網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

3
2

文字

分享

0
3
2

人類能夠生長出新的神經細胞嗎?腦神經科學界再度點燃的戰火

李紀潔、羅鴻
・2018/04/16 ・3398字 ・閱讀時間約 7 分鐘 ・SR值 569 ・九年級

隨著時間的流逝,人體的細胞都會漸漸的衰老、死亡,為了要彌補細胞上的數量不足,存在於各組織內的幹細胞便會活化並生成新的細胞來替補空缺;但其中可能也有少數例外,關於「大腦是否能持續產生新的神經細胞?」,以及我們是否能透過這個機制達成大腦回春的可能,在過去半世紀以來一直是神經科學研究中最大的爭論之一。

圖/MasterTux @Pixabay

海馬迴(hippocampus)是否有神經新生(neurogenesis)的現象,是其中重要的研究方向。海馬迴是與學習和記憶有關的重要腦區,其主要功能是將短期記憶在睡眠時轉存放到新皮層(Neocortex)並形成長期記憶;當海馬迴受到損傷時,會直接影響到個體記憶與學習的功能。因此若能維持海馬迴當中神經細胞數量,便有機會在老年或是創傷後保有學習和記憶的功能。

人類、老鼠及其他動物的腦中皆有負責記憶和學習的海馬迴。 圖/A ventral view on antidepressant action: roles for adult hippocampal neurogenesis along the dorsoventral axis

為了要解答這至今仍撲朔迷離的問題,加利福尼亞大學舊金山分校(University of California, San Francisco, UCSF)及哥倫比亞大學(Columbia University)的兩組科學家深入觀察人類海馬迴是否存在持續新生的神經細胞:他們分別在《Nature》及《Cell Stem Cell》上發表了天差地別的結果。

這場圍繞著人類神經再生的科學大戰,到底目前戰況如何呢?

在某些動物的腦中有觀察到神經新生的現象

除了分子生物學的中心法則外,神經科學的早期也有過一個中心法則──腦在出生後便停止產生新的神經細胞。

但在 1960 年代,麻省理工學院(Massachusetts Institute of Technology, MIT)的 Joseph Altman 博士在成鼠的腦裡發現了新生的神經細胞,因此提出成年的哺乳類腦袋中仍可能有神經新生的現象。這樣結果在當時引起了相當大的爭論,直到 1980 年代時洛克菲勒大學( Rockefeller University )的 Fernando Nottebohm 博士也在唱歌的鳥身上,觀察到牠們某些腦區終生會產生新的、具有正常功能的神經細胞。

source:pxhere

上述的發現開啟了全新的神經科學研究領域,科學家紛紛投注心力去了解新生的神經細胞如何幫助大腦運作以及如何透過刺激神經新生去進行治療。在眾多研究中最夯的主角之一便是海馬迴中的齒狀回(dentate gyrus),因為先前科學家已發現齧齒類的齒狀回會終生產出新的神經細胞,以幫助動物形成新的記憶。

側面海馬迴中的齒狀回具有特殊的形狀及結構。 圖/wikipedia

老鼠的實驗結果顯示,其齒狀回的神經新生現象會隨著年齡增加而減少;有趣的是,運動可以提升此現象,壓力卻會造成神經新生下降。因此,眾所皆知的健康理論便產生,其呼籲人們應該要過健康的生活以保持腦細胞的再生。科學家更進一步的去研究神經新生的應用,發現我們也許可以促進神經新生去治療海滋海默症等腦神經疾病。並且有些研究指出抗憂鬱藥物百憂解( fluoxetine; Prozac)似乎能促使老鼠齒狀回的神經新生。

實驗證實運動後的老鼠會有海馬迴神經新生現象。上方為正常飼養的老鼠,下方則是正常飼養下提供老鼠跑步的滾輪,有跑步的老鼠腦切片中代表神經新生的綠色螢光標的明顯增加。 圖/Bridging animal and human models of exercise-induced brain plasticity

那麼人類呢?人腦中有神經新生的現象嗎?

Nature研究的作者 Sorrells 和 Paredes 從世界各地收集了 59 個人腦組織,年齡從未出生的嬰孩到成人都有,並統計出人腦新生神經現象分布的時間點。他們使用不同的抗體進行腦組織染色,以分辨出各種細胞,其中包括神經幹細胞、神經祖細胞(progenitors)、新生或成熟的神經細胞及非神經元膠質細胞(non-neuronal glial cells)。並且,他們也透過高解析電子顯微鏡進一步確認這些細胞的外型與結構,以提高實驗結果的可信度。

 

神經幹細胞會依序分化成神經祖細胞及神經細胞,透過不同的分子標的可以計算出不同細胞種類的數量。 圖/How to make a hippocampal dentate gyrus granule neuron

