Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

如何知道健保制度「好不好」?開放資料研究能告訴我們哪些事?

研之有物│中央研究院_96
・2017/12/13 ・4049字 ・閱讀時間約 8 分鐘 ・SR值 499 ・六年級

運用「經濟學」研究健保

中研院經濟所的楊子霆助研究員,分析實際資料發現:「免除三歲以下兒童的部分負擔」制度,會讓三歲以下兒童到大醫院看門診的次數大幅增加,而且新增加的門診大多是應在診所治療的輕症(如感冒)。這顯示調高部分負擔,將有助於抑制輕症病患到大醫院就醫次數,減少醫療資源的浪費。

「我對公共經濟學很有興趣,尤其是政府的支出與收入,健保其實就是一種財政支出。另一方面,我也很好奇醫院的醫療行為……」楊子霆說明為什麼要做這個研究。 攝影/張語辰。

大家都想知道健保制度好不好,但好或不好該如何證實?在平常觀看新聞的過程中,楊子霆發現衛服部於 2002 年推動「免除三歲以下兒童的部分負擔」制度,便運用健保資料分析這項政策的實際影響,也檢視健保制度能如何更好。

「免除三歲以下兒童的部分負擔」,發生了什麼改變?

這個政策的初始目的是希望可以照顧小孩子的健康,因此免除了三歲以下幼童的部分負擔。

「部分負擔」的意思是當大家就診時,除了由全民健保負擔醫療費用外,我們也需要自行負擔一部份費用。除了門診的部分負擔,藥品、復健治療及住院也都有部份負擔。

病患在不同層級的醫療院所,需付出的部分負擔也不同。如未經轉診,屬於醫學中心層級的台大醫院部分負擔現為 420 元,而診所僅需要 50 元。資料來源/部分負擔及免部分負擔說明 。圖片來源。iStock。

政府一直想了解「部分負擔」的變化如何影響「醫療利用」與「健康」,但如果直接比較部分負擔「付較多」與「付較少」的兩群人,他們在醫療利用與健康的差別,可能無法正確估計部分負擔的影響。因為這兩群人可能在家庭收入、先前的健康狀況、或其他特性本來就有不同,研究者無法斷定這兩群人在醫療利用與健康的差異,是來自部分負擔不同所造成的?還是其他因素導致的?

因此,為了正確估計部分負擔的效果,我們選擇從「免除三歲以下兒童的部分負擔」這個制度,來看部分負擔的變化如何影響兒童的醫療利用。我們用「滿三歲前一天」與「滿三歲後一天」的資料做比較,因為三歲前後幾天的健康狀況、家庭收入或是其他因素應該不會有太大差異。

三歲前一天與三歲後一天,唯一差別在於「是否需要付部分負擔」。因此,可以去看同一群人在兩種情況下,醫療利用行為有無改變、及健康狀況是否有差異,藉此就能估計部分負擔的效果。

我們研究結果發現,如果免除三歲以下兒童的部分負擔,「門診」的總醫療花費增加 7%,總就診次數則是增加 5% ,但家長大多是帶小孩去大醫院看小病。而「住院」則沒有明顯變化。

實施「免除三歲以下兒童的部分負擔」制度前,三歲前後的總醫療花費是差不多的(如左圖)。但在實施此制度後,三歲以下兒童「門診」的總醫療花費上升許多(如右圖)。資料來源/Patient Cost-Sharing and Health Care Utilization in Early Childhood: Evidence from a Regression Discontinuity Design (with Hsing-Wen Han and Hsien-Ming Lien)。圖說重製/王怡蓁、張語辰。

原本在大醫院看門診的部分負擔是比較高的,因此,免除部分負擔後,三歲以下兒童到大醫院看門診似乎更為划算:既能得到更多補貼(因為免除的部分負擔金額較高),又能獲得更好的醫療。我們發現到大醫院看門診的次數大約多了 50%~60%,而且新增加的大醫院門診,大多是可以在診所治療的小感冒等疾病。

由於三歲以下兒童免除部分負擔,三歲前到「醫學中心」與「區域醫院」看診的次數,比三歲後高出許多。資料來源/Patient Cost-Sharing and Health Care Utilization in Early Childhood: Evidence from a Regression Discontinuity Design (with Hsing-Wen Han and Hsien-Ming Lien)。

這個健保政策立意當然是好的,但從數據上來看,免除三歲以下兒童的部分負擔,似乎扭曲民眾就醫的選擇,增加他們直接到大醫院就醫的誘因。

比較好的方式是「定額補貼」,不分醫療院所的層級,皆補貼一個固定的費用。例如去診所或大醫院,門診都是補貼一百元,避免誘導民眾選擇大醫院。

三歲以下兒童「住院」,應免除部分負擔嗎?

