0

0
0

文字

分享

0
0
0

為什麼會有咬人的沙發?富馬酸二甲酯是抗黴良品還是毒藥?

行政院環境保護署毒物及化學物質局_96
・2017/12/20 ・2118字 ・閱讀時間約 4 分鐘 ・SR值 543 ・八年級

本文由行政院環境保護署毒物及化學物質局委託,泛科學企劃執行

撰文/陳衍達│自由寫手

試著想像一個情境:這天風光明媚,你終於從賣場把心中嚮往好久的那張沙發帶回家。移入客廳之後,你調整擺設角度、並放上可愛的花布抱枕,準備窩到新沙發上享受一整個下午悠閒時光…… 咦,奇怪?怎麼坐了幾個小時之後,身上有接觸到沙發表面的皮膚都開始紅腫發癢、出現像是發炎的症狀呢?

以上狀況曾真實發生在 2006 至 2008 年間的芬蘭、英國與法國,當時大規模的「接觸新購入沙發造成皮膚發炎事件」引起許多人關注。經追查發現,這些發生「沙發皮膚炎(sofa dermatitis)」的患者,主要從三家英國公司與一家法國公司購入沙發,再往源頭回溯,問題的根源竟是他們在中國的供應商。此供應商在製造家具時,使用了「富馬酸二甲酯(dimethyl fumarate)」抑制黴菌生長,然而這種化學物質容易誘發過敏,在歐盟地區更是被禁用的。

-----廣告,請繼續往下閱讀-----

該次沙發皮膚炎事件不但在媒體上被廣泛討論以外,也促使歐盟更新了原先的規定,除了在「境內」禁用富馬酸二甲酯以外,從境外輸入的民生物品每公斤殘留量也不得超過 0.1 毫克

2006至2008年間,歐洲發生大規模的「沙發皮膚炎」事件,經追查發現是由於部分沙發廠商引進添加了歐洲地區禁用的富馬酸二甲酯的沙發。(圖非當事沙發) 圖/ terimakasih0 @ Pixabay BY CC0

形相近,性相遠

究竟當年的事件主角 ── 富馬酸二甲酯是何方神聖?這個物質聽起來十分陌生(名字又意外地華麗),首先,讓我們試著從它的結構談起。

各物質結構式。製圖/ 鴨鴨 富馬酸二甲酯圖/ Edgar181 @ wikimedia, CC0 順丁烯二酸及反丁烯二酸結構式。圖/ Benjah-bmm27 @ wikimedia, CC0

富馬酸二甲酯,又名反丁烯二酸二甲酯,不由得讓人想到我們之前介紹過的、曾被用來使珍珠維持Q彈口感的「順丁烯二酸。沒錯,富馬酸二甲酯的核心部分跟順丁烯二酸是化學上所謂的「順反異構物」;接在順丁烯二酸中心雙鍵兩端的大基團接在雙鍵的同一側,而富馬酸二甲酯上的兩個大基團則接在雙鍵兩端的對側。順丁烯二酸的俗名叫做馬來酸(maleic acid),而反丁烯二酸的俗名是富馬酸(fumaric acid)。值得注意的是,雖然只是雙鍵兩端連接的方式倒過來,化學性質卻有很大的不同,用途和毒性也不一樣。

順丁烯二酸可以讓珍珠變得有彈性,可是傷腎;反丁烯二酸是人體細胞進行呼吸作用時,克氏循環中的一個中間產物,毒性不高,在應用上,它則是法規核准使用的調味劑,也可當作金屬類營養添加劑搭配的陰離子。若從結構上觀察,富馬酸二甲酯是富馬酸上的兩個「羥基(-OH)」經酯化變成「甲氧基(-OCH3)」,可以做為除黴劑,具肝毒性,且會傷害免疫系統以及消化系統。

-----廣告,請繼續往下閱讀-----

帶有毒性,卻可以入藥的富馬酸二甲酯

人體接觸富馬酸二甲酯的途徑有兩種,除了文章剛開始提到的皮膚接觸,還有經攝食進入體內,接觸可能像案例裡家具中殘留而造成過敏性的濕疹,攝入則可能抑制免疫系統以及傷害消化道。而富馬酸二甲酯抑制免疫系統的特性,在醫學上也會被用於一些自體免疫疾病,如多發性硬化症的治療

「等等,這一批符合標準嗎?」富馬酸二甲酯除了輸入臺灣前的書面審查,還會有邊境查驗喔!(邊境查驗示意圖)。 圖/ U.S. Department of Agriculture @ Flickr BY CC0

暴露疑慮怎麼辦?先從源頭把關做起

雖然今日臺灣和歐洲皆有立法禁止將富馬酸二甲酯添加至食品中,但在其他地方尚少被列入黑名單,它也仍然因為優異的防黴性質在某些國家被廣泛使用,如家具、食品、飼料和皮革等較易發霉的產品。

為了避免大家接觸富馬酸二甲酯的風險,政府的配套措施除了在商品輸入至國內前的書面審查,進口後還會有邊境查驗,包括現場查核以及抽樣檢驗,把一些食品送到實驗室進行檢驗分析,所以基本上都不會有太大的疑慮喔!

