0

2
0

文字

分享

0
2
0

關於科學寫作的那些事:如何用文字駕馭繁瑣的科學知識?

活躍星系核_96
・2018/02/02 ・4416字 ・閱讀時間約 9 分鐘 ・SR值 550 ・八年級

  • 作者 / 楊雅如
    曾擔任環保基金會研究員,目前是斜槓主婦,網路寫作者。
準備好要開始寫作了嗎?圖/Pexels @pixabay

前科學生涯 (Science Careers) 雜誌編輯吉姆・奧斯丁(Jim Austin) 寫過一篇很有意思的文章,鼓勵科學家轉行寫作。他說,科學家已經具備了閱讀和理解科學文獻的能力,至於寫作嘛,大家都多少會一點。全職作家不僅工作時間自由,又能兼顧生活與家庭,還不受地域限制,多好!

話是這麼說沒錯,但你心裡可能還是會想:「這聽起來很不靠譜啊……」

——你的直覺沒錯。這其實只是開篇的小幽默,奧斯丁在後續文章中明白地指出科學寫作並不像大家以為的那般容易:正如其他寫作類別一樣,科學寫作也需要長期磨練,需要專注、決心、勇氣、甚至天份,而且競爭激烈。對於受過科學訓練的人來說,門檻也許稍低一些,他們比一般人更容易弄懂要寫的內容,並且能獨立進行科學項目的調研。儘管如此,寫作者仍然需要持續研讀最新論文,參與學術研會,不斷自我訓練,跟上科技發展最前沿的腳步。

當然,以上嚴格標準是針對以科學寫作為職業目標者;一般的科學研究隨筆、科普短文也並非高不可攀,其實只要有興趣、並且掌握基本原則,中學生就可以開始練習寫了。

科學寫作:就從身旁的電器開始吧!

「寫作是付諸文字的思維。只要你想得清楚,就能寫得清楚。」——威廉・津瑟

可以先從最簡單的練習開始,例如描述一樣家電用品是如何運作的,透過書寫的過程,把已經知道的整團概念整理成清晰的邏輯演繹。中途如果遇到模糊不清的部分時,可以翻閱電器說明書、問人、或者上網查,務必弄清楚了再繼續寫。盡量採用線性敘述,一句接著一句、每一句都往前拓展一步,然後一路走下去,如此一來再複雜的電器也難不倒你。

-----廣告,請繼續往下閱讀-----

習慣創意文學的人,要特別留意避免寫出雕飾華麗的句子或晦澀的隱喻,虛實交錯會擾亂讀者的理解過程,直接而淺白則有助於專注。反覆練習,直到你能自然運用這種筆法,即可進入下一階段——科學散文。

正式開始寫作前必須思考自己的目標觀眾(target audience)。圖/Alexas_Fotos@pixabay

在這之前我想先談談「目標讀者」分析。為了抓準內容的難度與風格,下筆之前要先揣摩不同年齡、教育程度者吸收知識的能力,如果目標讀者是普羅大眾,實務上可以將難度設定在高中三年級左右,高三學生經過將近六年的中學自然科教育,大致能掌握科學領域中的基礎詞彙,寫作者不用一邊介紹最新的天文發現,還要一邊忙著解釋什麼是萬有引力和大氣壓力。

初寫者常常把讀者想像成不懂事的小孩,而不經意用上高姿態說話,這種語氣很容易令人感到厭煩,誰喜歡聽長輩說個沒完呢?不論內容如何簡化,千萬不可以輕視讀者,要把他們預設為跟你一樣擁有聰明而好奇的心靈,如此寫來才能真誠而有趣。

現在,你正準備好要開始寫一篇科學散文

散文與論文最大的不同在於文學性,也就是對於細節的處理方式。學術論文發展至今已經形成固定格式,所呈現的內容過度簡化了研究者在實驗中的摸索歷程,以致於有許多重要訊息難以被表現出來,使讀者誤以為從提問、假設、 實驗到得出結果的方向總是必然,而高估其研究結果,或是忽略某些會干擾結果的外在變因。

