0

0
0

文字

分享

0
0
0

史上首次錄音|科學史上的今天:12/6

張瑞棋_96
・2015/12/06 ・759字 ・閱讀時間約 1 分鐘 ・SR值 524 ・七年級

1877年的今天,愛迪生在新澤西州的門洛帕克實驗室(Menlo Park Lab)裡居然難得開了嗓子,唱起《瑪莉有隻小綿羊》這首兒歌。倒不是因為他今天心情特好,他是為了測試他所發明的留聲機原型機。

愛迪生與其發明的留聲機。圖片來源:wikimedia

這台留聲機的原理是讓薄膜上的針頭隨著聲音震動,而在包於圓筒上的錫箔刻出凹凸不平的刻痕。之後再轉動圓筒讓針頭從頭滑過刻痕,薄膜因而隨之震動,就能還原出剛剛錄下的聲音。

當留聲機回放出愛迪生的歌聲時,嚴重耳聾的愛迪生根本聽不見播出來的微弱聲音,他是看到助手雀躍的神情才知道實驗成功。於是1877年12月6日這一天不但是留聲機發明的日子,愛迪生這段8秒鐘的錄音也成為人類史上首次成功保留下來的聲音。

不過嚴格來說,更早之前就有人將聲音紀錄下來。1860年4月9日,法國書商與印刷商斯寇特(Édouard-Léon Scott)就用他自己發明的「聲波自動記錄器」(Phonautograph)記錄了自己唱的法國童謠《皎潔月光下》。它的原理和愛迪生的留聲機類似,差別在於用的是燻了煤煙的紙,而不是錫箔,因此只會把紙上的煤灰刮掉而留下聲波的波形,無法再將聲音波放出來。

-----廣告,請繼續往下閱讀-----

所以單純就留下聲音的紀錄而言,斯寇特所唱的《皎潔月光下》算是史上的首次錄音,然而就錄音的目的而言,愛迪生的錄音因為可以立即原音重現,才算真正具有意義。不過諷刺的是,因為每次播放,針頭多少又會破壞錫箔本身,所以愛迪生這首「瑪莉有隻小綿羊」並未保存下來。而2008年科學家成功地用電腦軟體將《皎潔月光下》的波形還原成聲音,反倒是斯寇特粗造難辨的歌聲永遠流傳下來了。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
張瑞棋_96
423 篇文章 ・ 998 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
唱片之父:貝利納與他的唱盤留聲機——《資訊大歷史》
azothbooks_96
・2022/07/02 ・3145字 ・閱讀時間約 6 分鐘

埃米爾.貝利納

埃米爾.貝利納(Emil Berliner),1851 年 5 月 20 日至 1929 年 8 月 3 日。

如果你是一位古典音樂發燒友,那麼一定聽過德意志唱片公司的鼎鼎大名。這家公司成立於 1898 年,是世界上最早的古典音樂廠商,它的創始人正是唱盤留聲機的發明者——埃米爾.貝利納。貝利納是出色的發明家兼企業家,是當之無愧的「唱片之父」。到目前為止,世界最知名的幾大唱片商標幾乎都與他有關聯。

愛迪生是個具有商業頭腦的發明家,他很在意一項發明的商業前景,因此根本不會花精力去推廣那個音質不太好、用幾次就壞的留聲機。這和他大力推廣照明系統形成了鮮明的對比。

不過,在研究錄音和揚聲裝置的過程中,愛迪生不斷改進揚聲器的語音品質,並將很多的專利授權給了做電話的貝爾。雖然貝爾對留聲機比較感興趣,也改進過愛迪生發明的留聲機,但效果也不是十分理想。

延伸閱讀:愛迪生誕辰|科學史上的今天:2/11

要製造出一種實用的、大家真正願意購買的留聲機,就需要搞清楚聲音中到底包含了哪些資訊,然後將它們不失真地記錄下來;同時,還需要把記錄下來的聲音資訊大量複製,賣給大眾。