「住院」的總花費與次數,在「免除三歲以下兒童的部分負擔」前後差異不大。因為通常到住院的程度,都是明確需要比較好的醫療照顧。資料來源/Patient Cost-Sharing and Health Care Utilization in Early Childhood: Evidence from a Regression Discontinuity Design (with Hsing-Wen Han and Hsien-Ming Lien)。

從我們的研究來看,如果幼童需要住院,無論是否有免除部分負擔,父母都會選擇讓他住院。這也是很合理的,因為幼童一旦需要住院,大多是要治療較重大的疾病,父母應該不會在意部分負擔是否免除。

因此,根據研究結果,如果政府想要繼續補貼三歲以下兒童的部分負擔,我們會建議:首先,「門診」的部分,應該用「定額」補貼部分負擔,才不會造成去大醫院得到的「補貼」比較多,反而變向鼓勵民眾多去大醫院就診。

其次,既然對重大疾病幼童來說「住院」是必要的,其決策不受部分負擔高低的影響。關於兒童住院的部份負擔,我們建議應該「全額補助」。

若門診不是用「定額」,而是以「定率」計算部分負擔?

2017 年 2 月,衛福部公布調漲醫學中心的門診部份負擔金額,從 360 元變成 420 元,並於 4 月實施,政府希望此措施能避免民眾小病就跑到大醫院的現象。

但許多人認為現行的「定額部分負擔」做法仍無法抑制民眾小病到大醫院就診的情況,應按照《全民健康保險法》 第四十三條「保險對象應自行負擔門診或急診費用之 20% ,居家照護醫療費用之 5% 。但不經轉診,於地區醫院、區域醫院、醫學中心門診就醫者,應分別負擔其 30% 、 40% 及 50% 」之規範,以「固定比率(定率)」來收取部分負擔的費用。

改成上述「固定比率(定率)」的部分負擔,會更能降低輕症病患在大醫院的門診次數嗎?

根據我們的研究結果,我們並不贊同這樣的改法,因為現行的「定額部分負擔」大約能減少 50-60% 輕症在大醫院的門診量;換句話說,現行的「定額部分負擔」相當程度地能夠抑制到大醫院看小病的醫療浪費行為。事實上, 2017 年 4 月調漲前的醫學中心的部分負擔為 360 元,若是去看小病(例如感冒),那時的自付額已佔該次門診醫療支出的 75% ,遠高於「定率部分負擔」的 50% 。

若醫學中心部分負擔改為自付 50% 的醫療費用,反而會讓到醫學中心看輕症的自付額下降,可能導致民眾更愛選擇到大醫院看小病。

相反地,若是改成「定率部分負擔」,將會讓民眾不敢去大醫院治療「重大疾病」。

因為不像「定額部分負擔」,民眾能事先知道要付的金額,例如:一次醫學中心的門診就是付 420 元,在「定率部分負擔」下,民眾要等所有檢查做完,才知道自己要付多少錢;如果醫療費用是一萬元,要自行負擔 50% ,就是五千元,反而降低重大疾病的病患,到大醫院就醫的意願,然而這類病患才是大醫院應該治療的對象。

還有哪些感興趣的題目,卻因資料不足無法進行?

有的,但這個題目現在我也蒐集到比較多資料了。是關於台灣「人才外流」的議題。

「人才外流這個議題,我想先看看這些數據說了什麼,再讓政府了解有什麼方法可以留住人才」楊子霆說明。圖片來源/iStock

我想知道甚麼類型的人會到海外工作,人才外流造成多少稅收損失、以及造成國內多少勞動力的短缺?光是想像就發現所需的資料量非常龐大:我要先知道他在台灣的工作與背景,再者是有多少人出國「工作」,這點就無法確定政府是否有準確的數據資料。

會有契機可以重新著手這個題目,是因為前行政院院長張善政的緣故,他在任內對「政府資料開放」抱持非常正面的態度,鼓勵各部會開放更多資料,也提供學術界申請政府行政資料 (administrative data)的機會。由研究團隊針對各部會的感興趣的議題,撰寫研究計劃書與提出所需資料,通過審核後,便可以至「國家高速網路與計算中心」的監控室使用資料。必須要強調這些資料都是經過「去識別化」,無法識別特定個人。

現在,我們申請到了研究所需的資料,不過,由於資料龐大,這些資料都還在處理中。無論如何,我非常高興能有機會探索這個重要議題。

台灣政府開放資料是否足夠?

