0

0
0

文字

分享

0
0
0

尼古拉.特斯拉:如交流電般起伏的人生──《光之帝國:愛迪生、特斯拉、西屋的電流大戰》

商周出版_96
・2018/01/23 ・5384字 ・閱讀時間約 11 分鐘 ・SR值 516 ・六年級

為何我們挑選了這本書:
在十九世紀末,美國三位傳奇人物與「電能」的發展息息相關:最著名的夢想者與發明家湯瑪斯‧愛迪生、對發電和電力輸送有革命貢獻的電力奇才尼古拉‧特斯拉、創建多家公司的發明家和企業家喬治‧西屋,《光之帝國:愛迪生、特斯拉、西屋的電流大戰》主要介紹了這三位人物成功、失敗以及彼此的宿怨,美國企業史上最獨特的惡鬥「電流之戰」於此展開。

充滿溢美之詞的特斯拉專訪

一八九四年二月,科默伏給《世紀》寫的特斯拉文章刊登出來,並附有知名攝影家薩羅尼拍攝的相片。

這篇文章辭藻華麗,洋洋灑灑地說道,「特斯拉先生一直有個夢想,受到流星瞬間閃光所引發的啟示;他的同行對他的敬佩日益增長,乃因為他看得更遠,最早看見在科學新大陸上微微閃現的光芒」。這篇讚美文章刊登在國家主要雜誌上,自然而然引起了轟動,也立刻引起紐約報界的注意。

特斯拉的發明生涯起伏不斷,但不可否認的是他相當有魅力!圖/Unknown@wikipedia

幾個月後的一個星期日,七月二十二日,約瑟夫.普立茲的《紐約世界報》,曼哈頓銷量最大的日報,登出一個醒目的長篇報導,出自知名專欄作家亞瑟.布里斯班(Arthur Brisbane)之手,題為「我們最傑出的電學家」,還有「比愛迪生更偉大」、「電力的未來」等小標題。

布里斯班和科默伏不同,他對電一無所知,也不想不懂裝懂。「每個科學家都是自己專業的行家,」布里斯班這樣描寫特斯拉,「每個紐約社交界的人,即使是笨蛋也認識他那張臉。他每天在德莫尼科飯店用餐。他每晚都坐在靠窗的那張桌子……埋首看晚報。」

-----廣告,請繼續往下閱讀-----

布里斯班的文章帶有一張全版尼古拉.特斯拉的畫像,他穿著正式的燕尾服。

「與電融為一體的發明家襯托在光輝燦爛的電火中」。

這當然指的是特斯拉那次最著名的即席表演,讓幾千伏特電流通過他的身體,直至火焰吞沒他全身。他向布里斯班承認,「我讓電流通過全身的主意,只為了扭轉大家長期以來對交流電的愚蠢看法。這實驗對科學家來說沒有任何價值。關於交流電的『伏特』存在著一大堆胡說八道理論,現在你看到伏特和電流能量毫無關係」。與大多數遇到特斯拉的人一樣,布里斯班也發現他很有魅力。結果在那個炎熱寂靜的夜晚,他們兩人坐在德莫尼科飯店裡一直聊到破曉,直到清潔女工來打掃飯店的大理石地板。

圖/Dickenson V. Alley [CC BY 4.0 ], via Wikimedia Commons

布里斯班告訴《紐約世界報》的二十八萬讀者,「每當談到正在研究的電力問題時,特斯拉就變得神魂顛倒。他說的沒有一個字可以讓人聽懂。他把一秒鐘分成幾千萬份,達到的能量顯然是任何其他東西都無法提供的。他堅信電力可以解決勞動力問題。這應該是(尤金)德布斯先生在地牢受苦時思考的事。根據特斯拉的理論,未來的艱苦工作肯定會成為啟動電力開關的推動力」。

特斯拉也曾在1931年登上時代雜誌的封面。圖/Time magazine, Volume 18 Issue 3, July 20, 1931 The cover shows Nikola Tesla @ wikipedia

那年秋天,一八九四年的九月三十日,《紐約時報》用了幾個整版登出文章〈尼古拉.特斯拉與他的發明〉,副標題為「確信無疑走向偉大勝利」。不同於布里斯班輕鬆愉快的敘述,《紐約時報》竭盡全力闡釋特斯拉的高頻研究和在他無線電燈背後的科學。令人奇怪的是,文章隻字未提尼加拉。