早在十七世紀,伽利略就發現聲音和振動相關,這種機械振動在空氣中以波的形式傳播,傳入我們的耳朵,就是聲音。振動的頻率越高,我們聽到的聲音就越高,人們甚至可以通過調整琴弦振動的頻率,發出不同的音高。但是人們並不知道為什麼每個語音聽起來都不一樣,為什麼 a 聽起來是 a,不會是 o。到了十九世紀初,法國數學家和流體力學家傅立葉(Jean Baptiste Joseph Fourier)發明了傅立葉轉換,它可以將任何波動信號變成很多單一頻率的波動信號(正弦波)的組合。

-----廣告,請繼續往下閱讀-----

延伸閱讀:無所不能的傅立葉轉換:傅立葉誕辰|科學史上的今天:3/21

這其實揭示了各種複雜聲音的本質,就是各種單一頻率聲音的組合。a 的聲音和 o 的聲音裡面都包含了很多相同頻率的波動信號,但是它們的組合方式不同。a 在某個頻率上音量特別大,而在另外一些頻率音量特別小;相反的,o 在另外一些頻率上音量比較大,因此它們聽起來並不相同。

要想清晰完整記錄聲音的資訊,記錄聲音振動的儀器就需要足夠精確地把不同頻率聲音的變化都記錄下來。同樣的,要想讓揚聲器播放的聲音十分逼真,就需要它振動的頻率範圍和人發音的頻率範圍一致。愛迪生其實僅解決了第二個問題,但是沒能很好地解決第一個問題,即他不能準確地把這種頻率的聲音都記錄下來。

解決第一個問題的,是美籍德裔發明家貝利納(Emile Berliner)。一八七○年,十九歲的貝利納為了躲避普法戰爭,隨著父母全家移民到了美國。貝利納剛到美國時做的是收入最低的工作,包括洗碗和送報。但是出於對發明的興趣,他很快就在電話和留聲設備研發方面嶄露頭角。他改進了電話話筒,並因此獲得專利。這個專利被貝爾買走,隨後他也就順理成章成為貝爾電話公司的一名工程師。

一八八六年,貝利納開始研究留聲機。他把一個圓盤均勻塗上石蠟,然後用一根針在石蠟上記錄聲音的振動。由於圓盤的旋轉比圓筒要穩定許多,而且堅硬的細針在石蠟上劃過時,可以準確記錄下各種頻率聲音振動時的細節,因此從一開始,貝利納研製的留聲機的聲音品質就比愛迪生的好很多。更重要的是,圓盤很容易生產,這種留聲機記錄聲音的材料成本要比愛迪生的低得多。

-----廣告,請繼續往下閱讀-----

愛迪生是一個在發明權方面從不讓步的人。他和貝利納打了一場曠日持久的官司,最終獲勝。然而,他的那種圓筒式留聲機雖然後來也改進了聲音品質,但實在不便於普及,很快就在市場上消失了。

在和愛迪生打官司期間,貝利納在柏林開辦了一家唱片公司,這就是著名的「德意志留聲機公司」(Deutsche Gramophone)。直到今天這家公司的黃色商標,依然被音樂發燒友視為唱片高品質的象徵。

德意志留聲機公司(Deutsche Gramophone)的商標。 圖/wikimedia

貝利納還發明了一種大量複製唱片的方法。他在圓形鋅片上塗上石蠟,在錄音時,聲音振動控制的錄音針就會劃去鋅片上的石蠟,然後將鋅片用酸腐蝕,被劃掉石蠟的部分就會被腐蝕出聲道。這樣就得到了唱片的母盤,之後就能大量地複製唱片了,唱片的成本低到工薪階層的家庭完全能夠支付得起。

進入二十世紀,馬可尼在無線電報上的成功讓一些發明家開始嘗試使用無線電傳輸語音和音樂信號。人們將聲音的頻率和振幅載入到固定頻率的無線電波上,並隨著無線電波一同被發送到遠方。在接收端,接收機再將聲音信號從無線電波中分離出來。

