Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

那些QQ的食物和不該出現的添加物「順丁烯二酸酐」 ──這就是所謂Q彈的代價?(下)

行政院環境保護署毒物及化學物質局_96
・2017/11/30 ・2374字 ・閱讀時間約 4 分鐘 ・SR值 560 ・八年級

本文由行政院環境保護署毒物及化學物質局委託,泛科學企劃執行

文/陳衍達 │ 自由寫手

在本文上篇,我們提到了珍珠的原料順丁烯二酸,以及它的糊化作用、口感 Q 彈的秘密;在下篇裡,則要更進一步,帶大家起來看看它的水解產物「順丁烯二酸酐」。

在上篇中我們提到,有些不肖業者會在珍珠或其他食品中違法加入順丁烯二酸,以防止澱粉分子結晶變硬、影響口感。圖/goodmami@flickr CC BY-SA 2.0

恐慌的源頭:毒性

讓我們從 2013 年發生的順丁烯二酸(酐)化製澱粉事件、或稱毒澱粉事件開始談起。事實上,因為順丁烯二酸不是食品用料,所以欲添加這種成分的製造商只能從化工原料供應商進料。這麼做的第一個問題是,因為化工原料不是給人吃的,所以對雜質、副產物的安全衛生要求較低;第二則是順丁烯二酸本身的毒性。以現有的文獻來看,它的「急毒性」很小,且沒有有研究能指出其致癌性,不過部分動物實驗指出它對腎臟可能會造成傷害。

-----廣告,請繼續往下閱讀-----

拉出國際標準來看,歐盟和美國都有針對順丁烯二酸及順丁烯二酸酐訂出成人每公斤體重的每日耐受量(Tolerable Daily Intake,TDI,也就是一天吃進多少是可以接受的範圍),分別是 0.5 毫克以及 0.1 毫克。

如果用當時衛生署在 2013 年 5 月 13 日首度公布的黑輪檢驗結果最高濃度 494 ppm 來算,一個體重 60 公斤的成人在兩種標準下的每日耐受量分別是 30 毫克以及 6 毫克;也就是說,一天只要分別食入 61 克或是 13 克的該產品便會超標。不過,TDI 預設的標準是「每天」攝入的物質量,雖然這個事件波及的範圍甚廣(板條、肉圓、黑輪、粉圓、豆花、粉粿、芋圓及地瓜圓),只要不是天天吃,基本上不會有太大的健康疑慮喔!

國家環境毒物研究中心也因應此事件,彙整出一份「順丁烯二酸與酸酐技術性資料評估報告」,內容相當完整,提供給想更深入了解的人參考。

2013 年毒澱粉事件發生時,部分肉圓曾被檢驗出含有順丁烯二酸酐(示意圖,非事件肉圓)。圖/Oldowlnest@wikimedia BY CC4.0

違法疑慮:食品添加物使用範圍及限量暨規格標準

由於澱粉經化學處理的程序可能會有殘留非食用性或不適合食用的物質,修飾澱粉(法規上稱之「化製澱粉」)不一定都能用在食品上,各國對修飾澱粉的使用範圍更是有所規範。

在臺灣,食品添加物皆為正面表列(也就是列出可以使用的才能用),而順丁烯二酸並不包含在 2013 年公布的「食品添加物使用範圍及限量暨規格標準」中的 21 項准用之食用化製澱粉品項裡面(編按:檔案下載後將副檔名改為 .doc 即可開啟),因此,在食品中使用順丁烯二酸化製澱粉是違法的。然而,法令的約束力往往鞭長莫及,部分廠商基於提升產品性能的需求,仍可能知法犯法。而在長長的供應鏈中,食藥局(現食藥署)並沒辦法管制到原本就不該出現在食品中,原先並無明確管轄單位的的順丁烯二酸,造成「順丁烯二酸(酐)化製澱粉」的使用範圍,幾乎是全國淪陷。

-----廣告,請繼續往下閱讀-----
順丁烯二酸化製澱粉主要被用於有Q彈需求的食物,包括粄條、肉圓、芋園/地瓜園、珍珠/豆花、粉粿、黑輪/天婦羅等。(圖中食物僅為示意,皆非使用順丁烯二酸化製澱粉製成) 製作/ 鴨鴨 粄條圖/ Vmenkov @ wikimedia,CC BY-SA 3.0 肉圓圖/ MGA73bot @ wikimedia,CC BY 3.0 芋圓圖/ haylei wu @ Flickr,CC0 珍珠豆花圖/ Hao-wei Hsu @ Flickr,CC BY 2.0  粉粿圖/ Blowing Puffer Fish @ Flickr,CC BY2.0 黑輪圖/ Ocdp @ wikimedia,CC0