 

新聞來源

-----廣告,請繼續往下閱讀-----

參考資料

-----廣告,請繼續往下閱讀-----
文章難易度
行政院環境保護署毒物及化學物質局_96
52 篇文章 ・ 10 位粉絲
行政院環境保護署毒物及化學物質局,落實毒物及化學物質之源頭管理及勾稽查核,從源頭預防管控食安風險,追蹤有害化學物質,維護國民健康。 網站:https://www.tcsb.gov.tw/

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
那些QQ的食物和不該出現的添加物「順丁烯二酸酐」 ──這就是所謂Q彈的代價?(下)
行政院環境保護署毒物及化學物質局_96
・2017/11/30 ・2374字 ・閱讀時間約 4 分鐘 ・SR值 560 ・八年級

本文由行政院環境保護署毒物及化學物質局委託,泛科學企劃執行

文/陳衍達 │ 自由寫手

在本文上篇,我們提到了珍珠的原料順丁烯二酸,以及它的糊化作用、口感 Q 彈的秘密;在下篇裡,則要更進一步,帶大家起來看看它的水解產物「順丁烯二酸酐」。

在上篇中我們提到,有些不肖業者會在珍珠或其他食品中違法加入順丁烯二酸,以防止澱粉分子結晶變硬、影響口感。圖/goodmami@flickr CC BY-SA 2.0

-----廣告,請繼續往下閱讀-----

恐慌的源頭:毒性

讓我們從 2013 年發生的順丁烯二酸(酐)化製澱粉事件、或稱毒澱粉事件開始談起。事實上,因為順丁烯二酸不是食品用料,所以欲添加這種成分的製造商只能從化工原料供應商進料。這麼做的第一個問題是,因為化工原料不是給人吃的,所以對雜質、副產物的安全衛生要求較低;第二則是順丁烯二酸本身的毒性。以現有的文獻來看,它的「急毒性」很小,且沒有有研究能指出其致癌性,不過部分動物實驗指出它對腎臟可能會造成傷害。

拉出國際標準來看,歐盟和美國都有針對順丁烯二酸及順丁烯二酸酐訂出成人每公斤體重的每日耐受量(Tolerable Daily Intake,TDI,也就是一天吃進多少是可以接受的範圍),分別是 0.5 毫克以及 0.1 毫克。

如果用當時衛生署在 2013 年 5 月 13 日首度公布的黑輪檢驗結果最高濃度 494 ppm 來算,一個體重 60 公斤的成人在兩種標準下的每日耐受量分別是 30 毫克以及 6 毫克;也就是說,一天只要分別食入 61 克或是 13 克的該產品便會超標。不過,TDI 預設的標準是「每天」攝入的物質量,雖然這個事件波及的範圍甚廣(板條、肉圓、黑輪、粉圓、豆花、粉粿、芋圓及地瓜圓),只要不是天天吃,基本上不會有太大的健康疑慮喔!

國家環境毒物研究中心也因應此事件,彙整出一份「順丁烯二酸與酸酐技術性資料評估報告」,內容相當完整,提供給想更深入了解的人參考。

2013 年毒澱粉事件發生時,部分肉圓曾被檢驗出含有順丁烯二酸酐(示意圖,非事件肉圓)。圖/Oldowlnest@wikimedia BY CC4.0

-----廣告,請繼續往下閱讀-----

違法疑慮:食品添加物使用範圍及限量暨規格標準

由於澱粉經化學處理的程序可能會有殘留非食用性或不適合食用的物質,修飾澱粉(法規上稱之「化製澱粉」)不一定都能用在食品上,各國對修飾澱粉的使用範圍更是有所規範。

在臺灣,食品添加物皆為正面表列(也就是列出可以使用的才能用),而順丁烯二酸並不包含在 2013 年公布的「食品添加物使用範圍及限量暨規格標準」中的 21 項准用之食用化製澱粉品項裡面(編按:檔案下載後將副檔名改為 .doc 即可開啟),因此,在食品中使用順丁烯二酸化製澱粉是違法的。然而,法令的約束力往往鞭長莫及,部分廠商基於提升產品性能的需求,仍可能知法犯法。而在長長的供應鏈中,食藥局(現食藥署)並沒辦法管制到原本就不該出現在食品中,原先並無明確管轄單位的的順丁烯二酸,造成「順丁烯二酸(酐)化製澱粉」的使用範圍,幾乎是全國淪陷。