-----廣告,請繼續往下閱讀-----

一九○六年十二月,美國發明家和企業家費森登(Reginald Fessenden)開始了無線電廣播業務,播放音樂和一些音訊節目。但是由於沒有很好的接收機,這種廣播失真嚴重,而且一台接收機只能接收很低頻率的信號,因此也無法普及。

貝利納研製的留聲機。圖/Wikipedia

人們在進行無線電廣播時認識到,在資訊傳輸中存在一個必須解決的大問題,那就是信號的失真和被干擾。雖然在進行有線傳輸或者無線電報發送時,資訊失真的問題也普遍存在,但是大家對它的認識只局限於信號「足夠好」或者「不太好」。如果是前一種情況,大家就認為此時能夠進行通信;如果是後一種情況,大家就認為此時通信中斷了。

但是到了無線電廣播時,人們發現,儘管收到的語音能夠辨識,但是和說話人的語音聽起來完全不同。至於干擾,有線通信是不容易被干擾的,因為每個設備之間都有自己專用的線路;但是無線通訊則不同,電磁波在經過大氣時,會被自然界本身的電磁波干擾,接收到的信號中混有大量雜訊,有時雜訊甚至比信號還強,以至無法準確辨識信號。

那時還沒有關於資訊失真和雜訊的理論,我們今天常說的失真率、信噪比,都是在資訊理論出來之後才被普遍接受的概念。當時的工程師只能靠摸索來消除失真和雜訊的影響,但是效果並不理想。

-----廣告,請繼續往下閱讀-----

這種情況在兩個發明出現之後才得到有效的改善:一是一九○七年美國科學家德福里斯特(Lee de Forest)發明了電子三極管;二是一九一七年法國發明家萊維(Lucien Lévy)提出了超外差式接收原理。之後,馬可尼及時將業務轉移到無線電廣播上來,他在英美等國迅速建立起無線電臺,並在全世界銷售收音機。

一九二○年六月,英國馬可尼公司利用廣播轉播了音樂會的盛況。同年,美國西屋電氣公司的廣播站利用廣播報導了總統選舉的情況。

留聲機和無線電廣播的出現大幅度豐富了人們的生活,大眾可以藉由它們欣賞高水準的音樂和文藝節目,同時,人們獲取資訊的方式也從閱讀報刊書籍逐漸變為聽廣播。當然,人類也從此開始記錄文字以外的資訊。

今天,我們能夠聽到邱吉爾在二戰時的精彩演說,以及馬丁.路德在半個世紀前呼籲人權平等的聲音。那些聲音所傳達給人們的資訊,不僅包括演說的內容,還有他們豐富的情感,這是在留聲機出現前人們完全無法想像的。

-----廣告,請繼續往下閱讀-----

當然,對人類來說,更豐富的資訊是在圖片中。

——本文摘自《資訊大歷史:人類如何消除對未知的不確定》,2022 年 6 月,漫遊者文化,未經同意請勿轉載。

azothbooks_96
53 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

0

16
0

文字

分享

0
16
0
誰才是《電流大戰》的最終贏家?那些電影也沒說的幕後秘辛
張瑞棋_96
・2019/07/19 ・4596字 ・閱讀時間約 9 分鐘 ・SR值 520 ・七年級

《電流大戰(The Current War)》這部電影,講的是交流電與直流電這兩種電力系統的攻防戰。如果你對特斯拉與愛迪生之間的恩怨情仇略有所知,一定有興趣看看《電流大戰》如何講述這段歷史。而如果你還是班奈狄克·康柏拜區(Benedict Cumberbatch)的粉絲,更會對他主演的這部新作充滿期待。

但如果你兩者皆是,那麼可能會和我一樣在內心哀號:「為什麼 BC 飾演的竟然是愛迪生,而不是特斯拉!」尤其《電流大戰》的試映會恰恰就在七月十日,特斯拉冥誕這一天(編按:《電流大戰》於台灣正式的上映時間為七月十九日)。