順丁烯二酸(酐)化製澱粉事件對臺灣社會造成相當大的衝擊,雖然帶來一定程度的恐慌,卻也促成懸宕已久的《食品衛生管理法》修正草案迅速完成修法,對後續的衛生署改制、《毒性物質管理法》修法以及「食品業者登錄辦法」的訂定也都發揮了催化劑的效果。當然沒有人希望食安事件發生,然而換個角度想,人們若能在恐慌之餘痛定思痛,或許也能讓臺灣的食安體系建置得越來越完整。

好的,介紹到這裡也差不多進入尾聲了。在這兩篇文章中,我們分析了順丁烯二酸如何讓珍珠 Q 彈得更久,也提到這個物質的毒性疑慮,介紹了順丁烯二酸酐的應用和小歷史,並簡述順丁烯二酸(酐)化製澱粉事件的影響,希望大家閱讀完後,也能更了解這兩項物質!

編按:順丁烯二酸酐現已依毒性化學物質列管為第四類毒化物,無論製造、輸入、使用、販賣等,都需申請核可才可以運作,而且必須定期申報運作情形,透過上述核可及申報制度,可以瞭解其流向,此外,需在容器包裝上標示「禁止用於食品」,以降低物流用的可能。

 

參考資料:

  1. 國家環境毒物研究中心-順丁烯二酸與酸酐技術性資料評估報告
  2. 環境資訊中心-懶人包:2013年順丁烯二酸(毒澱粉)事件(上) (下)

延伸閱讀:

-----廣告,請繼續往下閱讀-----
  1. 誰是毒澱粉專家?(1)談順丁烯二酸酐
  2. 誰是毒澱粉專家?(2)再談順丁烯二酸事件
  3. 食品添加劑的恐懼與理性之戰
  4. 哪一年才是食安元年?
-----廣告,請繼續往下閱讀-----
文章難易度
行政院環境保護署毒物及化學物質局_96
52 篇文章 ・ 10 位粉絲
行政院環境保護署毒物及化學物質局,落實毒物及化學物質之源頭管理及勾稽查核,從源頭預防管控食安風險,追蹤有害化學物質,維護國民健康。 網站:https://www.tcsb.gov.tw/

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
為什麼會有咬人的沙發?富馬酸二甲酯是抗黴良品還是毒藥?
行政院環境保護署毒物及化學物質局_96
・2017/12/20 ・2118字 ・閱讀時間約 4 分鐘 ・SR值 543 ・八年級

本文由行政院環境保護署毒物及化學物質局委託,泛科學企劃執行

撰文/陳衍達│自由寫手

試著想像一個情境:這天風光明媚,你終於從賣場把心中嚮往好久的那張沙發帶回家。移入客廳之後,你調整擺設角度、並放上可愛的花布抱枕,準備窩到新沙發上享受一整個下午悠閒時光…… 咦,奇怪?怎麼坐了幾個小時之後,身上有接觸到沙發表面的皮膚都開始紅腫發癢、出現像是發炎的症狀呢?

以上狀況曾真實發生在 2006 至 2008 年間的芬蘭、英國與法國,當時大規模的「接觸新購入沙發造成皮膚發炎事件」引起許多人關注。經追查發現,這些發生「沙發皮膚炎(sofa dermatitis)」的患者,主要從三家英國公司與一家法國公司購入沙發,再往源頭回溯,問題的根源竟是他們在中國的供應商。此供應商在製造家具時,使用了「富馬酸二甲酯(dimethyl fumarate)」抑制黴菌生長,然而這種化學物質容易誘發過敏,在歐盟地區更是被禁用的。

-----廣告,請繼續往下閱讀-----

該次沙發皮膚炎事件不但在媒體上被廣泛討論以外,也促使歐盟更新了原先的規定,除了在「境內」禁用富馬酸二甲酯以外,從境外輸入的民生物品每公斤殘留量也不得超過 0.1 毫克

2006至2008年間,歐洲發生大規模的「沙發皮膚炎」事件,經追查發現是由於部分沙發廠商引進添加了歐洲地區禁用的富馬酸二甲酯的沙發。(圖非當事沙發) 圖/ terimakasih0 @ Pixabay BY CC0

形相近,性相遠

究竟當年的事件主角 ── 富馬酸二甲酯是何方神聖?這個物質聽起來十分陌生(名字又意外地華麗),首先,讓我們試著從它的結構談起。

各物質結構式。製圖/ 鴨鴨 富馬酸二甲酯圖/ Edgar181 @ wikimedia, CC0 順丁烯二酸及反丁烯二酸結構式。圖/ Benjah-bmm27 @ wikimedia, CC0

