面對癌細胞,科學家仍嘗試了解更多訊息。中央研究院分子生物研究所陳律佑助研究員研究團隊近期發現,在癌細胞生成過程中,人體內的「染色體外端粒 DNA」(extrachromosomal telomere repeat DNA, 簡稱 ECTR)能誘發細胞後天免疫反應,進而抑制 ALT 癌細胞生長;研究成果將有助發展針對特定癌細胞的免疫治療,並掌握更多染色體端粒資訊。此研究成果論文已於 11 月發表於《自然-結構與分子生物學》(Nature Structural and Molecular Biology)期刊。
中央研究院分子生物研究所陳律佑助研究員,圖/中央研究院提供。
癌細胞可分為兩大類,有端粒酶的癌細胞,及無端粒酶的「替代性延長端粒(Alternative Lengthening of Telomeres, 簡稱 ALT)癌細胞」,後者約佔所有腫瘤的 10-15%,常見於兒童腦瘤、軟組織瘤及骨癌等。陳律佑指出,ALT 癌細胞的共同特徵為富含 ECTR,ECTR 因此成為臨床上用以辨識 ALT 癌症的獨特標記。
然而,目前 ECTR 在 ALT 癌細胞發展過程中所扮演的角色仍不清楚,我們知道 DNA 只會存在於細胞核與特定胞器裡,當細胞質出現游離的 DNA,如病毒感染時,就會誘發後天免疫反應 ; 陳律佑研究團隊長期關注染色體端粒,因此好奇,ECTR 雖非病毒 DNA,但身為游離在核外的細胞自身 DNA,是否因此也會誘發後天免疫反應,如果會,那為何富含 ECTR 的 ALT 細胞仍然會發展成 ALT 腫瘤?
研究團隊首先建立一套系統,誘使細胞累積 ECTR。在正常人類細胞中,ECTR 的累積,或有游離在外的 DNA 出現,都會活化細胞內負責偵測遊離 DNA 的機制,即「cGAS-STING 蛋白的感知路徑」,進而釋放出有抑制病毒功能的干擾素,最終造成抑制細胞生長的目的。然而,在 ALT 癌細胞株中,無論是 ECTR,或是其他游離在外的 DNA,都沒有啟動干擾素反應,癌細胞因此不斷增生。
-----廣告,請繼續往下閱讀-----
團隊進一步分析多種 ALT 癌細胞株後發現,大部分的 ALT 癌細胞株中,STING 蛋白皆受到了抑制,使得 cGAS-STING 路徑中斷,無法正常啟動干擾素反應。陳律佑表示,「從腫瘤發展的角度來看,ALT 癌細胞透過中斷 cGAS-STING 的感知路徑,迴避了免疫機制,這也就是 ALT 細胞得以發展成癌症的關鍵。」
ALT 癌細胞的特徵除了富含 ECTR 之外,同時也會有「組蛋白 H3.3」功能缺失。研究團隊也意外發現,除了 STING 蛋白,組蛋白 H3.3 也參與了 ECTR 啟動免疫系統感知 DNA 的過程。研究團隊表示,未來將進一步研究組蛋白 H3.3 在 DNA 偵測過程的角色。
此研究結果顯示,抑制 DNA 感知路徑是 ALT 癌細胞生成的關鍵機制。如果能同時修復 STING 蛋白及組蛋白 H3.3,就有機會重啟體內的免疫系統,釋放干擾素抑制 ALT 癌細胞。陳律佑推論,因為 ALT 癌細胞 DNA 感知路徑缺陷,美國食品藥品管理局(FDA)近期核可的溶瘤病毒(Oncolytic viruses)免疫療法,或許將可應用於 ALT 癌症的治療,趁著免疫系統失能,以毒攻毒。
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。