Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

巴克斯誕辰|科學史上的今天:12/3

張瑞棋_96
・2015/12/03 ・1197字 ・閱讀時間約 2 分鐘 ・SR值 503 ・六年級

-----廣告,請繼續往下閱讀-----

電腦的發明讓人類文明從工業時代躍入十倍速的資訊時代。大家耳熟能詳的圖靈、馮·紐曼、夏農都是催生電腦的偉大先驅。然而除了這些大師之外,在IBM擔任程式設計師的巴克斯也是居功厥偉,由於他率先倡議並發明高階語言,才有後來蓬勃發展的各種應用軟體,讓電腦真正改變我們的生活。

Fortran剛發明的年代所使用來編寫程式碼的打孔卡。圖片來源:wikipedia

在進入IBM之前,絕對沒有人認為巴克斯將來會扮演如此重要的角色。他自小就不愛讀書,成績平平,念大學時還因翹課被死當,適逢美國加入二次世界大戰,他索性退學參加陸軍。退伍後他來到紐約,因無一技之長,跑去參加修理電視與收音機的課程,若非授課的教師介紹他去哥倫比亞讀數學系,他恐怕就真的會成為修電視的技師了。

結果這一次巴克斯不但順利大學畢業,還念到碩士。問題是1950年的美國,一個數學碩士除了當老師還真沒啥工作可以做,但巴克斯又不想教書,難道搞了半天還是得修電視?!他想起大四參觀IBM時認識的解說員,於是試著向她打聽工作機會,沒想到還真的得以與部門主管面談,並被錄取當程式設計師。

說穿了這一點也不稀奇。第一台可以跑程式的電腦四年前才發明,根本還沒有電腦相關的科系,還有什麼比有清楚邏輯概念的數學碩士更適合當程式設計師?只是當時的程式都還是機器語言,也就是必須直接描述電腦硬體的二進位位址,而且所有指令只能用0與1的排列組合來表示;寫程式、除錯、修改程式都非常曠日廢時。巴克斯幹了三年後深覺這實在太沒效率,於是在1953年向主管提議發展比較接近人類語言的高階語言,結果獲得老闆大力支持。經過三年多的努力,巴克斯領導的小組終於在1957年推出全世界第一套高階語言 Fortran,以及將之轉譯成機器語言的編譯器。

-----廣告,請繼續往下閱讀-----
IBM 704主機,為第一次運作Fortran語言的電腦主機。圖片來源:wikimedia

Fortran揭櫫了許多現代程式仍在使用的觀念,例如 DO loop、副程式、……等等。更重要的是它開啟了程式語言獨立於電腦硬體之外的可能性,在此之前的機器語言都只能依附於專屬的電腦。Fortran公開之後,其它不同用途的各種高階語言也陸續問世,如今當然又進化到另一番截然不同的光景了,而這一切都得感謝巴克斯將程式語言從電腦硬體的禁臠解放出來;他本人也於1977年榮獲計算機界的最高榮譽──圖靈獎。

延伸閱讀:

  1. 2月14日──第一台電子計算機
  2. 4月30日──夏農誕辰

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1026 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
一顆科技巨星的隕落(下)—英特爾的沒落
賴昭正_96
・2025/03/20 ・4190字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

商業上的成功蘊含著自身毀滅的種子:成功會滋生自滿,自滿會導致失敗。只有偏執狂才能生存。
-Andrew Grove(英特爾首席執行官)

話說英特爾於 1986 年冒著丟掉大客戶百年 IBM 的危險,轉向成立僅 3 年多的小電腦公司推銷其最新微處理器的賭博,得到了回報:康柏電腦公司一炮而紅的成功加速客戶對新 80386 晶片的要求。90 年代中後期英特爾更大力投資新的微處理器設計,促進了個人電腦產業的快速成長,成為市場佔有率高達 90% 的微處理器主要供應商,使其自 1992 年以來一直保持半導體銷售額排名第一的地位,於 1999 年將英特爾推上代表美國 30 主要工業的道瓊指數之一成員。

但到了 2000 年代,特別是 2010 年代末期,英特爾面臨日益激烈的競爭,導致其在 PC 市場的主導地位和市場佔有率下降。儘管如此,截至 2024 年第三季度,英特爾仍以 62% 的市佔率遙遙領先 x86 市場、更是筆記型電腦的明顯贏家(72%)。可是為什麼今天英特爾股價竟然倒退了 28 年,回到 1996 年底的價位呢(註一)?為什麼它已經不能再代表美國主要工業,於 2024 年 11 月 8 日被踢出道瓊工業指數,為英偉達(Nvidia,臺灣與香港譯為「輝達」)取代呢?