-----廣告,請繼續往下閱讀-----

富馬酸二甲酯,又名反丁烯二酸二甲酯,不由得讓人想到我們之前介紹過的、曾被用來使珍珠維持Q彈口感的「順丁烯二酸。沒錯,富馬酸二甲酯的核心部分跟順丁烯二酸是化學上所謂的「順反異構物」;接在順丁烯二酸中心雙鍵兩端的大基團接在雙鍵的同一側,而富馬酸二甲酯上的兩個大基團則接在雙鍵兩端的對側。順丁烯二酸的俗名叫做馬來酸(maleic acid),而反丁烯二酸的俗名是富馬酸(fumaric acid)。值得注意的是,雖然只是雙鍵兩端連接的方式倒過來,化學性質卻有很大的不同,用途和毒性也不一樣。

順丁烯二酸可以讓珍珠變得有彈性,可是傷腎;反丁烯二酸是人體細胞進行呼吸作用時,克氏循環中的一個中間產物,毒性不高,在應用上,它則是法規核准使用的調味劑,也可當作金屬類營養添加劑搭配的陰離子。若從結構上觀察,富馬酸二甲酯是富馬酸上的兩個「羥基(-OH)」經酯化變成「甲氧基(-OCH3)」,可以做為除黴劑,具肝毒性,且會傷害免疫系統以及消化系統。

帶有毒性,卻可以入藥的富馬酸二甲酯

人體接觸富馬酸二甲酯的途徑有兩種,除了文章剛開始提到的皮膚接觸,還有經攝食進入體內,接觸可能像案例裡家具中殘留而造成過敏性的濕疹,攝入則可能抑制免疫系統以及傷害消化道。而富馬酸二甲酯抑制免疫系統的特性,在醫學上也會被用於一些自體免疫疾病,如多發性硬化症的治療

「等等,這一批符合標準嗎?」富馬酸二甲酯除了輸入臺灣前的書面審查,還會有邊境查驗喔!(邊境查驗示意圖)。 圖/ U.S. Department of Agriculture @ Flickr BY CC0

-----廣告,請繼續往下閱讀-----

暴露疑慮怎麼辦?先從源頭把關做起

雖然今日臺灣和歐洲皆有立法禁止將富馬酸二甲酯添加至食品中,但在其他地方尚少被列入黑名單,它也仍然因為優異的防黴性質在某些國家被廣泛使用,如家具、食品、飼料和皮革等較易發霉的產品。

為了避免大家接觸富馬酸二甲酯的風險,政府的配套措施除了在商品輸入至國內前的書面審查,進口後還會有邊境查驗,包括現場查核以及抽樣檢驗,把一些食品送到實驗室進行檢驗分析,所以基本上都不會有太大的疑慮喔!

 

新聞來源

參考資料

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
行政院環境保護署毒物及化學物質局_96
52 篇文章 ・ 10 位粉絲
行政院環境保護署毒物及化學物質局,落實毒物及化學物質之源頭管理及勾稽查核,從源頭預防管控食安風險,追蹤有害化學物質,維護國民健康。 網站:https://www.tcsb.gov.tw/

0

0
0

文字

分享

0
0
0
那些QQ的食物和不該出現的添加物「順丁烯二酸酐」 ──這就是所謂Q彈的代價?(下)
行政院環境保護署毒物及化學物質局_96
・2017/11/30 ・2374字 ・閱讀時間約 4 分鐘 ・SR值 560 ・八年級

本文由行政院環境保護署毒物及化學物質局委託,泛科學企劃執行

文/陳衍達 │ 自由寫手

在本文上篇,我們提到了珍珠的原料順丁烯二酸,以及它的糊化作用、口感 Q 彈的秘密;在下篇裡,則要更進一步,帶大家起來看看它的水解產物「順丁烯二酸酐」。

在上篇中我們提到,有些不肖業者會在珍珠或其他食品中違法加入順丁烯二酸,以防止澱粉分子結晶變硬、影響口感。圖/goodmami@flickr CC BY-SA 2.0

-----廣告,請繼續往下閱讀-----

恐慌的源頭:毒性

讓我們從 2013 年發生的順丁烯二酸(酐)化製澱粉事件、或稱毒澱粉事件開始談起。事實上,因為順丁烯二酸不是食品用料,所以欲添加這種成分的製造商只能從化工原料供應商進料。這麼做的第一個問題是,因為化工原料不是給人吃的,所以對雜質、副產物的安全衛生要求較低;第二則是順丁烯二酸本身的毒性。以現有的文獻來看,它的「急毒性」很小,且沒有有研究能指出其致癌性,不過部分動物實驗指出它對腎臟可能會造成傷害。