-----廣告,請繼續往下閱讀-----

巧的是那些被捨棄的細節恰恰是科普作家最感興趣的部分——錯誤、糾結、困境與掙扎,這之中所揭示的是科學真相在複雜世界中更完整的脈絡。因此高明的科普文章有時候比正式論⽂文更有價值,畢竟真實世界本來就是一張張相互交織的網。

再大的知識,都得從一個狹窄的事實寫起,不要第一句話就把人趕跑。這個狹窄的事實必定是讀者已經知道的,比如日常⽣生活中的一個現象或體驗,最好跟⼈人有關,可以是你自己,也可以是另一個人,這麼一來就有了說故事的元素,以推動故事前進的技巧把整個來龍去脈鋪展開來。

科學散文的表現形式多變,其中美國醫學作家柏頓・盧薛 (Berton Rouech)以「偵探小說」的方式為人所知。圖/bluebudgie@pixabay

美國醫學作家柏頓・盧薛 (Berton Rouech) 就擅長以偵探小說的手法寫艱深的醫學知識,他的故事通常從某個人患了了不知名的病開始,循線追蹤神秘病因,最終真相大白。讓我們一起來看看其中一篇文章的開頭:

”1944年年9月25日,星期一早上大約8點鐘,一位衣衫襤褸、漫無目的的好人倒在了哈德遜車站附近的人行道上。一定有很多人注意到了他,但他獨自躺在那裡好幾分鐘,神智不清。他由於腹部痙攣而蜷縮者身子,痛苦地發出嘔吐聲。

之後一名警察出現了,若不是彎腰仔細打量這位老人,警察還以為意碰上一個醉漢。大早上在這個區域遇見醉倒的離浪漢是常事。但是他的這個想法並沒有持續,這位老人的鼻子、嘴唇、耳朵還有手指都是天藍色的。“——摘錄自《醫學神探・十一個藍人》

一個尋常的日子,出現一件不尋常的事——變成藍色的人,盧薛運用敘事的懸疑性技巧,在文章一開始就緊緊吸引住讀者,之後故事要再講下去就不是難事了。

-----廣告,請繼續往下閱讀-----

另外有些作家會以第一人稱描述的手法撰寫文章、讓自己親自參與其中,例如科學記者喬許.佛爾 (Joshua  Foer)在2012年出版的《記憶人人hold得住:從平凡人到記憶冠軍的真實故事》這本書,即以他自己參加記憶大賽奪得冠軍的真實故事為主軸,帶領讀者探究人類大腦的記憶之謎。

科學記者喬許.佛爾 (Joshua  Foer)則是擅長以第一人稱描述,引人入勝。圖/By Christopher Michel @flickr

許多精神醫學方面的科普著作也都以親身經歷寫成,像是英國作家大衛·亞當  (David  Adam)《停不下來的人:強迫症自救指南》、美國作家史考特.史塔索(Scott Stossel)《我的焦慮歲月》等, 兩本故事的精彩程度都不輸小說。

  • 筆者曾經懷疑自己有強迫症和焦慮症,讀完之後豁然開朗,比起這兩位傑出作家,我的症狀太輕微了,他們都能把人生過得精彩,我還怕什什麼呢。如果你也有相同煩惱,不妨可以試著閱讀看看。

親身經歷的書寫可以拉近與讀者的距離,但是也不能只單純地放任自己的情感,還是要有所節制、維持理性風度。人的回憶會隨時間而扭曲,有些忽略了、有些放大了、有些甚至記錯,以第一人稱寫作尤其容易被影響,所以需要謹慎評估記憶材料的忠實性。

資料收集很重要

我試著講述能讓人們從甲地到乙地的故事,我不是指故事要有頭有尾,而是指讓他們可以瞭解某個主題。——喬許.佛爾

即使是單篇散文,也要幫助讀者在認知上前進,哪怕只是一小步,這也是科學寫作最重要的任務。當甲地到乙地所跨越的距離遙遠時,作者需要調度更多資源,首先會面臨的就是大量的文獻。目前科學界最普及的語言仍是英語,最新的研究報告都是用英語寫成的,科學作家必須能獨立閱讀英文,甚至以英文說、寫,才能順利展開調研工作。就拿我寫這篇小文章為例,如果只看中文,那材料真是太少了。

-----廣告,請繼續往下閱讀-----

閱讀文獻之外,長篇著作也經常涉及訪談,或與相關機構的聯繫,這些工作都必須在寫作之前規劃妥當。資料收集得越豐富,寫作時越能更好地發揮,然而時間和預算都有限制,不能無止盡發散,從收集資料到內容撰寫都要收斂範圍,一方面節省精力,另方面則有助於聚焦主題,把那些互搶風頭的精彩片段留給下一本書吧!