順丁烯二酸化製澱粉主要被用於有Q彈需求的食物,包括粄條、肉圓、芋園/地瓜園、珍珠/豆花、粉粿、黑輪/天婦羅等。(圖中食物僅為示意,皆非使用順丁烯二酸化製澱粉製成) 製作/ 鴨鴨 粄條圖/ Vmenkov @ wikimedia,CC BY-SA 3.0 肉圓圖/ MGA73bot @ wikimedia,CC BY 3.0 芋圓圖/ haylei wu @ Flickr,CC0 珍珠豆花圖/ Hao-wei Hsu @ Flickr,CC BY 2.0  粉粿圖/ Blowing Puffer Fish @ Flickr,CC BY2.0 黑輪圖/ Ocdp @ wikimedia,CC0

順丁烯二酸(酐)化製澱粉事件對臺灣社會造成相當大的衝擊,雖然帶來一定程度的恐慌,卻也促成懸宕已久的《食品衛生管理法》修正草案迅速完成修法,對後續的衛生署改制、《毒性物質管理法》修法以及「食品業者登錄辦法」的訂定也都發揮了催化劑的效果。當然沒有人希望食安事件發生,然而換個角度想,人們若能在恐慌之餘痛定思痛,或許也能讓臺灣的食安體系建置得越來越完整。

-----廣告,請繼續往下閱讀-----

好的,介紹到這裡也差不多進入尾聲了。在這兩篇文章中,我們分析了順丁烯二酸如何讓珍珠 Q 彈得更久,也提到這個物質的毒性疑慮,介紹了順丁烯二酸酐的應用和小歷史,並簡述順丁烯二酸(酐)化製澱粉事件的影響,希望大家閱讀完後,也能更了解這兩項物質!

編按:順丁烯二酸酐現已依毒性化學物質列管為第四類毒化物,無論製造、輸入、使用、販賣等,都需申請核可才可以運作,而且必須定期申報運作情形,透過上述核可及申報制度,可以瞭解其流向,此外,需在容器包裝上標示「禁止用於食品」,以降低物流用的可能。

 

參考資料:

  1. 國家環境毒物研究中心-順丁烯二酸與酸酐技術性資料評估報告
  2. 環境資訊中心-懶人包:2013年順丁烯二酸(毒澱粉)事件(上) (下)

延伸閱讀:

  1. 誰是毒澱粉專家?(1)談順丁烯二酸酐
  2. 誰是毒澱粉專家?(2)再談順丁烯二酸事件
  3. 食品添加劑的恐懼與理性之戰
  4. 哪一年才是食安元年?
-----廣告,請繼續往下閱讀-----
行政院環境保護署毒物及化學物質局_96
52 篇文章 ・ 10 位粉絲
行政院環境保護署毒物及化學物質局,落實毒物及化學物質之源頭管理及勾稽查核,從源頭預防管控食安風險,追蹤有害化學物質,維護國民健康。 網站:https://www.tcsb.gov.tw/

0

0
0

文字

分享

0
0
0
珍珠變Q變硬的秘密: 順丁烯二酸化學澱粉 ──這就是所謂Q彈的代價?(上)
行政院環境保護署毒物及化學物質局_96
・2017/11/28 ・3451字 ・閱讀時間約 7 分鐘 ・SR值 492 ・五年級

本文由行政院環境保護署毒物及化學物質局委託,泛科學企劃執行

文/陳衍達 │ 自由寫手

從早期的泡沫紅茶,到現今的珍珠奶茶與各式新奇飲品,「手搖飲料」絕對是臺灣庶民文化重要的一環,你總可以在轉角處找到一家飲料店,甚至輸出至世界各地,讓人旅遊或留學時遇見了有種他鄉遇故知的感動。然而近年來,濃縮果汁混摻塑化劑(2011 年)、毒澱粉(2013 年)和茶葉農藥殘留(2015 年)等食安事件,讓手搖飲料蒙上了陰影;其中,佔有靈魂地位的珍珠和波霸被捲入的「順丁烯二酸(酐)化製澱粉」事件,就讓從小愛喝波霸烏龍茶的筆者傷透了心Q。

source:poppet with a camera

-----廣告,請繼續往下閱讀-----

不過,不肖業者為何要在食品中違法添加這種物質呢?它會在風味與健康上造成什麼影響?我們將分成上下兩篇文章,為大家介紹順丁烯二酸和順丁烯二酸酐。

長很像,用途卻大不同的兄弟檔

順丁烯二酸(左)與順丁烯二酸酐(右)。 左圖/ Benjah-bmm27 @ wikimedia, CC0 右圖/ Su-no-G @ wikimedia, CC0