拉出國際標準來看,歐盟和美國都有針對順丁烯二酸及順丁烯二酸酐訂出成人每公斤體重的每日耐受量(Tolerable Daily Intake,TDI,也就是一天吃進多少是可以接受的範圍),分別是 0.5 毫克以及 0.1 毫克。

如果用當時衛生署在 2013 年 5 月 13 日首度公布的黑輪檢驗結果最高濃度 494 ppm 來算,一個體重 60 公斤的成人在兩種標準下的每日耐受量分別是 30 毫克以及 6 毫克;也就是說,一天只要分別食入 61 克或是 13 克的該產品便會超標。不過,TDI 預設的標準是「每天」攝入的物質量,雖然這個事件波及的範圍甚廣(板條、肉圓、黑輪、粉圓、豆花、粉粿、芋圓及地瓜圓),只要不是天天吃,基本上不會有太大的健康疑慮喔!

國家環境毒物研究中心也因應此事件,彙整出一份「順丁烯二酸與酸酐技術性資料評估報告」,內容相當完整,提供給想更深入了解的人參考。

2013 年毒澱粉事件發生時,部分肉圓曾被檢驗出含有順丁烯二酸酐(示意圖,非事件肉圓)。圖/Oldowlnest@wikimedia BY CC4.0

-----廣告,請繼續往下閱讀-----

違法疑慮:食品添加物使用範圍及限量暨規格標準

由於澱粉經化學處理的程序可能會有殘留非食用性或不適合食用的物質,修飾澱粉(法規上稱之「化製澱粉」)不一定都能用在食品上,各國對修飾澱粉的使用範圍更是有所規範。

在臺灣,食品添加物皆為正面表列(也就是列出可以使用的才能用),而順丁烯二酸並不包含在 2013 年公布的「食品添加物使用範圍及限量暨規格標準」中的 21 項准用之食用化製澱粉品項裡面(編按:檔案下載後將副檔名改為 .doc 即可開啟),因此,在食品中使用順丁烯二酸化製澱粉是違法的。然而,法令的約束力往往鞭長莫及,部分廠商基於提升產品性能的需求,仍可能知法犯法。而在長長的供應鏈中,食藥局(現食藥署)並沒辦法管制到原本就不該出現在食品中,原先並無明確管轄單位的的順丁烯二酸,造成「順丁烯二酸(酐)化製澱粉」的使用範圍,幾乎是全國淪陷。

順丁烯二酸化製澱粉主要被用於有Q彈需求的食物,包括粄條、肉圓、芋園/地瓜園、珍珠/豆花、粉粿、黑輪/天婦羅等。(圖中食物僅為示意,皆非使用順丁烯二酸化製澱粉製成) 製作/ 鴨鴨 粄條圖/ Vmenkov @ wikimedia,CC BY-SA 3.0 肉圓圖/ MGA73bot @ wikimedia,CC BY 3.0 芋圓圖/ haylei wu @ Flickr,CC0 珍珠豆花圖/ Hao-wei Hsu @ Flickr,CC BY 2.0  粉粿圖/ Blowing Puffer Fish @ Flickr,CC BY2.0 黑輪圖/ Ocdp @ wikimedia,CC0

順丁烯二酸(酐)化製澱粉事件對臺灣社會造成相當大的衝擊,雖然帶來一定程度的恐慌,卻也促成懸宕已久的《食品衛生管理法》修正草案迅速完成修法,對後續的衛生署改制、《毒性物質管理法》修法以及「食品業者登錄辦法」的訂定也都發揮了催化劑的效果。當然沒有人希望食安事件發生,然而換個角度想,人們若能在恐慌之餘痛定思痛,或許也能讓臺灣的食安體系建置得越來越完整。

-----廣告,請繼續往下閱讀-----

好的,介紹到這裡也差不多進入尾聲了。在這兩篇文章中,我們分析了順丁烯二酸如何讓珍珠 Q 彈得更久,也提到這個物質的毒性疑慮,介紹了順丁烯二酸酐的應用和小歷史,並簡述順丁烯二酸(酐)化製澱粉事件的影響,希望大家閱讀完後,也能更了解這兩項物質!

