0

1
0

文字

分享

0
1
0

如何測量蘇格蘭的海岸線與科羅拉多河?—《股價、棉花與尼羅河密碼》

PanSci_96
・2016/10/25 ・2563字 ・閱讀時間約 5 分鐘 ・SR值 547 ・八年級

-----廣告,請繼續往下閱讀-----

碎形幾何理論中最引人注目的,恐怕是對空間的獨特看法

自歐幾里得以來,數學家一直認為「點」是零度空間,「線」屬於一度空間,「平面」屬於二度空間,而我們所熟悉的環境則是三度空間。愛因斯坦則提出了第四度空間,也就是「時間」。數學上可以繼續以此類推,舉出假想的五度、六度,甚至七度空間,雖然只是假想的理論,但是對於解決工程、經濟或物理方面的問題很有幫助。

拓樸學是數學領域裡研究「表面」的一支,提供了相當有趣的新發現。就拓樸學的觀點而言,黃瓜和橘子是一樣的,因為不需要切割黃瓜的表面就可以將它重新塑造成橘子的形狀,反之亦然。一個圓的圓周跟曲曲折折的海岸線一樣,同屬一度空間。圓周和鋸齒線都是連續的線,將鋸齒線展開、攤平再彎曲,可以形成一個圓;同樣的,將圓周拉直再加以曲折,可以形成鋸齒線——都不需要切割。

拓樸學中的莫比烏斯帶。圖 / By David Benbennick @ Wiki
拓樸學中的莫比烏斯帶。圖 / By David Benbennick @ Wiki

然而,所謂的空間,真的就如此而已嗎?

拿一顆線球當例子。首先,以歐幾里得的觀點來看:假設這個線球的直徑是五英寸,而線的粗細遠不及一英寸。若站在很遠的地方,幾乎看不到球;根據古典幾何學,可以說它是個零度空間的點。若握在手中,這個線球則確實是三度空間中的立體物件。近一點看,會發現它其實是由一團一度空間的線所纏成的。再更近一點看,會發現這線其實也是立體的,屬於三度空間。這麼追根究柢下去,一直到在電子顯微鏡下觀察到原子,才又回到零度空間的點。那麼,這線球到底是零度空間、一度空間,還是三度空間?答案依個人觀點而異。

-----廣告,請繼續往下閱讀-----
8035280601_dbf0665d89_z
線球到底是零度空間、一度空間,還是三度空間?圖 / By Anadem Chung @ flickr

就自然界中複雜的形狀而言,空間是相對的。空間的定義隨著觀察者的角度而改變。同一個物體可隸屬於不同維度的空間,看你觀測的角度與用途為何。維度不必然是整數,也可以是分數。這樣的觀點賦予古老的空間觀念一個嶄新的定義。

維度不該是死板而一成不變的,而是應測量的需求而有所改變。那麼,你要怎麼測量某個東西呢?要量一條直線的長度,你可以用尺;要測量曲線,你可以用稍短的尺,順著曲線弧度一小段一小段地測量,然後將結果加總。用的尺越短,測量的結果就越準確,測得的長度也比較長(參見下面關於「碎形維度」的解說),當然過程較為繁瑣費時。隨著量尺越來越短,最後得到的結果最接近實際,我們就將此結果當做曲線的長度。

如果遇到曲折的鋸齒線或不規則曲線,該怎麼辦?蘇格蘭的海岸線又如何測量?可以用測量員的測量鏡,測量岬角與岬角間的距離,這是較粗略的方法。也可以用極長的軟尺測量點與點之間的距離,或者用碼尺、彎腳規或顯微鏡。但這都是白費工夫。嶙峋的海岸線跟圓滑曲線不同,測量結果往往因用途而異,並沒有一個「最好」的答案。隨著地圖比例尺的大小或政治動機的不同,測量結果也不一樣。

蘇格蘭海岸線到底有多長?圖 / By Jonathan Stonehouse @ flickr
蘇格蘭海岸線到底有多長?圖 / By Jonathan Stonehouse @ flickr

將近一個世紀之前,英國心理、物理學家路易斯.理查森(Lewis Fry Richardson)就曾針對這個問題加以研究。他根據官方資料上的國界長度測量結果進行研究,發現西班牙政府測量該國與葡萄牙的邊界長度是 987 公里,而葡萄牙政府的測量結果卻多達 1214 公里。至於荷蘭跟它那面積較小、經濟能力較差的鄰居比利時,荷蘭政府測得的邊界是 380 公里,而比利時政府則聲稱有 449 公里。