-----廣告,請繼續往下閱讀-----

事實是,不管西屋發電機的工作進展是否順利,特斯拉已全心將自己投入一個嶄新且更深奧的電學尖端領域。每天他都在實驗室裡埋首工作,完全不顧樓下商業街道的雜訊。特斯拉沉浸在他嶄新的電力夢中,他與布里斯班長談時承認,「我絕對自信地期待著,地球上將會用無線傳輸資訊。我也對用同樣方式高效傳輸電力充滿希望」。

特斯拉的夢想:無線電波通訊與尼加拉大瀑布發電

當特斯拉公開談到他的工作時,他對自己正在研究的細節(也就是現在眾所皆知的無線電收音機)守口如瓶。到了一八九四年,特斯拉已經組裝出一個小型手提式收音機轉播站,整年都在不斷地檢測並改進。許多下午和晚上,他都和一位製圖員一起爬上實驗室的寬闊屋頂,豎立起無線接收器,再拿上他的接收機,再到更高更遠的地方,去檢測他的無線電收音機訊號。

特斯拉所發明的無線電被廣泛應用於廣播,此為廣播原理1.播音室 2.混音裝置 3.音訊轉換器 4.無線電轉換器 5.無線電塔(發射塔) 6.用戶收音機。圖/Jjw@wikipedia

冬天的時候,特斯拉已經在他住的格拉克飯店(這家飯店距離曼哈頓上城區三十條街,在他的實驗室北方一英里半遠)的房頂安好裝置。在這個比下面百老匯時髦的精品商店高出十層樓的地方,特斯拉小心翼翼地放飛用繩縛的氦氣、熱氣或氫氣球,接著氣球和繩子一直升高,直上空中。一條電線連接到飯店的總水管。

特斯拉將他的接收器調節至與收音機頻率,就能成功聽到製圖員從市中心實驗室屋頂上發出的廣播訊號。整個冬天他都在微調那處於雛形階段的收音機,等到春天來臨,冰雪消融,就要乘坐汽船沿哈德遜河北上,去看看如果繼續向阿爾巴尼航行,是否還能收到傳送訊號,所以到那年年底,特斯拉的身體和精神狀態都非常好,可謂勝券在握。

-----廣告,請繼續往下閱讀-----

一八九五年對特斯拉是更好的一年,他已將新收音機調到最佳狀態,而且期待著尼加拉大瀑布開始送電。

在他將專利賣給西屋七年後(也是為了拯救公司而放棄他的權利金四年後),特斯拉的西屋發電機終於要安裝在懷特的電力大教堂!偉大的時刻即將來臨,大瀑布入口的閘門一旦打開,尼加拉碧綠的河水將奔騰流入三個巨大水管,冰涼的湖水咆哮著直落向渦輪機。隨著渦輪機開始旋轉,水花飛濺,水霧濛濛,每根鋼軸也越轉越急。在飛旋鋼軸上方的電力發電機房裡,特斯拉的三台黑黝黝巨大發電機組也在旋轉,製造著電力磁場。

西屋公司根據特斯拉專利所生產的交流電發電機。

從這些熱氣騰騰的發電機組將流出無形的電河,靜悄悄地穿過電橋流入變壓器,在那裡轉換成高伏特的巨大電流湧向世界,之後再由許多獨立變壓器將其降壓成無形無聲的電流,點亮十幾萬戶的燈泡,為巨大的工業提供能源、讓水牛城的電車運行、驅趕夜晚的黑暗,並減輕人類的重負。人們稱他為夢想家,但這一切夢想都將成為現實。

尼古拉.特斯拉公司成立

由於交流馬達和多相發電機的難題一直懸而未決,許多研究者都望而卻步,但是特斯拉成為占據這歷史地位的第一人!不光是他所追求的榮譽,也更出自財務上的原因,因為這樣一來他將有充足的資金更自如地工作。他認為,與他正在研究的更尖端且又簡單得多的動力系統無線傳輸相比,交流電只是剛起步。

-----廣告,請繼續往下閱讀-----

對人、金錢和機遇都頗有眼光的亞當斯希望立刻成為特斯拉的贊助人(後來才知道,亞當斯其實已經追蹤特斯拉許久,這個聰明人比任何華爾街財閥都瞭解特斯拉交流電專利的價值),特斯拉也直率地宣稱,這只是他革命性發明創造進行開發與商業化的開端。