編按:順丁烯二酸酐現已依毒性化學物質列管為第四類毒化物,無論製造、輸入、使用、販賣等,都需申請核可才可以運作,而且必須定期申報運作情形,透過上述核可及申報制度,可以瞭解其流向,此外,需在容器包裝上標示「禁止用於食品」,以降低物流用的可能。

 

參考資料:

  1. 國家環境毒物研究中心-順丁烯二酸與酸酐技術性資料評估報告
  2. 環境資訊中心-懶人包:2013年順丁烯二酸(毒澱粉)事件(上) (下)

延伸閱讀:

  1. 誰是毒澱粉專家?(1)談順丁烯二酸酐
  2. 誰是毒澱粉專家?(2)再談順丁烯二酸事件
  3. 食品添加劑的恐懼與理性之戰
  4. 哪一年才是食安元年?
-----廣告,請繼續往下閱讀-----
文章難易度
行政院環境保護署毒物及化學物質局_96
52 篇文章 ・ 10 位粉絲
行政院環境保護署毒物及化學物質局,落實毒物及化學物質之源頭管理及勾稽查核,從源頭預防管控食安風險,追蹤有害化學物質,維護國民健康。 網站:https://www.tcsb.gov.tw/

0

0
0

文字

分享

0
0
0
珍珠變Q變硬的秘密: 順丁烯二酸化學澱粉 ──這就是所謂Q彈的代價?(上)
行政院環境保護署毒物及化學物質局_96
・2017/11/28 ・3451字 ・閱讀時間約 7 分鐘 ・SR值 492 ・五年級

-----廣告,請繼續往下閱讀-----

本文由行政院環境保護署毒物及化學物質局委託,泛科學企劃執行

文/陳衍達 │ 自由寫手

從早期的泡沫紅茶,到現今的珍珠奶茶與各式新奇飲品,「手搖飲料」絕對是臺灣庶民文化重要的一環,你總可以在轉角處找到一家飲料店,甚至輸出至世界各地,讓人旅遊或留學時遇見了有種他鄉遇故知的感動。然而近年來,濃縮果汁混摻塑化劑(2011 年)、毒澱粉(2013 年)和茶葉農藥殘留(2015 年)等食安事件,讓手搖飲料蒙上了陰影;其中,佔有靈魂地位的珍珠和波霸被捲入的「順丁烯二酸(酐)化製澱粉」事件,就讓從小愛喝波霸烏龍茶的筆者傷透了心Q。

source:poppet with a camera

-----廣告,請繼續往下閱讀-----

不過,不肖業者為何要在食品中違法添加這種物質呢?它會在風味與健康上造成什麼影響?我們將分成上下兩篇文章,為大家介紹順丁烯二酸和順丁烯二酸酐。

長很像,用途卻大不同的兄弟檔

順丁烯二酸(左)與順丁烯二酸酐(右)。 左圖/ Benjah-bmm27 @ wikimedia, CC0 右圖/ Su-no-G @ wikimedia, CC0

順丁烯二酸又稱馬來酸,是可以解離出兩個質子的有機酸,它的骨架由四個碳原子串接而成,中間兩個碳以雙鍵連接。在工業上有時會被用作甲酯類黏著劑的增黏劑,或和一些藥物結合增加其穩定性。順丁烯二酸的脫水產物 「順丁烯二酸酐」則可以用作聚酯樹脂以及農藥馬拉松(malathion,註)等物質的前驅物。西元 1928 年,德國化學家 Otto Diels 和 Kurt Alder 發現了Diels-Alder反應,當時使用的反應物就是順丁烯二酸酐以及環戊二烯,而後他們也在 1950 年因此獲得諾貝爾化學獎。

Diels 和 Alder在 1928 年發表了雙烯加成反應,而後大家都稱它為 Diels-Alder 反應,當時在期刊上發表的結構是都是由相當簡單的斜線和直線繪成。 圖/by Mazhe2@ wikimedia

-----廣告,請繼續往下閱讀-----

珍珠 Q 彈的秘密

手搖飲料中的「珍珠」多半以樹薯粉(tapioca)為主要原料製成,在沸水中滾一陣子,會產生糊化反應(gelatinization),對水分的通透性變高、吸水膨脹,變得柔軟,和米粒煮熟會變軟的原理很像。人體每日所需的熱量主要由碳水化合物(醣類)提供,而這些碳水化合物主要以澱粉的形式被我們吃進去。澱粉是把數百到數千個葡萄糖單體串在一起的長鏈醣類,如果串起來的結構是線性沒有分岔,我們稱它為直鏈澱粉;而有的澱粉會有許多分岔,成為所謂的支鏈澱粉。