政府開放資料,指的是「去識別化、並統整過」的資料。資料來源/政府資料開放平台。

近年來在張善政與唐鳳的推動下,台灣的開放資料確實進步很多。

除了開放資料外,有些政府行政資料對政策分析與學術研究也很有幫助。像衛福部就做得很好,願意釋出健保資料讓研究者到資料中心使用,健保資料非常地詳細,可以做出精確的分析結果,這在全世界非常少見。更重要的是,很少有國家強制全民納入健康保險制度,像是美國就沒有,所以無法取得全民的醫療健康紀錄資料。

政府手上有非常多很好的資料,研究這些議題需要資料,所以政府要先把這些資料開放出來,不然無法了解發生什麼事。

像健保資料只能得到醫療資訊,如果我想分析「收入」與「醫療利用」的關係,就還需要收入與家庭的資料,如果沒有跨部會資料的話,研究就無法進行、或可能結果不精確。

但目前台灣遇到的最大困難是:各部會的資料無法串聯在一起。各部會的本位主義有點強,如果要跨部會資料的串連,把資料放在哪裡也是一大問題。(冒汗)

我前陣子去瑞典參訪,觀察到他們將資料統一放在一個第三方獨立的機構:國家統計局。他們跟台灣一樣, 會給予每位國民類似身分證字號的代碼,並用這個代碼串聯各部會所屬的資料。

運用國家統計局擁有的整合資料,每年可以直接計算數據、發佈普查結果,取代了台灣還要人工額外進行的人口普查、勞動力調查、收支調查等。其實台灣政府做這些調查都是「重複的」調查,如果整合各部會現有的數據資料,反而可以省下更多行政成本。

延伸閱讀

-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3652 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

2

3
0

文字

分享

2
3
0
盤點全球生活條件——我們需要多少能量,才能讓所有人過上體面的生活?
安比西林_96
・2021/10/01 ・2933字 ・閱讀時間約 6 分鐘

每天煩惱三餐要吃什麽、出門要怎麽穿、回家後有沒有舒適的被窩可以鑽,應該是我們大部分人的日常。然而,在社會的某些角落,「貧窮」卻可能讓人連基本生理需求都難以滿足。

要消除貧窮,免不了增加資源消耗,但全球暖化危機當前,人類又不得不展開節能減碳的行動。面對「對抗貧窮和調適氣候變遷,兩者是否相互衝突」的疑問,科學家們提出了一個直指核心的問題:我們需要多少能量,才能讓所有人過上體面的生活?

打造放諸四海皆準的人類基本福祉指標!

為了解答這個大哉問,來自國際應用系統分析研究所(IIASA)的研究者們,提出了一個新的指標——「體面生活標準」(Decent Living Standards,DLS )。它源自於基本人權與公平正義的普世理念,定義為任何人都應享有的一系列基礎物質與社會滿足要件;不論你出身何處、對好的生活有何想法,或擁有什麽訴求

這些基礎條件,可以分為五大面向:營養(Nutrient)、庇護所(Shelter)、健康(Health)、社會互動(Socialization)及可移動性(Mobility)。在食衣住行方面,除了三餐溫飽及空間大小充裕的住處外,DLS 更貼心地考慮生活的細緻之處,例如乾淨的衛浴、可以烹飪、保存食物的基礎家電,以及高緯度地區在冬、夏兩季不可或缺的溫控設備等等。DLS 也不止步於基本物質需求,更涵括一個健全生活的人應享有的醫療服務、義務教育,使用基本通訊和交通設施,以及進行社交聯繫和政治參與的權利。

「體面生活標準」所列出的指標。圖/參考資料 2

逐項列出統一化的 DLS 各面向的要求後,研究者們會根據不同國情,例如氣候、都市化程度、文化及科技經濟結構的程度,去計算各國達成這些基準的閾值能量。除了國與國的差異,在計算上,也會納入在地的城鄉差距。

舉例來説,訂定了擁有足夠空間和熱舒適的房屋通用標準後,研究者會把它換算成各地所用的不同建材,及建設與維持各類民生服務的基礎設施(如水電廠、運輸系統等)所需耗費的能量。有了 DLS 的理想標竿值,再與每個國家目前用於實現 DLS 的能源進行比較,就可估算出填補 DLS 缺口所需的能源需求。

-----廣告,請繼續往下閱讀-----

為什麼要以「能量」衡量生活標準?