順丁烯二酸又稱馬來酸,是可以解離出兩個質子的有機酸,它的骨架由四個碳原子串接而成,中間兩個碳以雙鍵連接。在工業上有時會被用作甲酯類黏著劑的增黏劑,或和一些藥物結合增加其穩定性。順丁烯二酸的脫水產物 「順丁烯二酸酐」則可以用作聚酯樹脂以及農藥馬拉松(malathion,註)等物質的前驅物。西元 1928 年,德國化學家 Otto Diels 和 Kurt Alder 發現了Diels-Alder反應,當時使用的反應物就是順丁烯二酸酐以及環戊二烯,而後他們也在 1950 年因此獲得諾貝爾化學獎。

Diels 和 Alder在 1928 年發表了雙烯加成反應,而後大家都稱它為 Diels-Alder 反應,當時在期刊上發表的結構是都是由相當簡單的斜線和直線繪成。 圖/by Mazhe2@ wikimedia

-----廣告,請繼續往下閱讀-----

珍珠 Q 彈的秘密

手搖飲料中的「珍珠」多半以樹薯粉(tapioca)為主要原料製成,在沸水中滾一陣子,會產生糊化反應(gelatinization),對水分的通透性變高、吸水膨脹,變得柔軟,和米粒煮熟會變軟的原理很像。人體每日所需的熱量主要由碳水化合物(醣類)提供,而這些碳水化合物主要以澱粉的形式被我們吃進去。澱粉是把數百到數千個葡萄糖單體串在一起的長鏈醣類,如果串起來的結構是線性沒有分岔,我們稱它為直鏈澱粉;而有的澱粉會有許多分岔,成為所謂的支鏈澱粉。

這個結構上的差異會造成食物口感上的不同:直鏈澱粉含量高的食品口感偏硬,且經烹煮後仍粒粒分明;支鏈澱粉較多的煮過後則比較軟、黏而有彈性,像是臺灣主流的粳米(蓬萊米、糯米等,支鏈澱粉約佔 80-100%)和東南亞的秈米(泰國香米、印度香米等,支鏈澱粉約佔 69-77%)相比,前者因為支鏈澱粉比例較高,所以吃起來比較軟,煮太久還可能黏在一起。樹薯(cassava)的支鏈澱粉含量和粳米差不多。起鍋後,通常會用冰水或冷水冰鎮,使珍珠表面的澱粉稍微結晶(也就是變硬),塑造出具有彈性嚼勁的口感。

珍珠奶茶中珍珠的 Q 彈口感,來自澱粉的糊化反應。圖/Oqmilteashop@wikimedia BY CC3.0

不過,很多人大概都有過一個經驗:珍珠在飲料裡泡了一陣子,變得軟爛、失去彈性;若放入冰箱保存,又會變硬不好吃。前者正是因為糊化反應,雖然在冰水中發生得比較緩慢,但時間久了還是會明顯感受到口感變軟爛;後者類似冰鎮珍珠的原理,澱粉在低溫下會慢慢「結晶」,把分子間部份的水分擠出去而變得紮實,在口感上就會變得較硬而脆。

-----廣告,請繼續往下閱讀-----

為了解決這個問題……

修飾澱粉登場了!

人們會根據不同的目的,對澱粉做出不同的化學處理,例如加酸或澱粉酶製造糊精,或是修飾上醋酸根加速產品的吸水速度,而這樣調整過的原料,我們稱之為修飾澱粉。以「珍珠糊掉事件」為例,原本製作珍珠時應用的結晶和糊化反應裡,主角只有澱粉和水,它們的結合和分離只靠氫鍵,很容易受溫度影響;但是商人們找到另一種物質 ── 順丁烯二酸(或稱馬來酸,maleic acid),它的結構上有兩個羧基(-COOH),可以和澱粉上面的羥基(-OH)進行交聯聚合反應,形成較不易因為溫度變化而接上或斷裂的共價鍵。鍵結能讓澱粉分子們保持在一定的距離內,不能順利結晶變硬,卻也不會因為泡水太久而糊掉。

