Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

為什麼會有咬人的沙發?富馬酸二甲酯是抗黴良品還是毒藥?

行政院環境保護署毒物及化學物質局_96
・2017/12/20 ・2118字 ・閱讀時間約 4 分鐘 ・SR值 543 ・八年級

-----廣告,請繼續往下閱讀-----

本文由行政院環境保護署毒物及化學物質局委託,泛科學企劃執行

撰文/陳衍達│自由寫手

試著想像一個情境:這天風光明媚,你終於從賣場把心中嚮往好久的那張沙發帶回家。移入客廳之後,你調整擺設角度、並放上可愛的花布抱枕,準備窩到新沙發上享受一整個下午悠閒時光…… 咦,奇怪?怎麼坐了幾個小時之後,身上有接觸到沙發表面的皮膚都開始紅腫發癢、出現像是發炎的症狀呢?

以上狀況曾真實發生在 2006 至 2008 年間的芬蘭、英國與法國,當時大規模的「接觸新購入沙發造成皮膚發炎事件」引起許多人關注。經追查發現,這些發生「沙發皮膚炎(sofa dermatitis)」的患者,主要從三家英國公司與一家法國公司購入沙發,再往源頭回溯,問題的根源竟是他們在中國的供應商。此供應商在製造家具時,使用了「富馬酸二甲酯(dimethyl fumarate)」抑制黴菌生長,然而這種化學物質容易誘發過敏,在歐盟地區更是被禁用的。

-----廣告,請繼續往下閱讀-----

該次沙發皮膚炎事件不但在媒體上被廣泛討論以外,也促使歐盟更新了原先的規定,除了在「境內」禁用富馬酸二甲酯以外,從境外輸入的民生物品每公斤殘留量也不得超過 0.1 毫克

2006至2008年間,歐洲發生大規模的「沙發皮膚炎」事件,經追查發現是由於部分沙發廠商引進添加了歐洲地區禁用的富馬酸二甲酯的沙發。(圖非當事沙發) 圖/ terimakasih0 @ Pixabay BY CC0

形相近,性相遠

究竟當年的事件主角 ── 富馬酸二甲酯是何方神聖?這個物質聽起來十分陌生(名字又意外地華麗),首先,讓我們試著從它的結構談起。

各物質結構式。製圖/ 鴨鴨 富馬酸二甲酯圖/ Edgar181 @ wikimedia, CC0 順丁烯二酸及反丁烯二酸結構式。圖/ Benjah-bmm27 @ wikimedia, CC0

富馬酸二甲酯,又名反丁烯二酸二甲酯,不由得讓人想到我們之前介紹過的、曾被用來使珍珠維持Q彈口感的「順丁烯二酸。沒錯,富馬酸二甲酯的核心部分跟順丁烯二酸是化學上所謂的「順反異構物」;接在順丁烯二酸中心雙鍵兩端的大基團接在雙鍵的同一側,而富馬酸二甲酯上的兩個大基團則接在雙鍵兩端的對側。順丁烯二酸的俗名叫做馬來酸(maleic acid),而反丁烯二酸的俗名是富馬酸(fumaric acid)。值得注意的是,雖然只是雙鍵兩端連接的方式倒過來,化學性質卻有很大的不同,用途和毒性也不一樣。

順丁烯二酸可以讓珍珠變得有彈性,可是傷腎;反丁烯二酸是人體細胞進行呼吸作用時,克氏循環中的一個中間產物,毒性不高,在應用上,它則是法規核准使用的調味劑,也可當作金屬類營養添加劑搭配的陰離子。若從結構上觀察,富馬酸二甲酯是富馬酸上的兩個「羥基(-OH)」經酯化變成「甲氧基(-OCH3)」,可以做為除黴劑,具肝毒性,且會傷害免疫系統以及消化系統。

-----廣告,請繼續往下閱讀-----

帶有毒性,卻可以入藥的富馬酸二甲酯

人體接觸富馬酸二甲酯的途徑有兩種,除了文章剛開始提到的皮膚接觸,還有經攝食進入體內,接觸可能像案例裡家具中殘留而造成過敏性的濕疹,攝入則可能抑制免疫系統以及傷害消化道。而富馬酸二甲酯抑制免疫系統的特性,在醫學上也會被用於一些自體免疫疾病,如多發性硬化症的治療

「等等,這一批符合標準嗎?」富馬酸二甲酯除了輸入臺灣前的書面審查,還會有邊境查驗喔!(邊境查驗示意圖)。 圖/ U.S. Department of Agriculture @ Flickr BY CC0

暴露疑慮怎麼辦?先從源頭把關做起

雖然今日臺灣和歐洲皆有立法禁止將富馬酸二甲酯添加至食品中,但在其他地方尚少被列入黑名單,它也仍然因為優異的防黴性質在某些國家被廣泛使用,如家具、食品、飼料和皮革等較易發霉的產品。

為了避免大家接觸富馬酸二甲酯的風險,政府的配套措施除了在商品輸入至國內前的書面審查,進口後還會有邊境查驗,包括現場查核以及抽樣檢驗,把一些食品送到實驗室進行檢驗分析,所以基本上都不會有太大的疑慮喔!