過去,我們總是以滿足生活標準的最低收入,來制定貧窮線的水平。但 DLS 作為最低限度理想生活的基準,採用的是計算能源消耗量(energy consumption)常用的單位,即千兆焦耳(Gigajoule,GJ)或十萬億焦耳(Exajoule,EJ)。一般國家的能源消耗量,都與基礎建設有關,大部分來自化學燃料的燃燒,以及水力發電、核電、風力發電、太陽能發電等。

值得注意的是,DLS 分析結果顯示,無法過上體面生活的人,數量遠比處在貧窮線底下的人來得多!這說明:現有衡量貧富的指標,跟實際情況是脫節的。以金錢收入作為生活水平的衡量單位,是預設個人能透過消費,去換取相應的生活品質。但現實中,有一大部分的人,即使收入高於貧窮門檻,現今社會所投入建設的能源,卻未必足以讓他們過上體面的生活。

因此比起以金錢為單位,DLS 由下而上(bottom-up)去推算建設和維持基本物質需求所耗費能量的模式,也許更適合作為反映人類生活品質的指標。以消耗能量為單位的 DLS 不只有物質條件,也納入社會層面的需求,因此可以為政策制定者在思考資源規劃時,提供更直接、全面的參考。

世界並不公平,尤其在所需耗費的能量上

上方柱狀圖中表示的是各區域平均人口與 DLS 之間的差距,空白間隙及其上數值越大,表示距離達至 DLS 的缺口越大。而下方光譜顯示由 0 至 1 表示體面生活至缺乏體面生活的量度,顔色越深則表示越沒有體面的生活。圖/參考資料 1

搭配各國戶口統計調查、世界銀行(World Bank)發展指標等數據,研究者推算出世界各國在不同面向上與 DLS 的差距。結果顯示,北半球的北美與歐洲,大部分人民都過著與 DLS 相距不遠的生活。然而,南方卻呈現截然不同的境況。

-----廣告,請繼續往下閱讀-----

在撒哈拉以南的非洲國家,有超過 60% 的人口在居家、溫控、衛浴與飲用水設施上,都相當匱乏。部分南亞與太平洋地區也面臨類似困境,尤其缺少乾淨的保暖與烹飪設施。這與他們使用的傳統生質能源帶來的不良健康影響有關。此外,部分亞洲、中東、拉丁美洲地區,也存在不便取得飲用水和保暖設施等等的缺口。

那麽,要投入資源做新建設,弭平當今與未來人口與 DLS 之間的距離,我們還需要多少能量呢?研究者設定情境估算,在 2040 年前,我們總共需要 290 EJ 的累積能量——大概是如今全世界每年所消耗能量的四分之三!是的,當今世界平均所消耗的能量,其實早已超過滿足每個人 DLS 的額度。在提升生活標準的耗能中,有大半會是拿來打造適宜的居所,四分之一用以建設以公共交通為主的交通設施,而改善健康營養所需的能量,會比推動社會互動來得少。

上圖顯示 2015 年至 2040 年間,全球用以投入建設以達到 DLS 所需的累積能量。不同顏色的區塊代表不同 DLS 的面向,而區塊大小則表示其所占總能量的比例。圖/參考資料 1

如果我們能成功在 2040 年時,讓所有人都達到 DLS,那在 2050 年時達到體面生活,最終需要年均 156 EJ 的能量,其中 108 EJ 會是供南方世界所用。到時候,人類生活的耗能大抵都會用在移動、通勤上,其次是維持健康及居住品質,而投入在維持社會互動所需的能量所占比例最低。

2050 年時,用以支持全球人口達到 DLS 所需的年均能量。圖/Kikstra, et al. (2021)