-----廣告,請繼續往下閱讀-----

那麼,東西有多長?由上述例子可以看出,這個問題沒有多大意義。解決方法之一,是將不同長度的尺所測得的結果畫成圖表。當然了,測量的結果會隨著尺的長度縮短而增加。可喜的是,測量結果幾乎是以一定的比例增加。以一條直線為例:假設用來測量的第一把尺剛好跟該直線等長,第二次用的尺比較短,正好是直線的一半,因此測量結果是尺長的兩倍,第三把尺是上一把尺的一半長,因此測量結果直線是尺的四倍長,依此類推。

接著,測量前面提到的鋸齒狀海岸線。隨著使用的尺越來越短,我們可以觀察到不尋常的現象:

測量結果增加的幅度,要高過尺縮小的幅度。用來測量這個現象的度量衡,就叫做碎形維度(fractal dimension)。

從簡單的例子講起:一條直線的碎形維度是一,而直線正好屬於一度空間。然而,英國海岸線的碎形維度卻是 1.25。這講得通嗎?那當然!崎嶇的海岸線比一度空間的直線來得複雜,但不論海岸線多麼曲折,還不至於複雜如二度空間。

不只這樣。澳洲的海岸線沒有英格蘭西南部康瓦爾地區的那麼曲折,所以它的碎形維度只有 1.13。相形之下,平滑的南非海岸線碎形維度更低,只有 1.02,只比直線高一些。

-----廣告,請繼續往下閱讀-----

河流是另一個很好的例子。美國地質調查局(U.S. Geological Survey)研究美國境內大型河流的路徑,發現東部的河流碎形維度大約是 1.2,西部曠野的河流則是 1.4。這項調查結果恰好符合大眾的認知——西部的科羅拉多河(Colorado River)蜿蜒曲折,而東部的查爾斯河(Charles River)較為平順。

5976574896_1fedbd5036_z
西部的科羅拉多河蜿蜒曲折。圖 / By K.Oliver @ flickr

再舉一例:觀察肺臟內部支氣管錯綜複雜的表面,這些表面的面積加起來足足有一個網球場那麼大,這些錯綜複雜表面的碎形維度將近三。這層薄膜非常彎曲、有很多皺褶,因此幾乎有如三度空間。

以上種種說明了什麼呢?一個新的度量工具誕生了,不是測量長度、重量、溫度或分貝,而是測量物體曲折或不規則的程度。終於,科學界有了第一個測量「不規則」形狀的工具。


書封:股價、棉花與尼羅河密碼

 

本文摘自《股價、棉花與尼羅河密碼》,早安財經出版社。

 

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1261 篇文章 ・ 2388 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

101
2

文字

分享

0
101
2
時間與空間的顛覆!如何用簡單的方式了解「相對論」?——《物理角色圖鑑》
azothbooks_96
・2024/09/16 ・2086字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

時間不再絕對?牛頓與愛因斯坦的時間觀差異

川村老師,請用簡單的方式告訴我「相對論」是什麼?

圖/《物理角色圖鑑》

老師:狹義相對論源自相對性原理(Principle of relativity,指物理定律〔Physical law〕適用於所有以等速直線運動的物體) 與光速恆定原理。根據這個理論,時間是相對的,依不同觀察者而有所差異。牛頓力學中的時間是絕對的,愛因斯坦則認為,可依不同的觀察者位置對時間進行不同定義。

圖/《物理角色圖鑑》

老師:之前在討論「力」時,也提過離心力。離心力是「慣性力」的一種,慣性力指物體在加速運動時感受到的與加速方向相反的力。置身在沒有窗戶的電梯中,當電梯向上加速,電梯內的人會受到向下的慣性力(譯注:因看不到外面,使得他無法判斷電梯的運動情況)。若加速度為 g,物體質量為 m,則物體所受慣性力為 mg,與在地面所受的重力 mg 相同。愛因斯坦無法區別這兩種 mg 的差異,所以視為等效。但無論慣性力的方向為何,物體都會往向量合成後的視重力場方向掉落。

時間在任何地方都固定不變嗎?