 

新聞來源

-----廣告,請繼續往下閱讀-----

參考資料

-----廣告,請繼續往下閱讀-----
文章難易度
行政院環境保護署毒物及化學物質局_96
52 篇文章 ・ 10 位粉絲
行政院環境保護署毒物及化學物質局,落實毒物及化學物質之源頭管理及勾稽查核,從源頭預防管控食安風險,追蹤有害化學物質,維護國民健康。 網站:https://www.tcsb.gov.tw/

0

1
0

文字

分享

0
1
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
那些QQ的食物和不該出現的添加物「順丁烯二酸酐」 ──這就是所謂Q彈的代價?(下)
行政院環境保護署毒物及化學物質局_96
・2017/11/30 ・2374字 ・閱讀時間約 4 分鐘 ・SR值 560 ・八年級

-----廣告,請繼續往下閱讀-----

本文由行政院環境保護署毒物及化學物質局委託,泛科學企劃執行

文/陳衍達 │ 自由寫手

在本文上篇,我們提到了珍珠的原料順丁烯二酸,以及它的糊化作用、口感 Q 彈的秘密;在下篇裡,則要更進一步,帶大家起來看看它的水解產物「順丁烯二酸酐」。

在上篇中我們提到,有些不肖業者會在珍珠或其他食品中違法加入順丁烯二酸,以防止澱粉分子結晶變硬、影響口感。圖/goodmami@flickr CC BY-SA 2.0

-----廣告,請繼續往下閱讀-----

恐慌的源頭:毒性

讓我們從 2013 年發生的順丁烯二酸(酐)化製澱粉事件、或稱毒澱粉事件開始談起。事實上,因為順丁烯二酸不是食品用料,所以欲添加這種成分的製造商只能從化工原料供應商進料。這麼做的第一個問題是,因為化工原料不是給人吃的,所以對雜質、副產物的安全衛生要求較低;第二則是順丁烯二酸本身的毒性。以現有的文獻來看,它的「急毒性」很小,且沒有有研究能指出其致癌性,不過部分動物實驗指出它對腎臟可能會造成傷害。

拉出國際標準來看,歐盟和美國都有針對順丁烯二酸及順丁烯二酸酐訂出成人每公斤體重的每日耐受量(Tolerable Daily Intake,TDI,也就是一天吃進多少是可以接受的範圍),分別是 0.5 毫克以及 0.1 毫克。

如果用當時衛生署在 2013 年 5 月 13 日首度公布的黑輪檢驗結果最高濃度 494 ppm 來算,一個體重 60 公斤的成人在兩種標準下的每日耐受量分別是 30 毫克以及 6 毫克;也就是說,一天只要分別食入 61 克或是 13 克的該產品便會超標。不過,TDI 預設的標準是「每天」攝入的物質量,雖然這個事件波及的範圍甚廣(板條、肉圓、黑輪、粉圓、豆花、粉粿、芋圓及地瓜圓),只要不是天天吃,基本上不會有太大的健康疑慮喔!

國家環境毒物研究中心也因應此事件,彙整出一份「順丁烯二酸與酸酐技術性資料評估報告」,內容相當完整,提供給想更深入了解的人參考。

2013 年毒澱粉事件發生時,部分肉圓曾被檢驗出含有順丁烯二酸酐(示意圖,非事件肉圓)。圖/Oldowlnest@wikimedia BY CC4.0

-----廣告,請繼續往下閱讀-----

違法疑慮:食品添加物使用範圍及限量暨規格標準

由於澱粉經化學處理的程序可能會有殘留非食用性或不適合食用的物質,修飾澱粉(法規上稱之「化製澱粉」)不一定都能用在食品上,各國對修飾澱粉的使用範圍更是有所規範。

在臺灣,食品添加物皆為正面表列(也就是列出可以使用的才能用),而順丁烯二酸並不包含在 2013 年公布的「食品添加物使用範圍及限量暨規格標準」中的 21 項准用之食用化製澱粉品項裡面(編按:檔案下載後將副檔名改為 .doc 即可開啟),因此,在食品中使用順丁烯二酸化製澱粉是違法的。然而,法令的約束力往往鞭長莫及,部分廠商基於提升產品性能的需求,仍可能知法犯法。而在長長的供應鏈中,食藥局(現食藥署)並沒辦法管制到原本就不該出現在食品中,原先並無明確管轄單位的的順丁烯二酸,造成「順丁烯二酸(酐)化製澱粉」的使用範圍,幾乎是全國淪陷。

