形狀,背面中央陷落一個凹窩(上圖C)。此時,全長為 16.4 mm,寬度是 7.5 mm。相較之下,雌性的陰道,只有 2.3 mm 長,1.1 mm 寬,顯得不成比例。換句話說,雄性充血膨大的陰莖,長度約莫是自己身長的 22%;而且長寬均是雌性陰道的7倍。[4]「這個物種勃起的陰莖真是太驚人了」,Fasel 博士客觀評論:「超級長。」[5] 讚嘆之餘,他也承認:「我們覺得它實在很難插進任何東西。」[2]

在實驗室裡,研究團隊能用麻醉劑,刺激雄性大棕蝠的陰莖勃起。[5, 6] 然而牠們晝伏夜出,生性隱蔽,拍攝困難。要弄清實際上如何運用陰莖,並不容易。[4]

-----廣告,請繼續往下閱讀-----

直到那天,一封神秘的電子郵件降臨。[1, 2]

交配影片

2023 年 11 月《當代生物學》(Current Biology)期刊上,名列大棕蝠論文第二作者的 Jan Jeucken,[4] 是一名荷蘭的蝙蝠愛好者。[1, 2] 他在住家不遠的聖馬提亞教堂(St Matthias Church),架設了 18 台攝影機。[2, 6] 2016 年 10 月 25 日至 2022 年 3 月 22 日期間,近距離拍攝一個大棕蝠聚落的作息。[6] 取景的角度直接,包括由正下方捕捉進行中的性交畫面。[2]

Fasel 博士的團隊,從他那裏取得 93 段大棕蝠的交配影片,再加上 4 段來自烏克蘭蝙蝠復育中心(Ukrainian Bat Rehabilitation Center)。[2, 6] 分析了數小時的錄像之後,大棕蝠陰莖的功能,總算真相大白。[1]

交配中的雄性(上)和雌性(下)大棕蝠。圖/參考資料 6,Figure 5(CC BY 4.0

大棕蝠交配

蝙蝠後腿間的尾膜,平常用來飛翔。[7]親密互動的時候,雌性大棕蝠也會拿它來「擋煞」。因此,雄性想要與牠共赴巫山雲雨,就必須揚起巨砲,撥雲見日。活動正式開始前,雌性會叫個幾聲。雄性一柱擎天,用陰莖上的短毛,感覺雌性外陰的位置。一旦陰莖抵住外陰,前者兩團肉球間的凹窩,便發揮吸盤般的作用,協助鞏固與雌性的肉體連結。同時嘴也沒閒著,緊緊咬住對方的後頸不放。正當雙方難分難捨,陰莖卻點到為止,從頭到尾都沒插入。短則不到 53 分鐘,長至 12.7 小時,努力確保精子泳渡 8.6 mm,深長的子宮頸,安然達陣。[4, 6] 完事之後,雌性腹部可見被精液弄濕的毛髮。[4]

-----廣告,請繼續往下閱讀-----

大棕蝠這種如同鳥類「泄殖腔之吻」(cloacal kiss),僅止於表面接觸的交配方式,在哺乳類動物身上前所未見[4] Fasel 博士希望未來能建立一個「蝙蝠情色影片箱」(bat porn box),從各個角度裝設直播鏡頭,讓研究人員觀賞交配實況,發掘更多性癖。[5]

大棕蝠高清無碼交配實錄。影/參考資料 6,Supplementary File(CC BY 4.0

  