特斯拉(曾經叫做特斯拉汽車),主要產銷電動車,太陽能板及儲能設備,其公司名稱則是為了紀念特斯拉。圖/Windell Oskay @ wikipedia

一八九五年二月,《電力工程師》上出現一篇短文,宣告成立尼古拉.特斯拉公司,經營範圍為「生產和銷售機械、發電機、馬達、電力設備等等」。該公司有一大批一流董事:亞當斯和他的兒子恩斯特、勤勉工作又雄心勃勃的蘭金、特斯拉很久以前的資助者艾菲德.布朗、紐澤西的查爾斯.科尼(Charles Coaney)以及特斯拉本人。

據傳,該公司的資本為五千美元,數字聽起來實在可笑。不過特斯拉後來提到,其實僅亞當斯一人就投資了十萬美元,所以到一八九五年春天時,特斯拉身為一個發明家過著十分令人嫉妒的生活。

災難突降,實驗室被大火燒毀

一八九五年三月十三日清晨兩點三十分,特斯拉的實驗室被一場大火焚燒殆盡。整個建築從內部爆炸,實驗室那一層變成燃燒的地獄,所有電力實驗設備毀於一旦。

-----廣告,請繼續往下閱讀-----

《紐約太陽報》報導,當東方天邊出現了第一道黎明光芒時,在南五街可以看見「兩道搖搖欲塌的牆和像打哈欠般敞開的大洞,向外流著黑水和油」。當時非常受尊敬的報界編輯查爾斯.達納這樣寫道,「尼古拉.特斯拉的工作室和其中寶貴設備都被破壞,這絕不僅僅是他個人的災難,而是整個世界的巨大損失。如果用手指頭來比喻這個年輕人對人類社會的重要性,那麼說他是大拇指絕對不為過」。幸運的是,特斯拉那天晚上沒有辛苦工作,否則他很有可能葬身火海。

第二天上午十點,特斯拉像往常一樣去工作,完全被眼前的情景嚇呆了。「這不可能是真的,」他盯著燒焦的廢墟不斷這樣喃喃自語。

他的十五個雇員比他來得稍早一些,都悶悶不樂地站在那裡,不忍心將特斯拉從格拉克飯店喊來面對如此悲慘情景。《紐約太陽報》記者想採訪他,特斯拉拒絕了,他說:

「我太悲傷了,讓我說什麼呢?這差不多是我半生的心血,所有的機械設備和科學研究用具都經過多年調試,卻在一個小時內被大火吞沒。這筆損失根本不能用錢來估算。什麼都沒有了,我必須從頭開始。」

他雙眼噙滿了淚水,精心設計的發電機、振盪器、馬達和真空燈泡,珍貴的記錄、檔案和往來信件,還有他在世界博覽會的展品、最近研製的無線電收音機的發射器與接收器,所有這些年來的工作成果,全都付之一炬。甚至,人們開始懷疑他實驗室裡的火災源於那些被稱為電力奇蹟的東西。

-----廣告,請繼續往下閱讀-----
1893年芝加哥世博會所展示的特斯拉交流電馬達與其他發明。

大樓看守報告說,大火從一樓燃起,另一家租戶是個蒸汽裝配廠,加班時曾經在樓面上撒許多油,它「燃燒時像個引火盒」。看守的水桶簡直是杯水車薪。消防員與大火奮戰了三個小時,他們只能防止火勢蔓延到相鄰的工廠以及附近的高架鐵路。

沮喪的特斯拉悄悄地走出去,徘徊在大街上。同時,詹森夫婦到處找他,希望在他遭受「無可挽回的損失」的時候可以給他一些安慰。即使他的設備在別的地方有備用,如發電機、振盪器和馬達,但是他的收音機是獨一無二的,必須重新組裝。他的實驗室全都沒有保險,經濟損失慘重且徹底。特斯拉最近幾年掙了不少錢,但他全部的收入幾乎都投入實驗室裡,被這場大火燒毀。

除了東山再起別無出路

在科默伏、詹森夫婦,以及許多曼哈頓的朋友與熟人的鼓勵下,特斯拉重整旗鼓,又在東休斯頓街四十六號找到一間新實驗室。後來他告訴記者:

「我灰心喪氣到了極點,如果我沒有定期為自己做電療,我簡直不相信還能振作起來。你看,電流進入疲憊不堪的身體,成為身體正需要的生命力、控制力。電是個偉大的醫生,依我看,它是最好的醫生」。

到了三月二十二日,康復的特斯拉寫信給西屋一位高級工程師,要求訂購新設備。他寫道,「我敢肯定,您一定從報紙上知道了,那場不幸事故幾乎奪去我全部的設備,進而影響了我目前的工作。我現在必須重建實驗室」於是,他的新設備在一個月內陸續運到。此外,特斯拉也寫信給曾監理特柳賴德金王礦交流電工程的斯科特,請求他協助促成他的訂購,並解釋:「這種工作對我的健康來說必不可少。」