順丁烯二酸化製澱粉主要被用於有Q彈需求的食物,包括粄條、肉圓、芋園/地瓜園、珍珠/豆花、粉粿、黑輪/天婦羅等。(圖中食物僅為示意,皆非使用順丁烯二酸化製澱粉製成) 製作/ 鴨鴨 粄條圖/ Vmenkov @ wikimedia,CC BY-SA 3.0 肉圓圖/ MGA73bot @ wikimedia,CC BY 3.0 芋圓圖/ haylei wu @ Flickr,CC0 珍珠豆花圖/ Hao-wei Hsu @ Flickr,CC BY 2.0  粉粿圖/ Blowing Puffer Fish @ Flickr,CC BY2.0 黑輪圖/ Ocdp @ wikimedia,CC0

順丁烯二酸(酐)化製澱粉事件對臺灣社會造成相當大的衝擊,雖然帶來一定程度的恐慌,卻也促成懸宕已久的《食品衛生管理法》修正草案迅速完成修法,對後續的衛生署改制、《毒性物質管理法》修法以及「食品業者登錄辦法」的訂定也都發揮了催化劑的效果。當然沒有人希望食安事件發生,然而換個角度想,人們若能在恐慌之餘痛定思痛,或許也能讓臺灣的食安體系建置得越來越完整。

-----廣告,請繼續往下閱讀-----

好的,介紹到這裡也差不多進入尾聲了。在這兩篇文章中,我們分析了順丁烯二酸如何讓珍珠 Q 彈得更久,也提到這個物質的毒性疑慮,介紹了順丁烯二酸酐的應用和小歷史,並簡述順丁烯二酸(酐)化製澱粉事件的影響,希望大家閱讀完後,也能更了解這兩項物質!

編按:順丁烯二酸酐現已依毒性化學物質列管為第四類毒化物,無論製造、輸入、使用、販賣等,都需申請核可才可以運作,而且必須定期申報運作情形,透過上述核可及申報制度,可以瞭解其流向,此外,需在容器包裝上標示「禁止用於食品」,以降低物流用的可能。

 

參考資料:

  1. 國家環境毒物研究中心-順丁烯二酸與酸酐技術性資料評估報告
  2. 環境資訊中心-懶人包:2013年順丁烯二酸(毒澱粉)事件(上) (下)

延伸閱讀:

  1. 誰是毒澱粉專家?(1)談順丁烯二酸酐
  2. 誰是毒澱粉專家?(2)再談順丁烯二酸事件
  3. 食品添加劑的恐懼與理性之戰
  4. 哪一年才是食安元年?
-----廣告,請繼續往下閱讀-----
行政院環境保護署毒物及化學物質局_96
52 篇文章 ・ 10 位粉絲
行政院環境保護署毒物及化學物質局,落實毒物及化學物質之源頭管理及勾稽查核,從源頭預防管控食安風險,追蹤有害化學物質,維護國民健康。 網站:https://www.tcsb.gov.tw/

0

0
0

文字

分享

0
0
0
珍珠變Q變硬的秘密: 順丁烯二酸化學澱粉 ──這就是所謂Q彈的代價?(上)
行政院環境保護署毒物及化學物質局_96
・2017/11/28 ・3451字 ・閱讀時間約 7 分鐘 ・SR值 492 ・五年級

-----廣告,請繼續往下閱讀-----

本文由行政院環境保護署毒物及化學物質局委託,泛科學企劃執行

文/陳衍達 │ 自由寫手

從早期的泡沫紅茶,到現今的珍珠奶茶與各式新奇飲品,「手搖飲料」絕對是臺灣庶民文化重要的一環,你總可以在轉角處找到一家飲料店,甚至輸出至世界各地,讓人旅遊或留學時遇見了有種他鄉遇故知的感動。然而近年來,濃縮果汁混摻塑化劑(2011 年)、毒澱粉(2013 年)和茶葉農藥殘留(2015 年)等食安事件,讓手搖飲料蒙上了陰影;其中,佔有靈魂地位的珍珠和波霸被捲入的「順丁烯二酸(酐)化製澱粉」事件,就讓從小愛喝波霸烏龍茶的筆者傷透了心Q。

source:poppet with a camera

-----廣告,請繼續往下閱讀-----

不過,不肖業者為何要在食品中違法添加這種物質呢?它會在風味與健康上造成什麼影響?我們將分成上下兩篇文章,為大家介紹順丁烯二酸和順丁烯二酸酐。

長很像,用途卻大不同的兄弟檔

順丁烯二酸(左)與順丁烯二酸酐(右)。 左圖/ Benjah-bmm27 @ wikimedia, CC0 右圖/ Su-no-G @ wikimedia, CC0