參考資料

  1. Smith B. (21 NOV 2023) ‘Bat species uses oversized penis like an arm during ‘contact mating’ — not penetrative sex’. ABC News, Australia.
  2. Vaidyanathan G. (20 NOV 2023) ‘Serotine bats are the first mammals found to have non-penetrative mating’. Nature.
  3. Elliott M. (2022) ‘Eptesicus serotinus’. Animal Diversity Web, University of Michigan, U.S.
  4. Fasel NJ, Jeucken J, Kravchenko K, et al. (2023) ‘Mating without intromission in a bat’. Current Biology, 33, 22, PR1182-R1183.
  5. Jacobs P. (20 NOV 2023) ‘How big is too big? Bat’s enormous penis makes penetration impossible’. Science.
  6. Fasel N, Jeucken J, Kravchenko K, et al. (2023) ‘No intromission is involved in the mating of Eptesicus serotinus, a novel copulatory pattern in mammals.’ Research Square.
  7. Gardiner JD, Dimitriadis G, Codd JR, Nudds RL (2011) ‘A Potential Role for Bat Tail Membranes in Flight Control’. PLOS ONE, 6(3): e18214.
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

0
0

文字

分享

0
0
0
不為人知的鳥秘密?全都藏在羽毛裡——《五感之外的世界》
臉譜出版_96
・2023/09/19 ・2471字 ・閱讀時間約 5 分鐘

比孔雀還要顯眼、高調的鳥類並不多,但如果可以的話,我想請各位先忽略牠那華麗又色彩斑斕的尾羽。我們要將關注焦點放在孔雀頭上形成冠羽的那些硬挺羽毛。

細節藏在羽毛的「振盪頻率」裡

這些長得像鍋鏟的羽毛雖然也很醒目,卻常常被忽略。蘇珊.阿瑪德.康恩(Suzanne Amador Kane)從專門繁殖鳥類的鳥舍與飼養員那裡找來了一些孔雀,再加上一隻來自動物園、曾經不小心飛進北極熊圍欄裡的倒霉孔雀,想要研究孔雀冠羽的用途。

她的學生丹尼爾.凡.貝爾倫(Daniel Van Beveren)在孔雀冠羽上裝設了機械振盪器,並且觀察冠羽的擺動。當機器的振盪頻率為二十六赫茲時──也就是一秒振盪二十六次──冠羽擺動得特別劇烈。這是會令孔雀冠羽產生共鳴的頻率,也正好是雄孔雀求偶時擺動尾羽的頻率,因此康恩對我說:「這不可能只是巧合。」

孔雀冠羽產生共鳴的頻率,正好是雄孔雀求偶時擺動尾羽的頻率。圖/pexels

凡.貝爾倫對著架設好儀器的孔雀冠羽播放各種錄音,假如播出的是真正的孔雀搖動尾羽的聲音,冠羽就會產生共鳴;若是播放其他聲音,例如 Bee Gees 的〈Staying Alive〉,就沒有這種效果。

-----廣告,請繼續往下閱讀-----

該研究結果顯示,站在求偶的雄孔雀面前的雌孔雀或許真的能夠感知到雄孔雀尾羽製造出的氣流。除了看見雄孔雀賣力的求偶動作以外,雌孔雀或許也能感覺到這一番努力。(這種現象也會反過來,有時候雌孔雀也會對雄孔雀展現自己。)

康恩想要拍攝真實的孔雀求偶時冠羽的模樣,觀察牠們擺動冠羽的頻率是否真和尾羽相同,藉此證明她的論點。假如真是如此,就表示孔雀求偶的過程中除了有浮誇的視覺效果以外,其實還存在著人類一直以來都沒注意到的元素;而我們會忽略這些細節,是因為缺少適當的配備。

假如連大自然中如此耀眼浮誇的行為展演中,都有被我們忽視的環節,我們到底還錯失了多少東西?