這個結構上的差異會造成食物口感上的不同:直鏈澱粉含量高的食品口感偏硬,且經烹煮後仍粒粒分明;支鏈澱粉較多的煮過後則比較軟、黏而有彈性,像是臺灣主流的粳米(蓬萊米、糯米等,支鏈澱粉約佔 80-100%)和東南亞的秈米(泰國香米、印度香米等,支鏈澱粉約佔 69-77%)相比,前者因為支鏈澱粉比例較高,所以吃起來比較軟,煮太久還可能黏在一起。樹薯(cassava)的支鏈澱粉含量和粳米差不多。起鍋後,通常會用冰水或冷水冰鎮,使珍珠表面的澱粉稍微結晶(也就是變硬),塑造出具有彈性嚼勁的口感。

珍珠奶茶中珍珠的 Q 彈口感,來自澱粉的糊化反應。圖/Oqmilteashop@wikimedia BY CC3.0

不過,很多人大概都有過一個經驗:珍珠在飲料裡泡了一陣子,變得軟爛、失去彈性;若放入冰箱保存,又會變硬不好吃。前者正是因為糊化反應,雖然在冰水中發生得比較緩慢,但時間久了還是會明顯感受到口感變軟爛;後者類似冰鎮珍珠的原理,澱粉在低溫下會慢慢「結晶」,把分子間部份的水分擠出去而變得紮實,在口感上就會變得較硬而脆。

-----廣告,請繼續往下閱讀-----

為了解決這個問題……

修飾澱粉登場了!

人們會根據不同的目的,對澱粉做出不同的化學處理,例如加酸或澱粉酶製造糊精,或是修飾上醋酸根加速產品的吸水速度,而這樣調整過的原料,我們稱之為修飾澱粉。以「珍珠糊掉事件」為例,原本製作珍珠時應用的結晶和糊化反應裡,主角只有澱粉和水,它們的結合和分離只靠氫鍵,很容易受溫度影響;但是商人們找到另一種物質 ── 順丁烯二酸(或稱馬來酸,maleic acid),它的結構上有兩個羧基(-COOH),可以和澱粉上面的羥基(-OH)進行交聯聚合反應,形成較不易因為溫度變化而接上或斷裂的共價鍵。鍵結能讓澱粉分子們保持在一定的距離內,不能順利結晶變硬,卻也不會因為泡水太久而糊掉。

讓我們再次回到分子式,順丁烯二酸有兩個羧基,經過脫水縮合之後就變成了順丁烯二酸酐。在和澱粉進行交聯聚合反應時,水中存在的以順丁烯二酸佔絕大多數,但廠商進料的時候大多是進順丁烯二酸酐,這是因為順丁烯二酸酐的應用遠比順丁烯二酸多,所以產量比較大,而且加到水裡之後也能自動水解成能進行反應的順丁烯二酸。

珍珠Q彈的秘密。 製作/ 鴨鴨  水分子圖/ Lopossumi~commonswiki @ wikimedia,CC0 笑臉圖/ Unknown @ GoodFreePhotos,CC0 澱粉結構圖/ NEUROtiker @ wikimedia,CC0 順丁烯二酸結構圖/ Benjah-bmm27 @ wikimedia,CC0 螃蟹圖/ python @ Pixabay,CC0

-----廣告,請繼續往下閱讀-----

到現在為止可能還有點複雜,讓我們用上面這張圖來複習一下吧!

(1)這是一顆還沒煮熟的粉圓。(2)放大來看,其實上面有很多澱粉分子,(3)再拉進一點會發現它是一個個葡萄糖用共價鍵串起來的,各個支鏈之間會有一定程度的(4)氫鍵和凡得瓦力(這裡不顯示),其中氫鍵受溫度影響很大,熱的時候比較不穩定,冷的時候吸引力比較強。

(5)在沸水中滾一陣子後,支鏈間的氫鍵變弱,原本結構較為緊密的澱粉分子鬆開,讓外界的水分子有機可乘鑽到中間的空洞,是為糊化反應,(6)然後它會膨脹。冷卻的時候因為水分子也可以和澱粉上的羥基形成氫鍵,所以就卡在裡面了。煮透之後冰鎮一下下,表面的分子間及分子內氫鍵變強,珍珠變得較有彈性。

(7)如果泡在飲料裡太久,水分子還是有機會塞進澱粉支鏈間的空洞,讓珍珠變得ㄋㄨㄚˇㄋㄨㄚˊ。(8)如果冰進冰箱,澱粉分子會慢慢擠出水分變回原本較緊密的結構,變得稍微硬而脆。(9)如果加入順丁烯二酸,它有兩個反應位,像螃蟹一樣。(10)會和澱粉分子產生交聯聚合反應再澱粉支鏈間架橋撐住,讓它不會太鬆散或者太緊密,這樣一來,珍珠就能青春永駐了