「為什麼 BC 飾演的竟然是愛迪生,而不是特斯拉!」(內心哀號)。圖/IMDb

———- 編按:以下有雷,介意的話看完電影再進來喔(雖然談的都是歷史,說有雷感覺哪裡怪怪的 XD)———-

為什麼會如此哀號?愛迪生不是發明電燈,造福世界的偉人嗎?沒錯,從小課本告訴我們愛迪生如何努力不懈,才成為「發明大王」。

-----廣告,請繼續往下閱讀-----

但課本沒說的是,真正點亮世界,並讓人類進入電氣世界的關鍵人物其實是特斯拉,而不是愛迪生。而且,愛迪生還為了商業利益打壓特斯拉、用盡手段阻撓交流電系統的推展。所以,我們當然希望康柏拜區飾演悲劇英雄特斯拉,而不是唯利是圖的愛迪生,對吧?

不過看完電影才發現,其實特斯拉在這部片子裡的戲份並不多。因為就像片中一位角色所說的,在這場直流電與交流電之戰中,背後真正的推動力量不是電流(current),而是金錢(currency)。

因此這部電影的主軸在於西屋電氣老闆威斯汀豪斯(George Westinghouse)與愛迪生的企業鬥爭,而不是特斯拉與愛迪生的個人恩怨。這雖然不免令人有些遺憾,不過相對而言,我們卻能循著這個脈絡來理解這場電流大戰,並進而釐清許多錯誤的迷思。

特斯拉在這部片子裡的戲份並不多,就連預告片也是在最後一秒才出現。圖/imdb

迷思一:電燈是愛迪生發明的?

很多人到現在都還以為是愛迪生發明了電燈,人類才開始用電力產生燈光,其實不然。首先,早在 1802 年,英國的戴維爵士(Sir Humphry Davy)就在英國皇家學會展示,鉑絲通電後會發出微微的亮光。當然這微弱的亮度不足以照明,但七年之後,戴維再次登台展示,他這次用兩千張鋅片與銅片所組成的伏打堆電池,接上兩根碳棒,在兩根碳棒之間製造出約十公分長的耀眼弧光。

-----廣告,請繼續往下閱讀-----

這亮度遠勝當時的煤氣燈,因而激勵許多科學家陸續投入弧光燈的研究。因此如果電燈的定義是指由電力產生的人工照明,那麼在愛迪生發明電燈的七十年以前,就已經有電燈了(註一)。

戴維爵士拉開研究弧光燈的序幕。圖/wikimedia

即使不算弧光燈,只考慮適合居家照明的白熾燈泡,愛迪生也不是最先發明的人。從一八三零年代起,包括英國、比利時、法國、美國等地,就都有科學家相繼研發白熾燈泡,基本上都不脫在真空的玻璃燈泡內安裝燈絲,通電後讓燈絲發亮。

愛迪生雖然於 1880 年取得燈泡專利,但他的燈泡也是同樣這種架構;這也是為什麼後來愛迪生發現西屋電氣逐漸壯大,而於 1885 年提出侵犯燈泡專利的告訴,並在七年後贏得勝訴後,西屋只要避開愛迪生的螺紋燈座設計,改採按壓式的彈簧夾燈座就沒事了。

由愛迪生繪製的燈泡草圖。圖/wikipedia

當然,愛迪生的貢獻也不容抹滅。畢竟他也是試驗了無數種材料,最後才終於發現碳化的竹絲最耐久;而如何改善抽真空的技術與大量生產的製程,也是有他的獨到之處。不過,就像其它科學發明,電燈的發明也是許多前人累積的成果,決不是愛迪生一人的功勞。

-----廣告,請繼續往下閱讀-----

迷思二:特斯拉發明交流電?

對於這場電流大戰的描述,我們看到的大多是以特斯拉為交流電的代表人物,因此可能在腦中埋下特斯拉發明交流電的印象。但其實交流電早就有了。

1820 年,丹麥的大學教授奧斯特(Hans C. Ørsted)在授課時,偶然發現電線接上電池時,竟然造成一旁羅盤的指針轉動,因而發現電流會產生磁場,首度揭露電場與磁場有關。那麼反過來,磁場也會產生電流嗎?