孔雀細小的纖羽會告訴我們答案

從孔雀冠羽底部細小的纖羽(filoplume)就能找出線索。纖羽的樣子就像一根尖端為簇狀的茅,還能做為機械性受體之用。

-----廣告,請繼續往下閱讀-----

當空氣流動擾動了冠羽,便會擠壓到纖羽,進而觸發神經。大部分的鳥類都有纖羽,而且幾乎都會伴隨其他羽毛一起發揮作用。

鳥類可以透過纖羽掌控羽毛的狀態,因此或許能夠在鳥羽澎亂時即時整理羽毛,重整態勢。不過纖羽還有一項最重要的功用──幫助鳥類飛行。

從孔雀冠羽底部細小的纖羽就能找出線索。圖/pexels

避免失速墜落技巧

鳥飛行的樣子看起來是如此地輕鬆自在,因此我們很可能根本想不到那是一件多費力的事。為了維持在空中飛行,鳥必須一直調整翅膀的型態與角度。如果一切都對了,氣流就能順著翅膀流動,鳥類的身體也就能順利抬升至空中。

然而如果鳥的翅膀角度太大,原本順暢的氣流會形成擾流,抬升的力量也就隨之消失,這種現象叫做失速(stalling)。一旦鳥無法避免這種狀態產生或即時修正,就會從天上掉下來。不過這不常發生,一部分原因是因為纖羽能為鳥類提供必要資訊,因此能夠因應各種情況快速調整翅膀的狀態,避免不幸。

-----廣告,請繼續往下閱讀-----

老實說,這種能力實在相當驚人。我記得有次站在船上看著一隻海鷗緊跟船身飛行;那天風很大,而我們──也就是我坐的船和那隻海鷗──都在高速移動。當我伸出手感受從手上與指間吹過的風時,不禁讚嘆海鷗的翅膀竟然也能產生同樣的作用,讓鳥類能夠在天空中飛翔。

如果一切都對了,氣流就能順著翅膀流動,鳥類的身體也就能順利抬升至空中。圖/pexels

然而我當時我根本不知道鳥類還會運用纖羽判讀氣流,在飛行時不斷微調姿態。法國的眼科醫師安德烈.羅尚-杜維尼奧(André Rochon-Duvigneaud)曾描述鳥是「一對靠雙眼引導方向的翅膀」,不過這個說法還不夠正確──鳥的翅膀其實會為自己找到方向。

蝙蝠翅膀長得不一樣,功能卻一點都不差

蝙蝠的翅膀也是如此。牠們翅膀的薄膜雖與鳥羽構造大不相同,敏感度卻不相上下。蝙蝠的翅膀薄膜上布滿有敏銳觸覺的毛髮,這些毛髮從小小的半圓球狀上凸出,並且連接著機械性受體。

蘇珊.斯德賓發現這些毛髮大多數只會對來自蝙蝠背後往前吹拂的氣流有反應,而這種現象通常在蝙蝠快要失速時才會出現。因此蝙蝠其實就跟鳥類一樣,都能感覺出快要失速的狀態,也能夠及時採取行動修正。

-----廣告,請繼續往下閱讀-----

多虧這些毛髮,蝙蝠能以陡峭的角度飛行、在空中盤旋和後空翻,捕捉在尾巴附近的昆蟲,甚至還能以頭下腳上的姿態降落。當斯德賓以除毛膏去除蝙蝠翅膀上的毛髮,並讓牠們飛過障礙物後,可以發現毛髮消失對牠們產生的影響非常明顯。

蝙蝠翅膀的薄膜雖與鳥羽構造大不相同,敏感度卻不相上下。圖/pexels

牠們雖然不會墜落,卻會選擇與周邊的物體保持相當的距離,轉彎的角度也比平常更大,姿態更笨拙;反之,假如牠們翅膀上的毛髮完好無缺,就能夠以離物體僅僅幾公分的姿態飛行,還能做出過髮夾彎一般的飛行動作。

對牠們來說,氣流感受器的存在與否決定了牠們只能用一般方式飛行,還是能夠進一步做出各種飛行特技。

對於其他動物來說,這些感受器的存在很可能更是存亡與否的關鍵。這或許就是為什麼它們會演變為這世上數一數二敏感的器官。

-----廣告,請繼續往下閱讀-----

——本文摘自《五感之外的世界:認識動物神奇的感知系統,探見人類感官無法觸及的大自然》,2023 年 8 月,臉譜出版,未經同意請勿轉載。

臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。