-----廣告,請繼續往下閱讀-----

在此期間,特斯拉在最不可能的地方找到了應急之所:湯瑪斯.愛迪生在西奧蘭治的巨大實驗室。哈洛德.布朗曾經在那裡電死過狗、小牛和馬。新聞界長期以來都將愛迪生和特斯拉,這一對美國最偉大的奇才,形容為勢不兩立,但是在這危難關頭,愛迪生非常大度地放棄了競爭,為悲痛的特斯拉提供了臨時工作場所。

 

 

 

本文摘自泛科學 2018 年 1 月選書《光之帝國——愛迪生、特斯拉、西屋的電流大戰》,商周出版

 

 

 

 

-----廣告,請繼續往下閱讀-----
文章難易度
商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
特斯拉 Cybercab 登場!自駕車事故責任該由誰承擔?
PanSci_96
・2024/07/30 ・1411字 ・閱讀時間約 2 分鐘

特斯拉即將在 2024 年 10 月推出無人計程車,並且 Robotaxi 的正式名稱,將取名為 Cybercab。
等等,在無人車正式上路之前,我先問你一個重要問題。如果我開特斯拉自駕車撞死人,要負責的是我這個駕駛、乘客,還是特斯拉與馬斯克?

你敢開自駕車嗎?肇事責任是誰負責? 圖/envato

自駕車撞死人:駕駛、乘客,還是特斯拉負責?

當你駕駛特斯拉自駕車撞死人,責任歸屬是個複雜問題。無人車上路前,了解現行法律與技術界限至關重要。如果你強行介入自駕車運行,解除自駕功能後的事故責任由你全擔。如果不干預,事故責任可能由車商承擔。然而,最終誰來負責,仍取決於多方因素,包括車輛技術和法律規定。

這是個很現實的電車難題,應該說自駕車難題。如果你駕駛的自駕車正在失控向人群駛去,你是否有勇氣按下緊急剎車,承擔一切責任?

這類問題正是現在無人駕駛技術面臨的道德和法律挑戰。

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

電車難題再現:自駕車技術的進展與挑戰

自駕車並不是未來的幻想,而是已經在我們的日常生活中逐漸實現的技術。特斯拉和其他汽車製造商已經展示了他們的自動駕駛系統,這些系統能夠完成從停車到高速公路駕駛的各種操作。目前的自駕技術主要依賴於先進駕駛輔助系統(ADAS),這些系統結合了多種技術以提升駕駛的安全性和效率。

ADAS 並不是一個新概念,它可以追溯到 1950 年代的汽車巡航控制系統,隨後在 1970 年代加入了防鎖死煞車系統和車身動態穩定系統。現代的 ADAS 功能更加多樣化,包括防撞系統、車道偏離警示、盲點監控、自適應巡航和駕駛監控等,這些功能大大降低了人為失誤導致的事故風險。

自駕車三隻眼睛:相機、光達和雷達的全面解析

自駕車依賴於三種主要感知技術:相機、光達和雷達。相機負責辨識交通號誌和行人,光達則通過發射紅外雷射光脈衝繪製 3D 地圖,雷達在惡劣天氣中表現尤為出色,能夠在雨天、霧天和沙塵暴中提供穩定的數據。

自駕車的決策過程可以分為感知、決策和控制三個步驟。感知階段依賴於相機、光達和雷達提供的數據,決策階段則依靠 AI 算法來判斷最佳行動方案,最後由控制系統執行決策。這些技術的進步使得自駕車在面對複雜的交通情況時,能夠做出更準確的反應。

-----廣告,請繼續往下閱讀-----

全球無人計程車競賽:各國如何迎接自動駕駛未來

特斯拉並不是唯一的自駕車領導者,Google 的 Waymo 和通用汽車的 Cruise 已經在無人計程車領域取得了重大進展。中國的自動駕駛公司小馬智行和百度的蘿蔔快跑也已成功讓無人計程車在主要城市上路營運。根據預測,到 2025 年,全球將有約 800 萬輛 3 級或 4 級的自駕車在道路上行駛。

特斯拉的 Cybercab 無人計程車即將上路,標誌著自駕車技術進入新的階段。隨著技術的不斷進步和法律框架的完善,自駕車將在未來的交通系統中扮演越來越重要的角色。然而,自駕車事故責任的問題仍需進一步探討和解決,以確保這一新技術能夠安全、可靠地服務於社會。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。