作者發現在海馬迴裡的齒狀回區域有許多的神經新生現象,計算的結果顯示每平方毫米有 1618 顆新生的細胞,但只發生在未出生的發育胚胎及新生兒中。隨著嬰兒的成長,標本中的新生神經細胞數量急遽地下降。一歲嬰兒的齒狀回中新生神經細胞的密度只剩下約 300 顆,即為原本的五分之一。但不僅如此,隨著孩童成長其神經細胞也漸趨成熟,神經新生下降的現象也持續發生。七歲時又再減少九成五,而十三歲時新生神經數量僅剩為七歲的五分之一。作者指出青少年前期的齒狀回中每平方毫米只有 2.4 顆新生的神經,而在另外 17 個成人或 12 個癲癇病患的組織標本中完全沒有發現新生的神經。

實驗結果顯示齒狀回的神經新生在嬰孩時期急遽減少,而到成人時幾乎觀察不到此現象。 圖/doi:10.1038/nature25975

看到這樣的結果就心灰意冷了嗎?先母湯喔~

哥倫比亞大學的Boldrini副教授立馬在四月時發表了相反的結果,他們發現在成人的海馬迴內仍有明顯的神經新生現象。此研究團隊收集了28個年齡範圍涵蓋了14到79歲的腦樣本,並也使用了與Nature研究相同的抗體進行神經新生蛋白的染色。他們將神經細胞分成幾個不同的類型,第一種是最初的神經幹細胞(QNP)細胞,第二種是神經祖細胞一到三型(ING I-III),以及第三種齒狀回顆粒細胞(granule cells)。統計的結果發現雖然神經母細胞的數量會隨著年齡上升而下降,但是神經祖細胞和未成熟齒狀回顆粒細胞的數量不管在哪個年齡中仍然維持相當的數量。因此作者提出成人仍有持續的海馬迴神經新生現象的結論!

但是為何老化會使海馬迴的功能下降或甚至喪失呢?作者發現海馬迴顆粒細胞的形狀較單一,表示新生的細胞遷移和產生突觸的能力降低。其可能間接的造成細胞失去功能,這也意味著神經可塑性的降低。研究團隊首先排除了老化造成海馬迴顆粒細胞、神經膠細胞和齒狀回的體積差異的可能性,反而發現可能是血管新生的現象減少及微血管密度的下降現象影響神經的可塑性。

Columbia團隊發現成人仍有持續的神經新生現象,而老化時海馬迴功能下降可能是血管新生相關的問題所造成的。圖 / https://doi.org/10.1016/j.stem.2018.03.015

人類是否具有神經新生的爭論將會持續下去

雖然UCSF的無腦神經再生研究已經利用較多的樣本呈現高解析度的腦切片圖,並同時比較不同年紀的神經新生現象,但仍有許多腦神經科學家持有不同的意見。有些科學家認為他們使用的人類樣本有些是在死亡後超過兩天才進行防腐的處理,因此可能造成分子標的蛋白質已經發生降解,而無法準確地反映實際的神經細胞數量。而相反的是,Columbia大學的科學家們的研究樣本皆從死亡26小時內健康的人中收集,所以他們能分析較高品質及完整的海馬迴樣本。

但UCSF團隊特別指出,Columbia團隊並未仔細的利用穿透式電子顯微鏡等技術去確認細胞種類的型態,因此可能高估了神經再生的數目。另外,他們認為雖然新的研究推翻成人沒有神經新生的假說,但是與為初生嬰孩及新生兒的海馬迴神經新生數量相比,青少年及成人裡神經新生的現象確實顯著的下降。

最後,亦有其他學者認為兩邊的研究都沒有問題,侷限是出在研究方法本身的限制。科學家們需要開發新的研究及分析方法,才有機會真正的釐清這個世紀謎題。這兩篇結果衝突的研究可說是腦神經科學中的一個契機,讓我們重新檢視科學方法上的問題並更進一步了解為何人腦與其他動物有如此的差異性。最重要的是,新的知識可以重新導正大腦疾病的研究方向,提高找出治療的可能性。

期待在不久後的將來,我們能夠看到這場人類神經再生的科學大戰劃下句點。

參考資料:

文章難易度
李紀潔、羅鴻
13 篇文章 ・ 0 位粉絲
來自陽明大學基科所的畢業生,喜歡神經科學、遺傳和演化的企鵝狂熱二人組。本來對科普寫作毫無興趣,在大學老師強烈遊說之下仍然無動於衷,畢業後卻意外開始在泛科學寫科普文章。興趣分別是畫畫和魔術方塊。目前兩人都在德國攻讀神經科學博士,分別專攻老化和神經再生、電生理和動物行為。


0

9
3

文字

分享

0
9
3

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
1 篇文章 ・ 2 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》