更棒的是,這項改良除了對珍珠愛好者與製造者們來說是天大的好消息,還能夠推廣至所有有「Q 彈需求」的製品,包括肉圓、粄條等等。超厲害的功能加上諾貝爾獎加持,順丁烯二酸和它的脫水好夥伴簡直好棒棒。感謝吧!讚美吧!讓我們歡欣鼓舞的慶祝吧!但是,想是這麼想,我們還是得稍微踩個煞車,環顧一下所有現實面的問題……

什麼問題呢?讓我們在下篇繼續說吧! –> 毒澱粉,這就是所謂Q彈的代價?(下)

編按:順丁烯二酸現已依毒性化學物質列管為第四類毒化物,無論製造、輸入、使用、販賣等,都需申請核可才可以運作,而且必須定期申報運作情形,透過上述核可及申報制度,可以瞭解其流向,此外,需在容器包裝上標示「禁止用於食品」,以降低物流用的可能。

 

註:連結中使用的馬拉松前驅物是順丁烯二酸二乙酯,其可由丁烯二酸酐製備,故在此我仍稱順丁烯二酸酐是馬拉松的前驅物。

-----廣告,請繼續往下閱讀-----

 

參考資料:

  1. Major Differences-Difference between Japonica and Indica rice
  2. Food-info.net-Starch
  3. 維基百科-Modified starch
  4. 科學月刊-認識順丁烯二酸
  5. 上下游-從工廠到餐桌:順丁烯二酸的上下游之旅
  6. Diels, O.; Alder, K. (1928). “Synthesen in der hydroaromatischen Reihe, I”. Justus Liebigs Annalen der Chemie. 460: 98–122.

 

-----廣告,請繼續往下閱讀-----
行政院環境保護署毒物及化學物質局_96
52 篇文章 ・ 10 位粉絲
行政院環境保護署毒物及化學物質局,落實毒物及化學物質之源頭管理及勾稽查核,從源頭預防管控食安風險,追蹤有害化學物質,維護國民健康。 網站:https://www.tcsb.gov.tw/

0

0
0

文字

分享

0
0
0
那些QQ的食物和不該出現的添加物「順丁烯二酸酐」 ──這就是所謂Q彈的代價?(下)
行政院環境保護署毒物及化學物質局_96
・2017/11/30 ・2374字 ・閱讀時間約 4 分鐘 ・SR值 560 ・八年級

本文由行政院環境保護署毒物及化學物質局委託,泛科學企劃執行

文/陳衍達 │ 自由寫手

在本文上篇,我們提到了珍珠的原料順丁烯二酸,以及它的糊化作用、口感 Q 彈的秘密;在下篇裡,則要更進一步,帶大家起來看看它的水解產物「順丁烯二酸酐」。

在上篇中我們提到,有些不肖業者會在珍珠或其他食品中違法加入順丁烯二酸,以防止澱粉分子結晶變硬、影響口感。圖/goodmami@flickr CC BY-SA 2.0

-----廣告,請繼續往下閱讀-----

恐慌的源頭:毒性

讓我們從 2013 年發生的順丁烯二酸(酐)化製澱粉事件、或稱毒澱粉事件開始談起。事實上,因為順丁烯二酸不是食品用料,所以欲添加這種成分的製造商只能從化工原料供應商進料。這麼做的第一個問題是,因為化工原料不是給人吃的,所以對雜質、副產物的安全衛生要求較低;第二則是順丁烯二酸本身的毒性。以現有的文獻來看,它的「急毒性」很小,且沒有有研究能指出其致癌性,不過部分動物實驗指出它對腎臟可能會造成傷害。

拉出國際標準來看,歐盟和美國都有針對順丁烯二酸及順丁烯二酸酐訂出成人每公斤體重的每日耐受量(Tolerable Daily Intake,TDI,也就是一天吃進多少是可以接受的範圍),分別是 0.5 毫克以及 0.1 毫克。

如果用當時衛生署在 2013 年 5 月 13 日首度公布的黑輪檢驗結果最高濃度 494 ppm 來算,一個體重 60 公斤的成人在兩種標準下的每日耐受量分別是 30 毫克以及 6 毫克;也就是說,一天只要分別食入 61 克或是 13 克的該產品便會超標。不過,TDI 預設的標準是「每天」攝入的物質量,雖然這個事件波及的範圍甚廣(板條、肉圓、黑輪、粉圓、豆花、粉粿、芋圓及地瓜圓),只要不是天天吃,基本上不會有太大的健康疑慮喔!