讓我們再次回到分子式,順丁烯二酸有兩個羧基,經過脫水縮合之後就變成了順丁烯二酸酐。在和澱粉進行交聯聚合反應時,水中存在的以順丁烯二酸佔絕大多數,但廠商進料的時候大多是進順丁烯二酸酐,這是因為順丁烯二酸酐的應用遠比順丁烯二酸多,所以產量比較大,而且加到水裡之後也能自動水解成能進行反應的順丁烯二酸。

珍珠Q彈的秘密。 製作/ 鴨鴨  水分子圖/ Lopossumi~commonswiki @ wikimedia,CC0 笑臉圖/ Unknown @ GoodFreePhotos,CC0 澱粉結構圖/ NEUROtiker @ wikimedia,CC0 順丁烯二酸結構圖/ Benjah-bmm27 @ wikimedia,CC0 螃蟹圖/ python @ Pixabay,CC0

-----廣告,請繼續往下閱讀-----

到現在為止可能還有點複雜,讓我們用上面這張圖來複習一下吧!

(1)這是一顆還沒煮熟的粉圓。(2)放大來看,其實上面有很多澱粉分子,(3)再拉進一點會發現它是一個個葡萄糖用共價鍵串起來的,各個支鏈之間會有一定程度的(4)氫鍵和凡得瓦力(這裡不顯示),其中氫鍵受溫度影響很大,熱的時候比較不穩定,冷的時候吸引力比較強。

(5)在沸水中滾一陣子後,支鏈間的氫鍵變弱,原本結構較為緊密的澱粉分子鬆開,讓外界的水分子有機可乘鑽到中間的空洞,是為糊化反應,(6)然後它會膨脹。冷卻的時候因為水分子也可以和澱粉上的羥基形成氫鍵,所以就卡在裡面了。煮透之後冰鎮一下下,表面的分子間及分子內氫鍵變強,珍珠變得較有彈性。

(7)如果泡在飲料裡太久,水分子還是有機會塞進澱粉支鏈間的空洞,讓珍珠變得ㄋㄨㄚˇㄋㄨㄚˊ。(8)如果冰進冰箱,澱粉分子會慢慢擠出水分變回原本較緊密的結構,變得稍微硬而脆。(9)如果加入順丁烯二酸,它有兩個反應位,像螃蟹一樣。(10)會和澱粉分子產生交聯聚合反應再澱粉支鏈間架橋撐住,讓它不會太鬆散或者太緊密,這樣一來,珍珠就能青春永駐了

更棒的是,這項改良除了對珍珠愛好者與製造者們來說是天大的好消息,還能夠推廣至所有有「Q 彈需求」的製品,包括肉圓、粄條等等。超厲害的功能加上諾貝爾獎加持,順丁烯二酸和它的脫水好夥伴簡直好棒棒。感謝吧!讚美吧!讓我們歡欣鼓舞的慶祝吧!但是,想是這麼想,我們還是得稍微踩個煞車,環顧一下所有現實面的問題……

什麼問題呢?讓我們在下篇繼續說吧! –> 毒澱粉,這就是所謂Q彈的代價?(下)

編按:順丁烯二酸現已依毒性化學物質列管為第四類毒化物,無論製造、輸入、使用、販賣等,都需申請核可才可以運作,而且必須定期申報運作情形,透過上述核可及申報制度,可以瞭解其流向,此外,需在容器包裝上標示「禁止用於食品」,以降低物流用的可能。

 

註:連結中使用的馬拉松前驅物是順丁烯二酸二乙酯,其可由丁烯二酸酐製備,故在此我仍稱順丁烯二酸酐是馬拉松的前驅物。

-----廣告,請繼續往下閱讀-----

 

參考資料:

  1. Major Differences-Difference between Japonica and Indica rice
  2. Food-info.net-Starch
  3. 維基百科-Modified starch
  4. 科學月刊-認識順丁烯二酸
  5. 上下游-從工廠到餐桌:順丁烯二酸的上下游之旅
  6. Diels, O.; Alder, K. (1928). “Synthesen in der hydroaromatischen Reihe, I”. Justus Liebigs Annalen der Chemie. 460: 98–122.

 

-----廣告,請繼續往下閱讀-----
行政院環境保護署毒物及化學物質局_96
52 篇文章 ・ 10 位粉絲
行政院環境保護署毒物及化學物質局,落實毒物及化學物質之源頭管理及勾稽查核,從源頭預防管控食安風險,追蹤有害化學物質,維護國民健康。 網站:https://www.tcsb.gov.tw/