另一個研究的重要發現是,由於各地的氣候、文化和交通管道不同,即使在同一套 DLS 下,有些地區就是會比其他地區耗費更多能量,才能達到相同的基準,這個能量差異甚至可達 4 倍!例如,高緯度國家會需要耗費更多能量,來維持相同舒適的室内溫度;同樣的通勤距離,公共交通覆蓋率高的國家不需太多能量就能完成,但在個人擁車率高的地區,就會產生更多耗能。

-----廣告,請繼續往下閱讀-----

結論:消除貧窮與對抗氣候變遷不衝突

總體而言,DLS 的研究結果,在貧富懸殊與氣候正義議題上提供了新的視野,告訴我們:投入消除貧窮的能量,並不會對調適氣候變遷的行動產生威脅。現今人類社會所產生的能量,其實大都挹注在讓原本就充裕的生活更好,而非幫助仍在體面生活基準下的人。因此,各國如何在經濟成長與耗能規劃上取捨,找出更公正、有效率的資源重分配方式,才是關鍵解決之道。

  1. Decent living gaps and energy needs around the world
  2. Decent Living Standards: Material Prerequisites for Human Wellbeing
  3. Energy requirements for decent living in India, Brazil and South Africa
  4. 让全球老百姓过上体面生活不会拖累气候减排目标
  5. How much energy do we need to achieve a decent life for all?
  6. 維基百科:貧窮門檻
-----廣告,請繼續往下閱讀-----
所有討論 2
安比西林_96
10 篇文章 ・ 9 位粉絲
本職為生態環境領域的可撥煙酒生。 不定時掉落科普文章。 大家一起嗑科科(❍ᴥ❍ʋ)

0

11
7

文字

分享

0
11
7
這裡痛,那裡痛,全部都是壓力惹的禍!揭開纖維肌痛症的成因
研之有物│中央研究院_96
・2021/03/22 ・3906字 ・閱讀時間約 8 分鐘 ・SR值 541 ・八年級

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|歐宇甜
  • 美術設計|林洵安

日常壓力會誘發纖維肌痛症

纖維肌痛症 (fibromyalgia) 病患有全身慢性肌肉痠痛,可能伴隨失眠、焦慮和憂鬱等症狀,致病機轉一直是個未解之謎。中央研究院生物醫學科學研究所陳志成研究員與研究團隊,找到纖維肌痛症可能的生理與心理致病機轉和關鍵抑制劑,論文於 2020 年 9 月發表於國際風濕免疫科權威醫學期刊 (Annals of the Rheumatic Diseases)。

無藥可醫的纖維肌痛症

「纖維肌痛症 」最常見的症狀是全身肌肉慢性痠痛,伴隨疲勞、失眠、焦慮和憂慮,有時被稱為稍微累一點就全身痠痛的「公主病」。目前醫學對於該病的致病機制並不清楚,病人往往不斷轉診仍找不到明確病因,因此也尚未有專屬用藥,只能先緩解症狀,但效果相當有限。

纖維肌痛症是一種很常見卻又神秘的疼痛病。在成年人中,約有 2 ~ 6% 的人罹患此病,特徵是慢性廣泛性肌肉疼痛,並伴隨疲勞、失眠、焦慮和憂鬱,嚴重影響病人的生活品質,甚至導致失能。圖/iStock

不過臨床上發現,日常生活精神壓力會誘發或加重纖維肌痛症症狀。多數病患的背後都是一段故事,可能有家庭、親友、經濟、工作等各種問題。只是心理壓力和纖維肌痛症到底誰是因、誰是果?背後的致病機制是什麼?「我們必須建立一個可以反應纖維肌痛症的動物模式,以驗證心理壓力與纖維肌痛症的關係。」 陳志成說明。

-----廣告,請繼續往下閱讀-----

在此之前,先來看看痠痛是怎麼引發的呢?