國家環境毒物研究中心也因應此事件,彙整出一份「順丁烯二酸與酸酐技術性資料評估報告」,內容相當完整,提供給想更深入了解的人參考。

2013 年毒澱粉事件發生時,部分肉圓曾被檢驗出含有順丁烯二酸酐(示意圖,非事件肉圓)。圖/Oldowlnest@wikimedia BY CC4.0

-----廣告,請繼續往下閱讀-----

違法疑慮:食品添加物使用範圍及限量暨規格標準

由於澱粉經化學處理的程序可能會有殘留非食用性或不適合食用的物質,修飾澱粉(法規上稱之「化製澱粉」)不一定都能用在食品上,各國對修飾澱粉的使用範圍更是有所規範。

在臺灣,食品添加物皆為正面表列(也就是列出可以使用的才能用),而順丁烯二酸並不包含在 2013 年公布的「食品添加物使用範圍及限量暨規格標準」中的 21 項准用之食用化製澱粉品項裡面(編按:檔案下載後將副檔名改為 .doc 即可開啟),因此,在食品中使用順丁烯二酸化製澱粉是違法的。然而,法令的約束力往往鞭長莫及,部分廠商基於提升產品性能的需求,仍可能知法犯法。而在長長的供應鏈中,食藥局(現食藥署)並沒辦法管制到原本就不該出現在食品中,原先並無明確管轄單位的的順丁烯二酸,造成「順丁烯二酸(酐)化製澱粉」的使用範圍,幾乎是全國淪陷。

順丁烯二酸化製澱粉主要被用於有Q彈需求的食物,包括粄條、肉圓、芋園/地瓜園、珍珠/豆花、粉粿、黑輪/天婦羅等。(圖中食物僅為示意,皆非使用順丁烯二酸化製澱粉製成) 製作/ 鴨鴨 粄條圖/ Vmenkov @ wikimedia,CC BY-SA 3.0 肉圓圖/ MGA73bot @ wikimedia,CC BY 3.0 芋圓圖/ haylei wu @ Flickr,CC0 珍珠豆花圖/ Hao-wei Hsu @ Flickr,CC BY 2.0  粉粿圖/ Blowing Puffer Fish @ Flickr,CC BY2.0 黑輪圖/ Ocdp @ wikimedia,CC0

順丁烯二酸(酐)化製澱粉事件對臺灣社會造成相當大的衝擊,雖然帶來一定程度的恐慌,卻也促成懸宕已久的《食品衛生管理法》修正草案迅速完成修法,對後續的衛生署改制、《毒性物質管理法》修法以及「食品業者登錄辦法」的訂定也都發揮了催化劑的效果。當然沒有人希望食安事件發生,然而換個角度想,人們若能在恐慌之餘痛定思痛,或許也能讓臺灣的食安體系建置得越來越完整。

-----廣告,請繼續往下閱讀-----

好的,介紹到這裡也差不多進入尾聲了。在這兩篇文章中,我們分析了順丁烯二酸如何讓珍珠 Q 彈得更久,也提到這個物質的毒性疑慮,介紹了順丁烯二酸酐的應用和小歷史,並簡述順丁烯二酸(酐)化製澱粉事件的影響,希望大家閱讀完後,也能更了解這兩項物質!

編按:順丁烯二酸酐現已依毒性化學物質列管為第四類毒化物,無論製造、輸入、使用、販賣等,都需申請核可才可以運作,而且必須定期申報運作情形,透過上述核可及申報制度,可以瞭解其流向,此外,需在容器包裝上標示「禁止用於食品」,以降低物流用的可能。

 

參考資料:

  1. 國家環境毒物研究中心-順丁烯二酸與酸酐技術性資料評估報告
  2. 環境資訊中心-懶人包:2013年順丁烯二酸(毒澱粉)事件(上) (下)

延伸閱讀:

  1. 誰是毒澱粉專家?(1)談順丁烯二酸酐
  2. 誰是毒澱粉專家?(2)再談順丁烯二酸事件
  3. 食品添加劑的恐懼與理性之戰
  4. 哪一年才是食安元年?
-----廣告,請繼續往下閱讀-----
文章難易度
行政院環境保護署毒物及化學物質局_96
52 篇文章 ・ 10 位粉絲
行政院環境保護署毒物及化學物質局,落實毒物及化學物質之源頭管理及勾稽查核,從源頭預防管控食安風險,追蹤有害化學物質,維護國民健康。 網站:https://www.tcsb.gov.tw/