順丁烯二酸又稱馬來酸,是可以解離出兩個質子的有機酸,它的骨架由四個碳原子串接而成,中間兩個碳以雙鍵連接。在工業上有時會被用作甲酯類黏著劑的增黏劑,或和一些藥物結合增加其穩定性。順丁烯二酸的脫水產物 「順丁烯二酸酐」則可以用作聚酯樹脂以及農藥馬拉松(malathion,註)等物質的前驅物。西元 1928 年,德國化學家 Otto Diels 和 Kurt Alder 發現了Diels-Alder反應,當時使用的反應物就是順丁烯二酸酐以及環戊二烯,而後他們也在 1950 年因此獲得諾貝爾化學獎。

Diels 和 Alder在 1928 年發表了雙烯加成反應,而後大家都稱它為 Diels-Alder 反應,當時在期刊上發表的結構是都是由相當簡單的斜線和直線繪成。 圖/by Mazhe2@ wikimedia

-----廣告,請繼續往下閱讀-----

珍珠 Q 彈的秘密

手搖飲料中的「珍珠」多半以樹薯粉(tapioca)為主要原料製成,在沸水中滾一陣子,會產生糊化反應(gelatinization),對水分的通透性變高、吸水膨脹,變得柔軟,和米粒煮熟會變軟的原理很像。人體每日所需的熱量主要由碳水化合物(醣類)提供,而這些碳水化合物主要以澱粉的形式被我們吃進去。澱粉是把數百到數千個葡萄糖單體串在一起的長鏈醣類,如果串起來的結構是線性沒有分岔,我們稱它為直鏈澱粉;而有的澱粉會有許多分岔,成為所謂的支鏈澱粉。

這個結構上的差異會造成食物口感上的不同:直鏈澱粉含量高的食品口感偏硬,且經烹煮後仍粒粒分明;支鏈澱粉較多的煮過後則比較軟、黏而有彈性,像是臺灣主流的粳米(蓬萊米、糯米等,支鏈澱粉約佔 80-100%)和東南亞的秈米(泰國香米、印度香米等,支鏈澱粉約佔 69-77%)相比,前者因為支鏈澱粉比例較高,所以吃起來比較軟,煮太久還可能黏在一起。樹薯(cassava)的支鏈澱粉含量和粳米差不多。起鍋後,通常會用冰水或冷水冰鎮,使珍珠表面的澱粉稍微結晶(也就是變硬),塑造出具有彈性嚼勁的口感。

珍珠奶茶中珍珠的 Q 彈口感,來自澱粉的糊化反應。圖/Oqmilteashop@wikimedia BY CC3.0

不過,很多人大概都有過一個經驗:珍珠在飲料裡泡了一陣子,變得軟爛、失去彈性;若放入冰箱保存,又會變硬不好吃。前者正是因為糊化反應,雖然在冰水中發生得比較緩慢,但時間久了還是會明顯感受到口感變軟爛;後者類似冰鎮珍珠的原理,澱粉在低溫下會慢慢「結晶」,把分子間部份的水分擠出去而變得紮實,在口感上就會變得較硬而脆。

-----廣告,請繼續往下閱讀-----

為了解決這個問題……

修飾澱粉登場了!

人們會根據不同的目的,對澱粉做出不同的化學處理,例如加酸或澱粉酶製造糊精,或是修飾上醋酸根加速產品的吸水速度,而這樣調整過的原料,我們稱之為修飾澱粉。以「珍珠糊掉事件」為例,原本製作珍珠時應用的結晶和糊化反應裡,主角只有澱粉和水,它們的結合和分離只靠氫鍵,很容易受溫度影響;但是商人們找到另一種物質 ── 順丁烯二酸(或稱馬來酸,maleic acid),它的結構上有兩個羧基(-COOH),可以和澱粉上面的羥基(-OH)進行交聯聚合反應,形成較不易因為溫度變化而接上或斷裂的共價鍵。鍵結能讓澱粉分子們保持在一定的距離內,不能順利結晶變硬,卻也不會因為泡水太久而糊掉。