科學寫作,不是現在才出現的

當你終於進入科學寫作的疆界,正從山腳下一路摸索往上爬,也許你會想看看這片土地的歷史全景,在連綿起伏的地勢中尋找前人留下的山峰與低谷。

科學給人一種創新和未來感,讓人理所當然地以為科學寫作是屬於現代世界的活動;但事實上,這是一派歷時悠久、高度成熟的文體。科學寫作最早可以追溯至西元前三世紀的希臘文化,當時人類掌握的科學知識還不多,所以科學著作的目標讀者是所有識字的人——雖然可能也沒幾個,但凡只要是能識字的人,都應該能讀懂歐幾里得所寫的《幾何原本》,不需要特別去想「普及」這件事。

1660年英國皇家學會在啓蒙運動的核心之地——倫敦成立,當時人類所累積的科學知識已經相當豐富了,但在皇家學會裡的科學家們仍不滿足於此、盡可能的想辦法理解有關於自然萬物的「所有」知識;包含羅伯特・波以耳 (Robert Boyle)、艾薩克・牛頓 (Isaac Newton)等等。為了幫助科學家們彼此交流,皇家學會鼓勵他們將研究結果以較為淺顯易懂的方式寫出來,發表於學會期刊(這份期刊一直延續至今)。科學寫作在這一階段的普及目標是不分領域、所有受過訓練的科學家。

英國皇家學會成為科學寫作在啟蒙時期的重要推手,鼓勵學著們將研究結果以較為淺顯易易懂的方式寫出來。圖/@wikimedia

二次大戰前後,美國主流雜誌開始出現以描述自然或科學內容為主體的散文,瑞秋.卡森(Rachel Louise Carson) 的第一本書《海風之下》出版於1941年,以極富文學技巧的敘事風格描寫海洋生物活動。而後在美國新聞潮流影響下,科學寫作逐漸向報導文學靠近,積極關注社會議題,甚至影響經濟與政治決策,卡森的最後著作《寂靜的春天》亦為代表作品之一。

-----廣告,請繼續往下閱讀-----

十九世紀末,法國昆蟲學家法布爾 (Jean-Henri Casimir Fabre) 前後耗費四十多年寫出巨作《昆蟲記》,一共十冊,直到今天都還是科普類的暢銷書,啓發無數人對自然與昆蟲的熱愛。

  • 筆者特別推薦第五冊:螳螂的愛情,看看母螳螂如何在完成人生大事後一口吃掉公螳螂。
法國昆蟲學家法布爾 (Jean-Henri Casimir Fabre)的郵票。

來到二十一世紀的現在,人類所發現的科學知識已如宇宙般浩瀚,再聰明的人也難以一己之力悠遊其中,我們比任何時代都需要優秀的科普作家來為我們轉述、解讀萬物。此外,教育的普及也讓人們更習慣、也更期望以科學的視野觀看世界,我們想知道大腦如何運作影響情緒、病毒感染的機制是什麼、氣候變遷的原因和後果,還有社會現象背後的統計數據等等。

科學觸角已經進入幾乎所有非虛構主題,不論你寫什麼,都無法避免引用科學知識,採用科學邏輯與方法進行推論,更要有本事不落入偽科學的陷阱。科學逐漸成為所有非虛構作者必備的素養,這種素養還包括對科學侷限的認知。以「生命」這一主題為例,除了生物學上的探索外,我們還需要兼及哲學、宗教、人類學等多方面的理解,才能更接近真實全貌。科學知識幫助我們解讀複雜的世界,但也絕不是全部。

延伸閱讀:

-----廣告,請繼續往下閱讀-----
  • 瑞秋.卡森 《海風之下》、法布爾《昆蟲記》
  • 柏頓・盧薛《醫學神探》
  • 大衛·亞當《停不下來的人 : 強迫症自救指南》史考特.史塔索《我的焦慮歲月》
  • 喬許.佛爾《記憶人人hold得住》

參考資料:

  • 威廉・津瑟《寫作法寶:非虛構寫作指南》
  • Deborah B., Mary K., Robin M. H. 「 National Association of Science Writers’ Field Guide for Science Writers. 」 *Oxford University Press*, USA, 2005.
  • Jim Austin “Science Writing and Editing” *Science*, 2011.
  • Ian T. “Science writing: how do you make complex issues accessible and readable?” *The Guardian*, 2012.
  • llana Y. “From the Editor: 83.1 Evolution of Science Writing.” *Yale Scientific Magazine*, 2010.
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 129 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
3

文字

分享

0
1
3
差點震垮葡萄牙的里斯本大地震,震出地震研究的新視角——《愛因斯坦冰箱》
商周出版_96
・2019/08/21 ・2372字 ・閱讀時間約 4 分鐘 ・SR值 559 ・八年級

生長在臺灣的我們對地震向來不陌生,歷史上哪一次地震對人類文明影響最大呢?恐怕非 1755 年里斯本大地震莫屬,那一次的地震不僅差點震垮葡萄牙這個老牌的殖民帝國,引發了最早的地震學研究,更讓方興未艾的啟蒙運動得到一個施力點,撼動西歐傳統宗教道德合一的傳統。

特別是這場大地震深深地吸引了一位年輕普魯士學者的目光,我們依稀可以在幾十年後他精心完成的哲學體系中聽到這場大地震的餘音。

1755 年的銅雕,表示里斯本大地震後,所發生的火災及被海嘯摧毀的船隻。圖/wikimedia

1755 年 11 月 1 日早上 9 點 40 分左右,一場劇烈的搖晃持續了 3~6 分鐘,許多房屋應聲而倒。這天是天主教的諸聖日,所有的信徒必須到教會參加彌撒,所以當天教堂裡擠滿了信徒。這場驚天地動里斯本市中心被震出了一條約五公尺寬的巨大裂縫,但可怕的災難尚未結束。

-----廣告,請繼續往下閱讀-----

大地震後約四十分鐘後,接續三波的大海嘯席捲里斯本,摧毀了碼頭和市中心;禍不單行的是,地震引發的大火延續了五天才被撲滅。而整個南葡萄牙也都遭到非常嚴重的破壞,連大西洋沿岸如北非、英國、愛爾蘭都遭到海嘯的襲擊。光是里斯本的死亡人數就可能高達九萬人(當時里斯本人口約二十七萬),里斯本 85% 的建築物被毀,很多珍貴的資料也被大火焚毀,最可惜的莫過於達伽馬的詳細航海記錄。

國王若澤一世(Jose I)以及皇室成員在日出舉行彌撒後就離開了里斯本,逃過了一劫。被國王視之為股肱之臣的梅羅(後來受封為龐巴爾侯爵)聘請很多建築物和工程師來重建里斯本,不到一年,里斯本就恢復了盎然生機,而這些新建物特別注重防震的設計。

現在里斯本的市中心龐巴爾下城是抗震建築的最早實例之一,建築的特徵就是龐巴爾籠(gaiola pombalina),它是一種對稱的木格框架,可以分散地震力量;此外還有高過屋頂的牆,可以遏止火災蔓延。龐巴爾侯爵曾讓軍隊在周圍遊行,以模擬地震來測試建築物。里斯本市中心的廣場現在還矗立著若澤一世的騎馬銅像,俯瞰著重建的里斯本城。

若昂一世銅像。圖/wikimedia

-----廣告,請繼續往下閱讀-----

龐巴爾侯爵是個富有科學精神的人,除了進行重建外,還照著順序,一個一個教區地進行諮詢;他的問題包括:地震持續了多久?地震後出現了多少次餘震?地震如何產生破壞?動物的表現有否不正常?水井內有什麼現象發生等。

這些問題的答案現在還存放於「葡萄牙國家檔案館」(National Archive of Torre do Tombo)。藉著這些資料,現在的地震學家估計里斯本大地震的規模達到 9,震央位於聖維森特角(Cabo de Sao Vicente)之西南偏西方約 200 公里的大西洋中。這算得上是現代地震學的濫觴了。