組織酸化誘發痠痛

過去研究認為組織酸化會誘發痠痛。1980 年德國人曾做過人體實驗,直接把酸性物質注射入人體,結果發現真的會引起痛感,而且流速越快、越痛,初步證明酸與痠痛的因果關係。但酸是透過什麼樣的分子機制來刺激痛覺神經,卻一直沒有定論。

陳志成嘗試以此建立纖維肌痛症的動物模式。他們先幫小鼠注射酸鹽水,然後以壓肌肉或用細尼龍線刺激小鼠腳掌,發現小鼠碰到刺激會縮腳,代表的確有「疼痛過敏化」現象,但這疼痛過敏化現象在 24 小時以後會消失不見。但如果五天之內在同樣位置再打一次,就會導致持續約一個月的疼痛過敏化,而且也會發生鏡像性的疼痛,成功符合纖維肌痛症的特徵。

這個小鼠實驗模式提供了一個平台,讓陳志成可以從神經學的分子機制上,深入研究組織酸化如何誘發慢性肌肉疼痛。

我們身上各個組織都有痛覺神經,神經上有許多可被酸給激活的離子通道或受體分子,最重要的包括酸敏性離子通道(ASICs),以及辣椒素受體蛋白 (TRPV1) 等等。陳志成實驗發現,如果以藥物抑制 ASICs 或 TRPV1,五天後再次的肌肉酸化刺激就無法誘發慢性疼痛。但是,如果再次的肌肉酸化刺激發生於第二天,仍會誘發 7 ~ 10 天的疼痛過敏化現象。因此,陳志成推論出,第一次肌肉組織酸化不僅是誘發短暫的疼痛過敏化現象,也讓肌肉痛覺神經產生了可塑性變化,所以五天以內再次肌肉酸化刺激,就足以發展成慢性疼痛。

-----廣告,請繼續往下閱讀-----
我們身上所有組織都有痛覺神經,上面有許多離子通道或是受體分子,分別對應不同來源的痛覺,其中可被酸激活的是酸敏性離子通道(ASICs)以及辣椒素受體蛋白(TRPV1)。圖/研之有物

用噪音製造壓力源

了解痠痛的神經科學分子機制,下一步就是建立心理壓力造成痠痛的動物模式,怎麼做?噪音是好工具!一般的壓力來源很難定量,但是噪音可以換算分貝並以程式設定,比較好掌握。

他們讓小鼠待在籠中,不定時播放尖銳、人耳可能聽不見的超音波噪音,一天重複六次,隔兩天後再連續兩天重覆進行……結果,受到噪音壓力的小鼠,出現了疼痛過敏化現象持續約一個月。「我們發現,關鍵是要有不確定性、間歇性、重複性的壓力刺激,如果是給予短暫的壓力刺激,小鼠並不會出現慢性疼痛過敏化現象。」

此外,一般纖維肌痛症患者常出現共病,像焦慮、憂鬱等情緒問題。他們觀察具有疼痛過敏化現象的小鼠們,焦慮行為也變得明顯:一般健康的小鼠喜歡到處探索、玩耍, 放入十字迷宮時,敢走到兩側開放懸空的部分,但有焦慮行為的小鼠喜歡躲在隱蔽空間、不敢跑出來。

壓力 –> 氧化脂質 –> 疼痛訊號

建立一套動物模式後,接下來他和研究團隊想知道,體內有什麼東西誘發了痠痛?

-----廣告,請繼續往下閱讀-----

他們分析小鼠血液中的脂質,發現小鼠在遭受壓力後,體內有一群特別的脂質被代謝出來。「我們發現到一種氧化脂質 LPC16:0 ,令人眼睛為之一亮!」陳志成說道。原來,幾年前有法國科學家發現這種氧化脂質 LPC16:0 可以專一性的刺激感覺神經元上的 ASIC3 酸敏性離子通道。賓果!全部事情似乎都可以串連在一起了。

經過反覆實驗,致病機轉的輪廓漸漸清楚了!外界的壓力源 (噪音),會導致小鼠體內的氧化壓力上升,造成脂質代謝異常,產生過量的氧化脂質 LPC16:0 ,活化肌肉感覺神經元上的 ASIC3 酸敏性離子通道,造成疼痛過敏化現象,持續刺激下轉變成慢性疼痛。

圖/研之有物 (資料來源|陳志成)

纖維肌痛症療法現曙光

在小鼠身上驗證後,回到纖維肌痛症病人身上觀察:他們體內是不是有比較高的氧化壓力?比較高的異常脂質代謝呢?研究團隊將病患根據症狀嚴重程度分類,一群是全身痛、但症狀比較輕微,一群是全身又痠又痛、症狀比較嚴重,發現全身痠痛症狀嚴重的病人體內的 LPC16:0 特別高,另一組症狀輕微的病患則沒有,兩組之間有明顯的差異。

圖/研之有物 (資料來源|陳志成)