世界上最快的速度是光速。物體的移動速度若接近光速,它的時間進程就會變慢。也就是說,在接近光速的太空船上,時間會變得悠長。而且,接近光速的物體長度會朝行進方向收縮。

物體只要具有質量,即使在靜止狀態依然擁有能量(其能量 E mc2,稱為靜止能量(Rest energy)。

-----廣告,請繼續往下閱讀-----

提到光的運動,我們已經知道光的路徑會彎曲。

1919 年,天文學家觀測到恆星發出的光線在經過太陽附近時被偏折,這種現象稱為「重力透鏡效應」(Gravitational lens),有助於了解黑洞等宇宙中質量分布的情況。此外,天體物理學家也觀測到時間的延遲。簡而言之,接近地面的時鐘行進速度會比高處的時鐘慢,GPS 也是依據這種效應來進行校正。

圖/《物理角色圖鑑》
圖/《物理角色圖鑑》

時間

牛頓力學中的「時間」(也就是我們一般理解的時間)和相對論中的時間大異其趣。牛頓在《自然哲學的數學原理》(Philosophiæ Naturalis Principia Mathematica,1687)中,假設空間是均勻平坦的;從過去到未來,在任何地方都平均延伸。在牛頓力學中,全宇宙的時間一致。

但相對論否定了這一點。

-----廣告,請繼續往下閱讀-----
圖/《物理角色圖鑑》

光速恆定原理指出,光的速度是固定不變的。這種狀況下,空間中不同地點發生的兩件事,對某個觀測者來說是同時發生,但對另一參考系的觀測者而言則非同時發生。也就是說,時間的前進速度並非在任何地方都相同。因此,時間和空間不能視為各自獨立的兩回事,應該一體化,視為四維空間(時空,Spacetime)。

不過,這是指物體移動速度接近光速時的情況。日常生活中,使用過去的時間觀不會有任何問題。

黑洞

黑洞(Black hole)是一種天體,因為密度極高,重力極強, 不只物質,連光都會被吸進去,無法逃逸。天體是宇宙中所有物體的總稱,具體來說,指太陽、恆星、行星、星團、星雲等。從相對論來看,黑洞周圍空間是扭曲的。照以下方式想像應該會比較容易理解:

把重物放在一大塊展開的薄橡皮布上,放置處就會凹下去,而這塊凹陷會影響到周圍。同樣的,黑洞所在之處會發生猛烈的空間扭曲,經過附近的天體會被極強的重力吸引,落入其中,連光也難逃魔掌。

-----廣告,請繼續往下閱讀-----

銀河系有許多黑洞,但具體數字不詳。2019 年,一個跨國研究計畫團隊首次拍攝到黑洞的「影子」,掀起一陣討論熱潮。

——本文摘自《物理角色圖鑑:用35個萌角色掌握最重要的物理觀念,秒懂生活中的科普知識》,2024 年 9 月,漫遊者文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

0

2
0

文字

分享

0
2
0
揭開 GaN 的力量:理解電路拓樸在設計中的重要性
鳥苷三磷酸 (PanSci Promo)_96
・2023/08/31 ・2948字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文由 德州儀器 委託,泛科學企劃執行。

從 IC 之父 Jack Kilby 在德州儀器發明世上第一顆積體電路,到現在已過了 65 年,而這項科技已經成為我們的日常,並且還在不斷進步。德州儀器不僅是積體電路的先驅者,更長期投資氮化鎵 (GaN) 的電源應用,例如資料中心伺服器電源、再生能源、或是小體積的電源供應器等,開發許多獨創的電路結構。在已到來的次世代半導體浪潮中,德州儀器早已站穩了腳步,成為高壓半導體領域的領導者。

氮化鎵作為新材料的崛起,已成為充電領域的新寵,甚至打敗了傳統的矽 (Si) 基充電頭。然而,要充分發揮氮化鎵的潛力,需要量身定制相對應的策略和戰術。

何謂電路拓樸?電路設計要考量什麼?

拓樸電路是氮化鎵最好的後勤部隊,能讓它發揮 100% 的力量。但這個拓樸電路又是什麼呢?

-----廣告,請繼續往下閱讀-----

先來談一下比較陌生的名詞「拓樸」。拓樸是幾何學中重要的概念,主要在研究物體在連續變化下時的不變性質。舉個數學家最愛的例子,就是研究如何把一個帶手把的馬克杯變成甜甜圈。這是什麼鬼題目?這就像問炭治郎什麼時候要開 5 檔,八竿子打不著吧?但對數學家來說,這個題目是可能的,因為帶手把的馬克杯和甜甜圈有個共通特徵,就是有一個洞!只要有這個共同特徵,我們確實就可以透過一系列的數學運算,將馬克杯變成甜甜圈。

undefined
在拓樸學中,有一個手把的馬克杯和甜甜圈是相同的。圖/wikimedia

舉例來說,漫威電影中班納博士變身成浩克,如果希望浩克的身上能看得出班納博士的影子,就必須用拓樸學先將班納博士的五官這些「特徵」定位好,製作成大家常看到有如網格的 3D 建模,變身成浩克時才不會整個走鐘(台語),臉部比例亂成一團。沒錯,拓樸解決的,是在兩種形狀間切換時,這些特徵與圖案的比例不會隨便亂跑,成為四不像的東西。

Final product image
用拓樸學先將班納博士的特徵定位好,製作成大家常看到有如網格的 3D 建模。出處:tutsplus

回到我們的氮化鎵電路,難道我們要利用拓樸學,把電路板的形狀變成一個甜甜圈或是浩克嗎?當然不是,這邊指的是用更少的元件、更低的延遲與漏電的設計,把相同功能的電路重新改寫配置。

簡單來說,電路拓樸就像是電路板上的藍圖,告訴我們如何把各種電子元件,比如電阻、電容、電感、電晶體等組織在一起,來完成我們想要的任務。

-----廣告,請繼續往下閱讀-----

每種電路拓樸都有它的優點和適用的場合。例如,Buck轉換器可以將輸入的電壓降低,適合用在需要較低電壓的應用上。Boost轉換器則可以提升電壓,適合用在需要較高電壓的應用上。LLC轉換器具有高效率和寬輸入電壓範圍的特性,適合用在需要高效率和靈活性的應用上。PFC(Power Factor Correction)則是一種用來提高電源效率的技術,它可以使輸入電流與電壓同步,減少能量損失等等。

Boost轉換器。出處:德州儀器
Buck轉換器。出處:德州儀器

然而,這些都是以矽為主的拓樸電路,為了充分發揮氮化鎵百分之百的潛力,我們不能僅僅依賴傳統的電路設計方法和拓樸,而是要重新塑造!

GaN+電路拓樸=最強?

那麼,我們要如何重新塑造才能全部發揮 GaN 的實力呢?讓我們以一種常見的電路拓樸—功率因數校正 PFC 為例。

PFC,是電路中的交通指揮,負責將電路中電流與電壓同步,以達到最佳的效率。在電訊號經過漫長電路之後,常常導致輸出的電流與電壓波形出現時間差,不再同步。我們知道功率等於電壓乘以電流,因此兩者好好配合,才能發揮最大效益,如果兩者沒有同步,就會降低整體電路的有效功率。

-----廣告,請繼續往下閱讀-----
高功率因數。出處:wikimedia
低功率因數。出處:wikimedia

PFC 功率因數修正電路,現在看到在做的事情,就是讓它們好好同步,降低無謂的能量浪費。目前世界各地許多法規都直接要求在電路中加入 PFC,提升用電效率。

那麼問題來了,同樣是 PFC 電路拓樸,現在我們有兩種設計,下方的圖 1-雙升壓 PFC,跟下方圖 2-圖騰柱 PFC。

圖 1、雙升壓 PFC。出處:德州儀器
圖 2、無橋接式圖騰柱 PFC。出處:德州儀器

依照我們希望體積盡可能小的需求,直覺來說你要選哪一個呢?

當然是圖 2,因為他看起來比較簡單嘛。可惜的是,市面上大多矽基半導體的 PFC,都是選擇圖 1 方案。因為圖 2 方案的簡約設計,前提是關鍵的二極體必須具備低的「反向恢復時間」。

-----廣告,請繼續往下閱讀-----

所謂反向恢復時間,指的是電晶體在電源切斷的瞬間,電晶體內仍有殘留電荷,會反向放電,造成電路阻塞。而矽基半導體過長的反向恢復時間,會導致電源損耗上升。反之,氮化鎵因為反向恢復時間為零,可以完全適應高效的圖騰柱 PFC。

這邊提到的 PFC 只是氮化鎵的其中一種運用,別忘了,除了零反向恢復時間外,它還有著能承受高電壓與高溫的特性,再加上低漏電率的關鍵被動技能,在目前的半導體戰場上,可說是最強的挑戰者。未來在各種電源供應器上,應該很快都能看見它的身影。

當然,講到這邊,都僅止在題本作答。在實際的晶片設計中,各元件間的距離與電路安排,都需要經過多次的試驗和調整,才能找到最適合的電路拓樸和元件配置,而這也正是德州儀器所擅長的領域。

德州儀器設計出的電源供應器,已經遍佈全世界的重要設備中。除了提供高效的能源供應,節省下的能源,也直接減少了許多碳排。根據估計,對一個 100 MW 的資料中心來說,換上 GaN FET 之後,就算只有提升 0.8% 的效率增益,在 10 年內就能節省多達 700 萬美元的能源成本。尤其在 AI、量子電腦等科技發展蓬勃的現在,在「節流」這一塊的投資,真的非常重要!

-----廣告,請繼續往下閱讀-----

看到這鋰,如果你也想訓練這個「黑科技」氮化鎵,打造更強的電路、為世界的節能貢獻一份心力。或甚至像 IC 之父 Jack Kilby 那樣,發展全新的電路架構,做出足以改變世界的創舉,德州儀器歡迎所有熱血人才加入,一起來改變世界吧!

-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
216 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
2

文字

分享

0
3
2
圓形 = 三角形?形狀之間的秘密關係——《不用數字的數學》
經濟新潮社
・2022/09/27 ・1427字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

數學家通常都想很多,這是我們的習性。我們會分析對稱或相等這類大家都知道的基本概念,試圖找出更深層的意義。

形狀就是一個例子。我們多少都知道形狀是什麼。我們看到一個物體時,很容易就看得出它是圓形、方形還是其他形狀。但數學家會問:形狀是什麼?構成形狀的要素是什麼?我們以形狀分辨物體時,會忽略它的大小、色彩、用途、年代、重量、誰把它拿來的,以及最後誰要負責歸位。我們沒有忽略的是什麼?當我們說某樣東西是圓形時,看到的是什麼呢?

形狀百百種,可以量化嗎?

當然,這些問題沒什麼意義。就實際用途而言,我們對形狀的直覺理解就已經夠了——生活中沒有什麼重大決定是需要仰賴我們對於「形狀」的確切定義。但如果你有空又願意花時間來想一想,形狀倒是個很有趣的主題。

假設我們現在要思考了,我們或許會問自己這個問題:

-----廣告,請繼續往下閱讀-----
世界上有多少形狀?圖/經濟新潮社

這個問題很簡單,但不容易回答。這個問題有個比較精確和有限的說法,稱為廣義龐卡赫猜想(generalized Poincaré conjecture,或譯龐加萊猜想)。這個猜想提出至今已經超過一百年,目前還沒有人解答出來。嘗試過的人相當多,有一位數學家解出這個問題的大部分,因此獲得了100萬美元獎金,但還有許多種形狀沒有找到,所以目前我們還不知道世界上一共有幾種形狀。

動手把形狀畫出來

我們來試著解答這個問題。世界上有幾種形狀?如果沒有更好的點子,有個不錯的方法是畫出一些形狀,看看會有什麼結果。

我們可以試著畫出一些形狀。圖/經濟新潮社
我們可以試著畫出一些形狀。圖/經濟新潮社

看來這個問題的答案取決於我們區分形狀的方式。大圓和小圓是相同的形狀嗎?波浪線(squiggle)應該全部算成一大類,還是應該依彎曲的方式細分?我們需要一種通用規則來解決這類爭議,才不用每次都需要停下來爭論。

從幾何學到拓樸學

可用於決定兩個形狀是否相同的規則相當多。如果是木匠或工程師,通常會希望規則既嚴謹又精確:必須長度、角度和曲線都完全相等,兩個形狀才算相同。這樣的規則屬於幾何學(geometry)這個數學領域。在這個領域裡,形狀嚴格又精確,經常做的事情是畫垂直線和計算面積等等。

-----廣告,請繼續往下閱讀-----
決定兩個形狀是否相同的規則相當多。圖/經濟新潮社

但我們的要求比較寬鬆一點。我們想要找出所有可能的形狀,但沒時間慢慢區分幾千種不同的波浪線。我們想要的是在比較兩個形狀是否相同時比較寬鬆的規則,它能夠把所有的形狀分成若干類別,但類別的數量又不至於太多。

所以三角形可以等於圓形。圖/經濟新潮社




——本文摘自《不用數字的數學:讓我們談談數學的概念,一些你從沒想過的事……激發無窮的想像力!》,2022 年 9 月,經濟新潮社,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
經濟新潮社
4 篇文章 ・ 4 位粉絲