這場大地震影響的不只是葡萄牙,而是整個歐洲的知識界。對後世影響最大的首推英國的約翰.米歇爾牧師在地震之後所寫的論文:《關於地震成因以及地震現象的觀察》(Conjectures concerning the Cause and Observations upon the Phaenomena of Earthquakes)1一文。他在這篇論文中提出地震會擴散,就像水波在池塘擴散一般,是一種波動現象。而且他還主張地震的波動在遇到地層的斷層時,波傳播的方面會隨著改變。

米歇爾甚至嘗試尋找震央,並且認定震央在大西洋,所以他懷疑地震後的海嘯是由於地震引起的。但是談論到地震的成因,他可就錯得離譜了,他認為是地殼的水與地心的火相遇形成高壓的氣體所造成的。

-----廣告,請繼續往下閱讀-----

現代地震學直到十九世紀的愛爾蘭科學家羅伯特.馬萊(Robert Mallet)在 1862 出版的《1857 年拿坡里大地震:觀測地震學的第一原則》(Great Neapolitan earthquake of 1857: the first principles of observational seismology)才算是真正成為一門科學。

馬萊用實驗以及收集的資料推測 1857 年發生在義大利拿波里地震的震央在地表下九哩。地震學這個英文字「seismology」正是馬萊所創造的。

地震波與芮氏地震規模

地震:岩體受到黑色箭頭的力,開始在黑框區域內變形累積能量,並且變形。累積能量超過岩體強度,岩體沿著箭頭方向作相對位移,釋放累積能量。圖/商周出版提供

十九世紀末,德國物理學家埃米爾.約翰.維舍特(Emil Johann Wiechert) 發現地球表面的岩石密度和地球平均密度之間存在著一定差異,隨即提出地球有一個質量極大的鐵核的結論,他也是史上首位地球物理學教授。而他的理論被他的學生賓諾.古登堡(Beno Gutenberg)發揚光大。古登堡在 1914 年提出了地球有三個分層的結論。

-----廣告,請繼續往下閱讀-----

維舍特的另一個學生宙依皮瑞茲(Karl Bernhard Zoeppritz)提出的 Zoeppritz 方程式是連結 P 波(primary wave)與 S 波(次波,secondary wave)的重要關鍵。

P 波意指首波或是壓力波(pressure wave)。在所有地震波中,P 波傳遞速度最快,因此發生地震時,P 波會最早抵達測站並被地震儀記錄下來,這也是 P 波名稱的由來。P 波的 P 也代表壓力(pressure),來自於其震動傳遞類似聲波,屬於縱波的一種(或疏密波),傳遞時介質的震動方向與震波能量的傳播方向平行。

S 波的速度僅次於 P 波。S 波的 S 也可以代表剪切波(shear wave),因為 S 波是一種橫波,地球內部粒子的震動方向與震波能量傳遞方向是垂直的。S 波與 P 波不同的是,S 波無法穿越外地核,所以 S 波的陰影區正對著地震的震源。

至於地震的成因,則是直到 1906 年舊金山大地震後,美國科學家哈里.菲爾丁.芮德(Henry Fielding Reid)提出彈性回跳理論(elastic-rebound theory)才有具體的答案。因為地殼為彈性體,受到應力行為時,會不斷地變形並且累積應變能量,當應變能量累積到超過岩體中弱面強度時,岩體就會沿著此弱面滑動造成地震震波。

-----廣告,請繼續往下閱讀-----

芮氏地震規模最早則是在 1935 年由兩位來自美國加州理工學院的地震學家芮克特(Charles Francis Richter)和古登堡共同制定的。規模相差 1,代表振幅相差 10 倍,而所釋出的能量則相差約 32 倍。人類對地震的了解隨著物理學的發展而不斷增加,但是直到今天,我們還是無法準確地預測地震。

注釋

  1. 出處:Philosophical Transactions, li. 1760

——本文摘自泛科學 2019 年 8 月選書《愛因斯坦冰箱》,2019 年 7 月,商周出版。

-----廣告,請繼續往下閱讀-----
商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。