而人體其實本有快速代謝 LPC16:0 的路徑,但在五天內重複刺激,就可能變成慢性痠痛;換句話說,很多纖維肌痛症患者的病因可能是長時間一直受壓力刺激,體內會持續產生氧化脂質 LPC16:0,導致肌肉長期慢性痠痛,「這也能說明一個奇特現象:許多纖維肌痛症病患即使用藥也不見效,但當壓力源去除,像是搬離不幸福的家庭,全身痠痛就可能突然不藥而癒。」陳志成補充。

-----廣告,請繼續往下閱讀-----

研究人員證明氧化脂質 LPC16:0 是引起痠痛感的禍首後,就可以嘗試去阻斷它產生。研究團隊用一種可以抑制這種酵素的藥物–血小板活化因子乙醯水解酵素抑制劑 (platelet-activating factor-acetylhydrolase inhibitor; darapladib),打到小鼠的身上,果真成功降低壓力造成的疼痛反應,此發現已申請國際專利,未來可望運用在纖維肌痛症臨床治療。

纖維肌痛症的神祕面紗,至此終於稍稍揭開!這項重大研究成果於 2020 年 9 月刊登在國際風濕免疫科權威醫學期刊 (Annals of the Rheumatic Diseases) 上。不過這只是陳志成痠痛研究的一角。他首創「痠覺理論」,希望能從更深入、全面解答慢性痠痛的成因,尋找更有效的療法。

建立痠覺理論,尋找新一代止痛藥物

何謂痠覺理論?首先,陳志成認為:痠是痠、痛是痛,兩者並不一樣。

這點對華人沒有問題!在臺語詞彙中有痠(SNG)、也有痛,國語詞彙中有又痠又痛、腰痠背痛等,可是在許多國家語言中只有關於疼痛 (PAIN) 的詞彙,沒有單獨提到痠覺的字彙。目前國際上只有對於疼痛的定義,把痠痛視為同一件事,或認為痠只是比較輕微的痛覺。

-----廣告,請繼續往下閱讀-----

但是痠痛成因其實相當複雜,與組織酸化的關係也有待釐清!

比方說,酸可能引起疼痛,但你知道它也有止痛的效果嗎?在上述的小鼠肌肉酸化實驗中,陳志成發現同時抑制 ASIC3 與 TRPV1 ,可抑制酸所誘發的疼痛過敏化現象。但奇怪的是,第二天對於小鼠再次進行肌肉酸化刺激,雖然 ASIC3 與 TRPV1 這次沒被抑制,但小鼠竟完全沒疼痛反應!由此得知:除了 ASIC3 與 TRPV1 之外,還有一個未知、但是很重要的受體參與反應。這個神秘的受體是一個可以止痛的酸敏性受體分子,讓止痛的效果從第一次實驗延續到第二次!

接著,陳志成發現這個受體分子被刺激後,會促使感覺神經末梢釋放重要的神經傳導物質–物質 P。他認為:當痛覺神經被刺激後,在肌肉端的神經末梢會釋放物質 P,物質 P 會抑制神經活性,達成止痛作用,宛如痠痛的煞車系統。陳志成隨即抑制物質 P ,果然一次肌肉組織酸化就足以誘發慢性疼痛,讓小鼠無止盡痛下去。

那麼,問題來了!既然酸可以誘發疼痛、又可止痛,那麼痠痛病人到底是抱怨痠,還是痛呢?痠顯然不只是一種輕微的痛覺這麼簡單!這個「酸止痛」的神奇現象,提供了痠與痛的另類思考,物質 P 也可能成為新一代的止痛藥物。

「我現在就像一個傳教士,必須努力說服大家,痠與痛不一樣!我也跟語言學家合作,了解其他國家的相關詞彙,希望不久後可以將痠覺清楚定義出來。」唯有正視痠痛的不同,分別了解痠、痛背後各自的分子病理機制,才能發展更有效的止痛或止痠療法,嘉惠更多受到慢性痠痛折磨的病患。

-----廣告,請繼續往下閱讀-----
陳志成自許像一個傳教士,努力建立痠覺理論,並跟語言學家合作,希望不久後可以將痠覺清楚定義出來,進一步找出痠與痛的不同分子機制,發展更有效的止痠與止痛療法。圖/研之有物

-----廣告,請繼續往下閱讀-----
研之有物│中央研究院_96
296 篇文章 ・ 3652 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook