0

1
0

文字

分享

0
1
0

如何測量蘇格蘭的海岸線與科羅拉多河?—《股價、棉花與尼羅河密碼》

PanSci_96
・2016/10/25 ・2563字 ・閱讀時間約 5 分鐘 ・SR值 547 ・八年級

碎形幾何理論中最引人注目的,恐怕是對空間的獨特看法

自歐幾里得以來,數學家一直認為「點」是零度空間,「線」屬於一度空間,「平面」屬於二度空間,而我們所熟悉的環境則是三度空間。愛因斯坦則提出了第四度空間,也就是「時間」。數學上可以繼續以此類推,舉出假想的五度、六度,甚至七度空間,雖然只是假想的理論,但是對於解決工程、經濟或物理方面的問題很有幫助。

拓樸學是數學領域裡研究「表面」的一支,提供了相當有趣的新發現。就拓樸學的觀點而言,黃瓜和橘子是一樣的,因為不需要切割黃瓜的表面就可以將它重新塑造成橘子的形狀,反之亦然。一個圓的圓周跟曲曲折折的海岸線一樣,同屬一度空間。圓周和鋸齒線都是連續的線,將鋸齒線展開、攤平再彎曲,可以形成一個圓;同樣的,將圓周拉直再加以曲折,可以形成鋸齒線——都不需要切割。

拓樸學中的莫比烏斯帶。圖 / By David Benbennick @ Wiki
拓樸學中的莫比烏斯帶。圖 / By David Benbennick @ Wiki

然而,所謂的空間,真的就如此而已嗎?

拿一顆線球當例子。首先,以歐幾里得的觀點來看:假設這個線球的直徑是五英寸,而線的粗細遠不及一英寸。若站在很遠的地方,幾乎看不到球;根據古典幾何學,可以說它是個零度空間的點。若握在手中,這個線球則確實是三度空間中的立體物件。近一點看,會發現它其實是由一團一度空間的線所纏成的。再更近一點看,會發現這線其實也是立體的,屬於三度空間。這麼追根究柢下去,一直到在電子顯微鏡下觀察到原子,才又回到零度空間的點。那麼,這線球到底是零度空間、一度空間,還是三度空間?答案依個人觀點而異。

8035280601_dbf0665d89_z
線球到底是零度空間、一度空間,還是三度空間?圖 / By Anadem Chung @ flickr

就自然界中複雜的形狀而言,空間是相對的。空間的定義隨著觀察者的角度而改變。同一個物體可隸屬於不同維度的空間,看你觀測的角度與用途為何。維度不必然是整數,也可以是分數。這樣的觀點賦予古老的空間觀念一個嶄新的定義。

維度不該是死板而一成不變的,而是應測量的需求而有所改變。那麼,你要怎麼測量某個東西呢?要量一條直線的長度,你可以用尺;要測量曲線,你可以用稍短的尺,順著曲線弧度一小段一小段地測量,然後將結果加總。用的尺越短,測量的結果就越準確,測得的長度也比較長(參見下面關於「碎形維度」的解說),當然過程較為繁瑣費時。隨著量尺越來越短,最後得到的結果最接近實際,我們就將此結果當做曲線的長度。

如果遇到曲折的鋸齒線或不規則曲線,該怎麼辦?蘇格蘭的海岸線又如何測量?可以用測量員的測量鏡,測量岬角與岬角間的距離,這是較粗略的方法。也可以用極長的軟尺測量點與點之間的距離,或者用碼尺、彎腳規或顯微鏡。但這都是白費工夫。嶙峋的海岸線跟圓滑曲線不同,測量結果往往因用途而異,並沒有一個「最好」的答案。隨著地圖比例尺的大小或政治動機的不同,測量結果也不一樣。

蘇格蘭海岸線到底有多長?圖 / By Jonathan Stonehouse @ flickr
蘇格蘭海岸線到底有多長?圖 / By Jonathan Stonehouse @ flickr

將近一個世紀之前,英國心理、物理學家路易斯.理查森(Lewis Fry Richardson)就曾針對這個問題加以研究。他根據官方資料上的國界長度測量結果進行研究,發現西班牙政府測量該國與葡萄牙的邊界長度是 987 公里,而葡萄牙政府的測量結果卻多達 1214 公里。至於荷蘭跟它那面積較小、經濟能力較差的鄰居比利時,荷蘭政府測得的邊界是 380 公里,而比利時政府則聲稱有 449 公里。

那麼,東西有多長?由上述例子可以看出,這個問題沒有多大意義。解決方法之一,是將不同長度的尺所測得的結果畫成圖表。當然了,測量的結果會隨著尺的長度縮短而增加。可喜的是,測量結果幾乎是以一定的比例增加。以一條直線為例:假設用來測量的第一把尺剛好跟該直線等長,第二次用的尺比較短,正好是直線的一半,因此測量結果是尺長的兩倍,第三把尺是上一把尺的一半長,因此測量結果直線是尺的四倍長,依此類推。

接著,測量前面提到的鋸齒狀海岸線。隨著使用的尺越來越短,我們可以觀察到不尋常的現象:

測量結果增加的幅度,要高過尺縮小的幅度。用來測量這個現象的度量衡,就叫做碎形維度(fractal dimension)。

從簡單的例子講起:一條直線的碎形維度是一,而直線正好屬於一度空間。然而,英國海岸線的碎形維度卻是 1.25。這講得通嗎?那當然!崎嶇的海岸線比一度空間的直線來得複雜,但不論海岸線多麼曲折,還不至於複雜如二度空間。

不只這樣。澳洲的海岸線沒有英格蘭西南部康瓦爾地區的那麼曲折,所以它的碎形維度只有 1.13。相形之下,平滑的南非海岸線碎形維度更低,只有 1.02,只比直線高一些。

河流是另一個很好的例子。美國地質調查局(U.S. Geological Survey)研究美國境內大型河流的路徑,發現東部的河流碎形維度大約是 1.2,西部曠野的河流則是 1.4。這項調查結果恰好符合大眾的認知——西部的科羅拉多河(Colorado River)蜿蜒曲折,而東部的查爾斯河(Charles River)較為平順。

5976574896_1fedbd5036_z
西部的科羅拉多河蜿蜒曲折。圖 / By K.Oliver @ flickr

再舉一例:觀察肺臟內部支氣管錯綜複雜的表面,這些表面的面積加起來足足有一個網球場那麼大,這些錯綜複雜表面的碎形維度將近三。這層薄膜非常彎曲、有很多皺褶,因此幾乎有如三度空間。

以上種種說明了什麼呢?一個新的度量工具誕生了,不是測量長度、重量、溫度或分貝,而是測量物體曲折或不規則的程度。終於,科學界有了第一個測量「不規則」形狀的工具。


書封:股價、棉花與尼羅河密碼

 

本文摘自《股價、棉花與尼羅河密碼》,早安財經出版社。

 

文章難易度
PanSci_96
1039 篇文章 ・ 1366 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
2

文字

分享

0
3
2
圓形 = 三角形?形狀之間的秘密關係——《不用數字的數學》
經濟新潮社
・2022/09/27 ・1427字 ・閱讀時間約 2 分鐘

數學家通常都想很多,這是我們的習性。我們會分析對稱或相等這類大家都知道的基本概念,試圖找出更深層的意義。

形狀就是一個例子。我們多少都知道形狀是什麼。我們看到一個物體時,很容易就看得出它是圓形、方形還是其他形狀。但數學家會問:形狀是什麼?構成形狀的要素是什麼?我們以形狀分辨物體時,會忽略它的大小、色彩、用途、年代、重量、誰把它拿來的,以及最後誰要負責歸位。我們沒有忽略的是什麼?當我們說某樣東西是圓形時,看到的是什麼呢?

形狀百百種,可以量化嗎?

當然,這些問題沒什麼意義。就實際用途而言,我們對形狀的直覺理解就已經夠了——生活中沒有什麼重大決定是需要仰賴我們對於「形狀」的確切定義。但如果你有空又願意花時間來想一想,形狀倒是個很有趣的主題。

假設我們現在要思考了,我們或許會問自己這個問題:

世界上有多少形狀?圖/經濟新潮社

這個問題很簡單,但不容易回答。這個問題有個比較精確和有限的說法,稱為廣義龐卡赫猜想(generalized Poincaré conjecture,或譯龐加萊猜想)。這個猜想提出至今已經超過一百年,目前還沒有人解答出來。嘗試過的人相當多,有一位數學家解出這個問題的大部分,因此獲得了100萬美元獎金,但還有許多種形狀沒有找到,所以目前我們還不知道世界上一共有幾種形狀。

動手把形狀畫出來

我們來試著解答這個問題。世界上有幾種形狀?如果沒有更好的點子,有個不錯的方法是畫出一些形狀,看看會有什麼結果。

我們可以試著畫出一些形狀。圖/經濟新潮社
我們可以試著畫出一些形狀。圖/經濟新潮社

看來這個問題的答案取決於我們區分形狀的方式。大圓和小圓是相同的形狀嗎?波浪線(squiggle)應該全部算成一大類,還是應該依彎曲的方式細分?我們需要一種通用規則來解決這類爭議,才不用每次都需要停下來爭論。

從幾何學到拓樸學

可用於決定兩個形狀是否相同的規則相當多。如果是木匠或工程師,通常會希望規則既嚴謹又精確:必須長度、角度和曲線都完全相等,兩個形狀才算相同。這樣的規則屬於幾何學(geometry)這個數學領域。在這個領域裡,形狀嚴格又精確,經常做的事情是畫垂直線和計算面積等等。

決定兩個形狀是否相同的規則相當多。圖/經濟新潮社

但我們的要求比較寬鬆一點。我們想要找出所有可能的形狀,但沒時間慢慢區分幾千種不同的波浪線。我們想要的是在比較兩個形狀是否相同時比較寬鬆的規則,它能夠把所有的形狀分成若干類別,但類別的數量又不至於太多。

所以三角形可以等於圓形。圖/經濟新潮社




——本文摘自《不用數字的數學:讓我們談談數學的概念,一些你從沒想過的事……激發無窮的想像力!》,2022 年 9 月,經濟新潮社,未經同意請勿轉載。

經濟新潮社
4 篇文章 ・ 4 位粉絲

11

10
5

文字

分享

11
10
5
沒有「引力」,只有「時空扭曲」——《高手相對論》
遠流出版_96
・2022/04/30 ・2747字 ・閱讀時間約 5 分鐘

廣義相對論的基本

廣義相對論,簡單地說就是兩點。

  • 第一,一個有質量的物質,會彎曲它周圍的時空。這是「物質告訴時空如何彎曲」。
  • 第二,在不受外力的情況下,一個物體總是沿著時空中的測地線運動。這是「時空告訴物質如何運動」。

這裡根本沒有引力的事,根本不需要引力。

這個畫面是這樣的。你可以將時空想像成一張彈簧床,本來彈簧床是平的,往上面放幾顆球,彈簧床上有球的地方周圍就變成彎曲的了——這幾顆球,彎曲了各自周圍的時空。

地球為什麼繞著太陽轉?牛頓認為那是因為太陽對地球有引力。但是廣義相對論認為,地球根本不知道太陽在哪裡,只是太陽把時空彎曲得比較厲害,地球是根據自己所在時空的測地線運動而已。就好像彈簧床上的小球可以繞著大球滾動,而你知道大球並沒有吸引小球,那只是因為彈簧床上大球的周圍有凹陷。

廣義相對論認為,地球根本不知道太陽在哪裡,只是太陽把時空彎曲得比較厲害,地球是根據自己所在時空的測地線運動而已。

同樣的時空,每個物體的速度不一樣,它們遵循的測地線也不一樣。有的物體會直接掉向太陽,有的會繞著太陽做橢圓運動,有的與太陽擦肩而過,這些都只不過是物體在沿著自己的測地線運動而已。

同一個時空不同的物體,測地線也不一樣。

當然,每個有質量的物體在彎曲時空當中運動的同時,也是在彎曲著自己周圍的時空,只是彎曲的程度不同。時空的形狀由這些物質共同決定,而所有物質都會沿著自己周圍時空的測地線運動。

用彈簧床打比方是不得已而為之,物質彎曲時空並不是如同小球在彈簧床上往下「壓」的結果,而是自然地彎曲周圍所有方向上的時空,所造成的結果。而且請注意,被彎曲的不僅僅是空間,還有時間,只是這部分,我們留到後面的章節再細說。

在這裡,我還要澄清一點。你也許會有這樣的疑問:既然高速運動物體的質量會增加,那多出來的質量是不是也會彎曲空間呢?答案是不會。廣義相對論裡說的「物質彎曲了空間」,可以理解成是物質的「靜止質量」在彎曲空間,靜止質量是所有座標系都同意的不變數。時空的內在幾何形狀是絕對的,但是時空在不同的座標系中被看成了不同的樣子。

廣義相對論就是這麼簡單。

自然運動狀態

愛因斯坦再一次看破了紅塵。什麼是引力?可以說根本沒有引力,有的只是時空的彎曲。

或者也可以說,所謂引力,就是在大尺度下才能看出來的、時空的彎曲。鯨魚的身體是曲線型的,但是如果近距離看,它身上每個地方都近似一塊很平的小平面。局部的測地線就是很直很直的直線,這就是為什麼我們上一章說「局部沒有引力」。

如果近看鯨魚,會覺得只是一塊平面(?)圖/envato elements

講到這裡,我們要重新定義「自然運動狀態」這個概念。所謂自然運動,就是在沒有任何外力干擾的情況下,一個物體自由自在的狀態。

亞里斯多德(Aristotle)認為自然的運動狀態是靜止。這符合我們的生活經驗——沒有外力干擾的東西好像都是靜止不動的。

後來,伽利略和牛頓說這不對,力並不是讓物體運動的原因,力其實是改變物體運動狀態的原因。一個物體在光滑的平面上滑動,如果沒有任何摩擦力干擾,它就會一直這樣運動下去。所以等速直線運動和靜止沒有差別,它們都是自然運動。

貓咪推了球之後,如果沒有任何摩擦力,球就會永無止盡的運動下去。圖/envato elements

而現在,愛因斯坦表示,一切沿著測地線的運動,都是自然運動。

可以想像太空中有一個周圍非常空曠、沒有任何星體的地方,這裡的時空是平直的,測地線是完美的直線,所以物體沿著測地線運動,正好就是等速直線運動。

如果時空是彎曲的,太空人就會繞著地球轉,而失控的電梯就會直接掉下去,這兩個運動看似不同,但其實都是自由落體運動,它們謹守本分地沿著自己的測地線運動。所以它們雖然有加速度,仍然是自然運動。

自由落體運動、等速直線運動,以及靜止,它們沒有本質上的差別。你在一個封閉的實驗室裡不管做什麼實驗,都沒有辦法區分它們。愛因斯坦表示它們是同一回事,都是沿著測地線運動,都是自然運動。

反過來說,你站在地面不動,站一會兒就累了,這其實是一種不自然的運動。你本來想沿著測地線往下掉,可是地板阻止了你。想要體驗真正的自由,你應該做自由落體運動。

都怪地板阻止了我們自由落體!(⋯⋯?)圖/envato elements

為什麼引力質量正好等於慣性質量,為什麼一輕一重兩個鐵球會同時著地?現在,廣義相對論給這個巧合提供了一個解釋——因為只要質量沒有大到能與地球相提並論、足以顯著影響周圍時空的形狀的程度,測地線就只和物體的初始速度有關,與質量無關!

回頭再看上一章中講的兩個想像實驗。不管你是在加速的火箭上,還是站在地面不動,都有一個外力在阻止你沿著測地線走,所以它們是一樣的。

無論是在地球附近自由落體,還是在太空中空曠、沒有任何星體的地方做等速直線運動,都是沿著該地測地線的自然運動,所以它們也是一樣的。

無論是在地球附近自由落體,還是在太空中空曠的地方做等速直線運動,都是沿著該地測地線的自然運動。圖/envato elements

只要你接受時空尺寸是相對的,你就能接受狹義相對論;只要你接受時空可以彎曲,你就能接受廣義相對論。接受了時空的這兩個性質,光速為什麼不變、慣性質量為什麼等於引力質量、引力到底是不是真實的存在⋯⋯這些問題就不用再糾結了。

所以,相對論是個簡單理論,它只是相當深刻;其實我覺得廣義相對論比狹義相對論還容易理解,它只是美麗非常。

也許下次看見鯨魚的時候,你可以想起廣義相對論。

所有討論 11
遠流出版_96
59 篇文章 ・ 29 位粉絲
遠流出版公司成立於1975年,致力於台灣本土文化的紮根與出版的工作,向以專業的編輯團隊及嚴謹的製作態度著稱,曾獲日本出版之《台灣百科》評為「台灣最具影響力的民營出版社」。遠流以「建立沒有圍牆的學校」、滿足廣大讀者「一生的讀書計畫」自期,積極引進西方新知,開發作家資源,提供全方位、多元化的閱讀生活,矢志將遠流經營成一個「理想與勇氣的實踐之地」。

1

3
3

文字

分享

1
3
3
在數學中尋找想像力的自由——《生而為人的13堂數學課》
臉譜出版_96
・2022/03/28 ・2312字 ・閱讀時間約 4 分鐘

  • 作者/ 蘇宇瑞 
  • 原文作者/ Francis Su
  • 譯者/ 畢馨云

存在於數學中的第四個自由,是想像的自由

如果探索是在尋找已經存在的東西,那麼想像就是在建構新的想法,或至少對你來說是新的想法。凡是在沙灘上堆過沙堡的孩子,都知道一桶沙子的無限潛力,同樣的,康托也曾說過:「數學的本質就在於它的自由。」[3](康托在19世紀後期做出開創性的研究成果,讓我們首度對無限的本質有了清楚的了解。)

他的意思是,數學不像科學,研究的主題未必和特定的實物有關,因此數學家在能夠研究的題材上,不像其他科學家那樣受限。數學探險家可以運用她的想像,砌出她心目中的任何一座數學城堡。

拓撲學帶領我們進入想像的空間

我的拓撲學課傳授了想像的實踐。正如前面提到的,拓撲學在研究幾何物件受到連續拉伸時會保持不變的性質。

如果我讓一個物件變形,且沒有引進或移走「洞」,那麼從拓撲學的角度,我並沒有改變它。因此,橄欖球和籃球在拓撲學上是相同的,因為其中一個形狀可以變形成另一個;另一方面,甜甜圈和橄欖球在拓撲學上就是不一樣的,因為你必須在橄欖球上戳一個洞,才可以把它變成甜甜圈。

拓撲學是很有趣的主題,因為我們可以用奇奇怪怪的方式把東西切割開、黏起來或拉伸,來做出各種很妙的形狀。我們常想像在這些形狀裡面走動,所以稱它們為空間

拓撲學愛好者非常樂在想像他們自己的怪異空間,通常是為了回答某個奇特的問題,例如「是否存在具有這種或那種病態的物件?」。(對,我們在數學上會用到病態一詞,是在描述奇怪或異常的表現,就像在醫學中一樣。)然後會用腦袋聯想出一個例子。

舉例來說,有和田湖(Lakes of Wada):可在地圖上繪出,且邊界完全相同的三個相連區域(「湖」);位於其中一座湖的邊上的任何一點,一定會在所有三座湖的邊上。這個建構是以發明它們的數學家和田健雄(Takeo Wada)的名字命名的。還有夏威夷耳環(Hawaiian earring),這是個華麗的物件,上頭有無限多個逐次變小的環,全相切於一個點。[4]

這個碎形圖有三個區域(深色、中間色和淺色的「湖」),有相同的邊界,但與原始和田湖不同的是,圖中的每個湖都由不連通的水池組成。
圖/生而為人的13堂數學課
夏威夷耳環。圖/生而為人的13堂數學課

亞歷山大角球的病態空間

病態空間(pathological space)有個相當著名的例子(至少在數學家當中很有名),就是亞歷山大角球(Alexander horned sphere)。球是呈泡泡形狀的曲面,正圓球表面的空間具有「單連通」(simply connected)這個性質,意思大致上就是,如果你在球的表面拿著一條繩子,把兩端繫在一起,做成一個圈,那麼所繫成的圈不會卡在球上,永遠可以從球上移走,與球分離。(甜甜圈就截然不同了,它表面的空間不是單連通的:如果把繩子的一端穿過甜甜圈中心的洞,再把兩端繫在一起,你就無法讓繩圈脫離甜甜圈。)

1924年,J. W. 亞歷山大(J. W. Alexander)在想像他的帶角球時,思考了一個問題:有沒有可能用某種奇特的變形方式,讓泡泡上的相異兩點永遠不會相碰,但泡泡表面的空間又不是單連通的?

起先亞歷山大認為,不管哪個變形泡泡的表面都一定是單連通的。[5]但後來他舉出了一個表面不是單連通的例子!他的假想結構可以描述如下(這不完全是他的結構,但在拓撲學上是相同的):取一個泡泡,擠出兩個「角」,接著再從每個角擠出一對捏起的手指,且讓這兩對捏起的手指幾乎相扣在一起。因為捏起的手指並沒有完全相碰,所以你可以在更小的尺度上重複這個步驟,從前面各組手指擠出一對細小的捏合手指,相扣但沒完全相碰。像這樣繼續做下去,做到極限,就會得到亞歷山大角球。

環繞在其中一個初始角底部的繩圈,無法從帶角球脫離,原因正是相扣手指鉗的極限過程。如果指鉗在某個階段結束,沒有做到極限,那麼繩圈就很容易脫落了。這種令人驚奇的結構,不僅需要靠想像力思考,還需運用想像力去驗證帶角球在極限時確實仍是一個球。

亞歷山大角球。圖/生而為人的13堂數學課

你可以想像把圖放大,去看接連各層級的捏角的碎形本質:在細節的每個層級,景象看起來都相同。

想像力是我們的超能力

想像的自由為數學注入了夢幻般的特性。許個願,瞧!你的夢想成真了。

如果在每個階段我們都有機會運用想像力,數學學習的樂趣會多出多少?你不必從事高等數學,就能運用想像力。

在算術中,我們可以嘗試建構出帶有奇特性質的數;能被你出生年月日的所有數字整除的最小數字是多少?你能不能找出連續十個不是質數的數?

在幾何學中,我們可以設計出屬於自己的圖案,探究它們的幾何性質;你喜歡的圖案裡有哪些對稱性?

在統計學中,我們可以考慮一個資料集,想出有創造力的視覺化方法;哪些方法的特點最好?

如果你是從枯燥的教科書上學數學,那就看看能不能把問題改造一下,以提升你的想像力,這麼做就是在讓你鍛鍊想像的自由。

摘自《生而為人的13堂數學課:透過數學的心智體驗與美德探索,讓你成為更好的人的練習》,2022 年 1 月,臉譜出版
所有討論 1
臉譜出版_96
77 篇文章 ・ 249 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。