許多科學家拼命做實驗就是試不出來,直到 1831 年,戴維過世兩年後,原本擔任他助手的法拉第(Michael Faraday)才發現原來磁場變動才會產生電流。法拉第運用這電磁感應的原理,做出世上第一台發電機(雖然要用手搖),而它所發的電就是交流電。這是因為當磁場的南北極反轉時,導線上的感應電流方向也會反轉,而既然磁場必須不斷變換才能一直產生感應電流,那麼電流方向當然也就不斷來回變換。

法拉第承繼戴維爵士的研究,做出世上第一台手搖式交流發電機。圖/wikipedia

後來的發明家不斷改善發電機,但都基於同樣的原理,因此所產生的電一開始都是交流電。交流電用來點亮電燈沒有問題,事實上,在愛迪生開展他的照明事業之前,某些城市就已經有採用交流電系統的弧光燈做為路燈了。然而電不只可以用來照明,在許多人(包括愛迪生)的夢想中,電力還能驅動馬達,取代笨重的蒸汽機,將機械化與自動化提升到全然不同的境界。問題是交流電會使得馬達也不斷改變旋轉方向,這樣根本派不上用場,因此需要將交流電轉換成直流電。

-----廣告,請繼續往下閱讀-----

率先令這夢想得以成真的是比利時的發明家格蘭瑪(Zénobe Théophile Gramme)。他於 1873 年發明直流發電機,方法是在發電機內加入整流器。基本原理是這樣的:原本環狀導線兩端的電不斷一進一出改變方向,現在在導線兩端的位置各加裝一個電刷,使得環狀導線每轉半圈,兩端就會碰觸到左右不同電刷,那麼如果原本左邊的導線電流向前,轉了半圈到右邊時,電流變成向後(↑ 左、↓ 右、↑ 左、↓ 右、……),如此一來左右電刷每次收到的都是同方向的電流,所輸出的就一直是左出右進的直流電了。格蘭瑪同時也發明了直流馬達;有了發電機與馬達,人類才終於能跨入全面性的電力時代。

格蘭瑪成功地將交流電轉換成直流電。圖/wikipedia

那麼到底特斯拉對交流電做出什麼貢獻?

這還是得回到愛迪生與西屋的電流大戰說起。雖然直流電可以直接驅動馬達,但因為長距離傳輸容易耗損,不適合用於電網,因此必須到處佈建發電機,成本高昂。相對地,交流電發電機產生的交流電可以先用感應線圈提高電壓,便能長距離傳輸,直到靠近用戶端時,再用感應線圈降至符合電氣設備的電壓,因此只需幾個中央發電站,就能透過電網供電給廣大用戶,效益更高。

湯瑪斯·愛迪生(左)與喬治·威斯汀豪斯(右)。圖/Wikimedia

問題是,交流電到了用戶端後怎麼驅動馬達?一個方式是在馬達裡放進整流器,先將電網傳來的交流電轉成直流電(類似直流發電機的原理,只是剛好反方向),再驅動馬達。但是電刷容易產生火花,又會耗損,因此不利交流馬達的推廣。特斯拉的最大貢獻便在於發明出「多相感應交流馬達」(註二),不但不用電刷,轉換動力的效率還更高。

-----廣告,請繼續往下閱讀-----

馬達的應用甚廣,從一般家庭到大廈、工廠、礦場等不同場域,都有各種使用馬達的機械設備,因此特斯拉的發明更有助於西屋擴展交流電市場。而除了用戶端,發電廠本身也需要用到馬達,西屋的電網也因而更有競爭力,得以標到像芝加哥世界博覽會,以及尼加拉瀑布發電廠這樣的重大建設。 

迷思三:特斯拉被愛迪生打壓才窮困潦倒?

