分享本文至 E-mail 信箱
學術引用格式
MLA
APA
EndNote(.enw)

第一台電子顯微鏡|科學史上的今天:4/7

魯斯卡(右) 與其教授 Mark Knoll 的電子顯微鏡。圖/Ernst Ruska Archiv e.V Source Fair Use Only

自從十六世紀末顯微鏡問世以來,人們才驚訝地發現,原來在生活周遭潛藏著肉眼看不見的大千世界。虎克看見排列整齊的植物細胞,雷文霍克發現水中充滿微生物;隨著顯微鏡不斷地改善,我們也一直往萬物的內部深入,但這樣的進程終於撞上了一堵牆,一堵無法翻越的牆──可見光的波長限制。

就像你無法用油漆刷子描出螞蟻的輪廓;當物體本身或是兩個物體之間的距離小於可見光波長的二分之一,無論顯微鏡的透鏡與照明可以做到如何完美的程度,看起來也只是模糊一團。白光的平均波長是 0.55 微米,因此 0.275 微米就是那道牆,就是光學顯微鏡無法突破的極限。想要飛越這道牆,只能另起爐灶,關鍵在於找到更短的波長。

科學的發現或發明往往源自於無心插柳。1928 年,還是大學生的魯斯卡 (Ernst Ruska, 1906-1988) 在教授 Mark Knoll 的指導下,研究如何利用陰極射線做出示波器。當時已經知道所謂陰極射線就是電子束,而且可以用磁場控制電子的飛行方向。然而要用電子束即時在螢光幕上畫出正確的波形,電磁線圈就得讓電子束精確的聚焦在特定的點上,就如同光束經過凸透鏡而聚焦在一點上;此時電磁線圈也就與凸透鏡一樣具有放大的效果。

經過三年的努力,魯斯卡終於在 1931 年的今天做出史上第一台電子顯微鏡的原型機;但它的放大倍數只有 14.4 倍,即使是特別備製的樣本,也只能放大 17 倍,遠遜於光學顯微鏡,因此他與指導教授都還刻意避免使用「電子顯微鏡」這個字眼。當魯斯卡在暑假得知德布羅意的物質波理論後(德布羅意於 1929 年就因為這個理論獲頒諾貝爾物理獎,魯斯卡與教授竟然都未注意!),才知道電子既是粒子,也是一種波,而且波長只有可見光的十萬分之一。這代表電子顯微鏡勢將遠遠超越光學顯微鏡!

受此激勵,魯斯卡終於在 1933 年做出第一台突破光學顯微鏡極限的穿透式電子顯微鏡。隨著技術的進步,如今電子顯微鏡已可放大達數百萬倍,並有不同原理的掃描式電子顯微鏡,成為物理、化學、生物、醫療、……等各種不同領域突飛猛進的重要關鍵。魯斯卡因此於 1986 年與發明掃描穿隧式顯微鏡的兩位科學家一起獲頒諾貝爾物理獎。值得一提的是,光學顯微鏡並未就此罷休;2014 年的諾貝爾化學獎就是頒給在光學顯微鏡上另闢蹊徑,突破極限的科學家。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

 

 

不論是即將進入高中、剛脫離高中、脫離高中很久的你;說到物理課,是否只有無奈跟眼神死?!

本月 PanSciTALK 跟天下文化合作,邀你一起用全新的視角來看物理課以及我們所生活的這個世界!

馬上點我免費報名

關於作者

張瑞棋

1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。自小喜愛科學新知,浮沉科技業近二十載後,退休賦閒在家,更成為重度閱讀者。當了中年大叔才成為泛科學專欄作者,著有《科學史上的今天》一書,如今又因翻譯《解事者》,而多了個譯者的身分。

網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策