讓我們再次回到分子式,順丁烯二酸有兩個羧基,經過脫水縮合之後就變成了順丁烯二酸酐。在和澱粉進行交聯聚合反應時,水中存在的以順丁烯二酸佔絕大多數,但廠商進料的時候大多是進順丁烯二酸酐,這是因為順丁烯二酸酐的應用遠比順丁烯二酸多,所以產量比較大,而且加到水裡之後也能自動水解成能進行反應的順丁烯二酸。

珍珠Q彈的秘密。 製作/ 鴨鴨  水分子圖/ Lopossumi~commonswiki @ wikimedia,CC0 笑臉圖/ Unknown @ GoodFreePhotos,CC0 澱粉結構圖/ NEUROtiker @ wikimedia,CC0 順丁烯二酸結構圖/ Benjah-bmm27 @ wikimedia,CC0 螃蟹圖/ python @ Pixabay,CC0

-----廣告,請繼續往下閱讀-----

到現在為止可能還有點複雜,讓我們用上面這張圖來複習一下吧!

(1)這是一顆還沒煮熟的粉圓。(2)放大來看,其實上面有很多澱粉分子,(3)再拉進一點會發現它是一個個葡萄糖用共價鍵串起來的,各個支鏈之間會有一定程度的(4)氫鍵和凡得瓦力(這裡不顯示),其中氫鍵受溫度影響很大,熱的時候比較不穩定,冷的時候吸引力比較強。

(5)在沸水中滾一陣子後,支鏈間的氫鍵變弱,原本結構較為緊密的澱粉分子鬆開,讓外界的水分子有機可乘鑽到中間的空洞,是為糊化反應,(6)然後它會膨脹。冷卻的時候因為水分子也可以和澱粉上的羥基形成氫鍵,所以就卡在裡面了。煮透之後冰鎮一下下,表面的分子間及分子內氫鍵變強,珍珠變得較有彈性。

(7)如果泡在飲料裡太久,水分子還是有機會塞進澱粉支鏈間的空洞,讓珍珠變得ㄋㄨㄚˇㄋㄨㄚˊ。(8)如果冰進冰箱,澱粉分子會慢慢擠出水分變回原本較緊密的結構,變得稍微硬而脆。(9)如果加入順丁烯二酸,它有兩個反應位,像螃蟹一樣。(10)會和澱粉分子產生交聯聚合反應再澱粉支鏈間架橋撐住,讓它不會太鬆散或者太緊密,這樣一來,珍珠就能青春永駐了

更棒的是,這項改良除了對珍珠愛好者與製造者們來說是天大的好消息,還能夠推廣至所有有「Q 彈需求」的製品,包括肉圓、粄條等等。超厲害的功能加上諾貝爾獎加持,順丁烯二酸和它的脫水好夥伴簡直好棒棒。感謝吧!讚美吧!讓我們歡欣鼓舞的慶祝吧!但是,想是這麼想,我們還是得稍微踩個煞車,環顧一下所有現實面的問題……

什麼問題呢?讓我們在下篇繼續說吧! –> 毒澱粉,這就是所謂Q彈的代價?(下)

編按:順丁烯二酸現已依毒性化學物質列管為第四類毒化物,無論製造、輸入、使用、販賣等,都需申請核可才可以運作,而且必須定期申報運作情形,透過上述核可及申報制度,可以瞭解其流向,此外,需在容器包裝上標示「禁止用於食品」,以降低物流用的可能。

 

註:連結中使用的馬拉松前驅物是順丁烯二酸二乙酯,其可由丁烯二酸酐製備,故在此我仍稱順丁烯二酸酐是馬拉松的前驅物。

-----廣告,請繼續往下閱讀-----

 

參考資料:

  1. Major Differences-Difference between Japonica and Indica rice
  2. Food-info.net-Starch
  3. 維基百科-Modified starch
  4. 科學月刊-認識順丁烯二酸
  5. 上下游-從工廠到餐桌:順丁烯二酸的上下游之旅
  6. Diels, O.; Alder, K. (1928). “Synthesen in der hydroaromatischen Reihe, I”. Justus Liebigs Annalen der Chemie. 460: 98–122.

 

-----廣告,請繼續往下閱讀-----
行政院環境保護署毒物及化學物質局_96
52 篇文章 ・ 10 位粉絲
行政院環境保護署毒物及化學物質局,落實毒物及化學物質之源頭管理及勾稽查核,從源頭預防管控食安風險,追蹤有害化學物質,維護國民健康。 網站:https://www.tcsb.gov.tw/