是的,特斯拉受雇於愛迪生時並未獲得合理對待,愛迪生還食言而肥,不發給他原本答應的五萬美元獎金。不過特斯拉後來窮困潦倒卻與愛迪生無關。

西屋既然贏得電流大戰,但特斯拉卻沒有因此名利雙收。圖/修改自maxpixel

威斯汀豪斯於 1888 年時,為了取得特斯拉的多相感應馬達,曾經答應除了預付兩萬美元,並分三期支付五萬美元外,馬達所產生的每匹馬力還要再付 2.5 美元的權利金給特斯拉。照理說,西屋既然贏得電流大戰,提供更多電力,特斯拉應該有源源不絕的權利金收入,為什麼晚年還會如此落魄?

原來 1890 年底,英國霸菱兄弟銀行(The Baring Brothers)傳出財務危機,在骨牌效應下,第二年西屋也面臨資金缺口。威斯汀豪斯一方面設法籌措資金,一方面不得不跟特斯拉攤牌,希望他放棄權利金。擁有浪漫情懷的特斯拉,除了感念威斯汀豪斯對自己的賞識,也一心想看到電力的全面普及,遂爽快答應了。有人曾經估算,就算截至 1905 年,特斯拉的馬達專利到期為止,他的馬達光在美國就已經產出七百萬匹馬力,這意謂著特斯拉至少放棄了一千七百五十萬美元的權利金,相當於今日的四億八千萬美元。若有這筆錢,特斯拉再怎麼將錢浪擲在他的偉大夢想上,仍應該可以過著相當優渥的晚年生活。

-----廣告,請繼續往下閱讀-----

迷思四:誰是電流大戰的贏家?

特斯拉後來為了追求一個不切實際的夢想——提供全世界源源不絕的免費電力,而將所有積蓄都浪擲在這個計畫上,最終也賠上自己的信譽,再也得不到投資者的青睞。1934 年起,特斯拉搬到紐約客旅館(Hotel New Yorker),他已無力負擔每月125美元的旅館房費,是由西屋電氣幫他墊付,一直到 1943 年特斯拉孤獨死於房中。

1943 年特斯拉孤獨死於房中。圖/Wikimedia Commons

威斯汀豪斯帶領西屋電氣平安度過 1891 年的危機,並以芝加哥世界博覽會與尼加拉瀑布發電廠的成功經驗,讓交流電打敗直流電,成為電網的輸送方式。不料 1907 年的經濟大恐慌再次帶給西屋財務危機,這次西屋雖然仍挺了過來,但威斯汀豪斯卻失去公司的控制權。七年後,威斯汀豪斯病逝,享年 67 歲。

愛迪生雖然因為背後金主摩根(J. P. Morgan)的強力介入,於 1892 年要求愛迪生的公司與另一家公司合併為通用電氣(General Electric Company,又稱「奇異公司」),而失去他的電力事業,但他在電影事業卻一帆風順,也一直受到美國人愛戴,稱得上名利雙收。

愛迪生的死對頭,威斯汀豪斯與特斯拉,分別於 1912 年與 1917 年獲美國電氣工程師協會頒發獎章,以表揚他們兩人的貢獻。不過獎章名稱卻是「愛迪生勳章」。你說,誰是贏家呢?

-----廣告,請繼續往下閱讀-----
你說,誰是電流大戰的贏家呢?圖/IMDb
  • 註一:其實俄國的物理學家佩卓夫(Vasily Vladimirovich Petrov)於 1802 年就用四千兩百個個鋅片與銅片組成前所未有的巨型伏打堆電池,展示更明亮穩定的弧光。可惜他在國內發表的論文並未傳到歐洲,直到十九世紀末才被發現。
  • 註二:當然特斯拉還有許多重要發明,包括廣播、無線電、遙控器,以及可以無線充電的特斯拉線圈。

參考資料

  • 一、《光之帝國》,吉兒·瓊斯(Jill Jonnes)著,商周出版社
  • 二、”Generators
  • 三、en.wikipedia.org

延伸閱讀:

張瑞棋_96
423 篇文章 ・ 998 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。