是什麼原因讓英特爾失去產業龍頭的位置? 圖/pixabay

英特爾的失足

在回答此問題之前,筆者得先指出:個人電腦到了 2000 年初已不再是一高利潤的高科技,而是一種日用商品。當初將英特爾培養壯大的 IBM 於 2004 年年底完全退出了個人電腦的市場;而避免侵權透過逆向工程、製造出第一台 IBM 個人電腦相容機的康柏公司,也在個人電腦市場的價格競爭日益激烈、及想打入主機電腦市場的錯誤政策下,於 2002 年被惠普 ( Hewlett-Packard ) 收購「消失」了。

冰凍三尺,非一日之寒。Google 的人工智慧謂:「英特爾在晶片產業落後的主要原因是多種因素」,包括:
(1)未能洞悉智慧型手機的崛起,在行動晶片市場明顯落後,錯失創新機會給高通(Qualcomm Inc.)等競爭對手;
(2)依賴過時的製造流程,未能像台積電、AMD、和英偉達(註二)一樣採用更靈活晶片設計和外包製造,來應付快速不斷變化的市場需求,導致失去了高效能運算和人工智慧等關鍵領域的市場;
(3)一些分析師認為英特爾在個人電腦市場長期佔據主導地位可能導致高階主管自滿,不願適應不斷變化的產業動態。

-----廣告,請繼續往下閱讀-----

筆者認為前述的(1)及(2)都是果,真正的原因只有(3)一個。80 年代,當英特爾的晶片和微軟的軟體成為快速發展之個人電腦行業的雙引擎時,公司充滿活力,專注於其在個人電腦和資料中心伺服器的特殊領域。英特爾高層曾半開玩笑地將公司描述為「地球上最大的單細胞有機體」:一個孤立的、獨立的世界。像 IBM 一樣,數十年的成功和高利潤也催生了英特爾目中無人及自大之企業文化!這種開會又開會、討論又討論、開不完的會、討不完的論正是公司成熟的標註。

英特爾企業文化

想當初英特爾剛成立時,諾伊斯只聽了幾秒鐘霍夫有關微處理器的激進想法後,就立即說:「做吧」!真是不可同日而語。又如到了 1983 年,其主要記憶體晶片業務受到日本半導體製造商加劇競爭而大大降低獲利能力時,格羅夫立即迅速地不怕「…微處理器是個非常大的麻煩」,脫胎換骨成為微處理器主要供應商━又豈是 90 年代不遺餘力地捍衛其微處理器市場地位而與 AMD 鬥爭的英特爾所能比?

事實上英特爾也曾多次嘗試成為人工智慧晶片領域的領導者,但都以失敗告終(註三):專案被創建、持續多年,然後要麼是因為英特爾領導層失去耐心,要麼是技術不足而突然被關閉。為了保護和擴大公司的賺錢支柱(x86 的數代晶片),英特爾對新型晶片設計的投資總是退居二線。史丹佛大學電機工程教授、英特爾前董事普盧默 ( James Plummer ) 曾謂:「這項技術是英特爾皇冠上的寶石——專有且利潤豐厚——他們會盡一切努力來維持這一點的」。英特爾的領導者有時也承認這個問題,例如英特爾前執行長巴雷特 ( Craig Barrett ) 就曾將 x86 晶片業務比作一種毒害周圍競爭植物的雜酚油灌木叢。

微軟 Copilot AI

英特爾能再放光芒嗎?

在一連串的機會錯失,決策錯誤及執行不力下,英特爾於 2021 年任命曾經主導其發展人工智慧晶片、2009 年離職去擔任 EMC 總裁的基辛格(Patrick Gelsinger)回來當執行長,積極嘗試透過其所謂的「五年、四個節點」進程追趕台積電。這位浪子回頭,被請回來拯救公司的基辛格於去年 4 月 25 日宣稱:即將推出的英特爾 3 奈米製程伺服器晶片的需求很高,可以贏得那些轉找競爭對手的客戶,謂『我們正在重建客戶信任。他們現在看著我們說:「哦,英特爾回來了。」』…但半年後,董事會對他的扭虧為盈計畫完全失去了信心,給了他辭職或被解僱的選擇。基辛格於 12 月 1 日辭職,現由領導英特爾全球財務部門和投資者關係的津斯納 ( David Zinsner ) 擔任臨時聯合執行長,正在務色下一任執行長。

-----廣告,請繼續往下閱讀-----

英特爾現在的處境事實上很像 1993 年的 IBM:在官僚體制、大型電腦利潤下滑,及失去個人電腦的主導權後,其股票從 1987 年 7 月的最高點倒退了 26 年!當總裁兼執行長阿克斯(John Ackers ) 於當年元月宣布首次下調股息 55% 及離職後,遴選委員會竟然找不到任何人願意來收拾這個爛攤子━曾幾何時 IBM 執行長還是眾人夢寐以求的職位呀!最後選委會只好推薦自告奮勇、完全外行(註四)、銷售菸草和食品的 RJR Nabisco 公司的首席執行官郭士納(Louis Gerstner Jr.)!郭士納在自傳中回憶說:重振 IBM 所面臨的最嚴峻挑戰是改變其企業文化。現 IBM 雖然不再像以前在科技界一言九鼎,但其股票已「趕上時代」屢創歷史新高,為道瓊工業指數中歷史最悠久的高科技成員(1979 年起);郭士納也被視為美國商界的偶像,IBM 轉型和重拾技術領導地位的救星。

IBM 和英特爾的股價走勢圖。圖/作者提供

股票名嘴克萊默(Jim Cramer)在年初謂:「我們需要將英特爾視為資產負債表非常糟糕的國寶」,因此有必要幫助英特爾公司渡過難關。美國政府顯然也同意,商務部根據 CHIPS 激勵計劃的商業製造設施資助機會,已經給英特爾公司提供高達 78.65 億美元的直接資助。但如前面所提到的 IBM 如何啟動發展個人電腦,錢真的是萬能嗎?英特爾能重新燃燒發光嗎?

英特爾不像 1993 年的 IBM 具有百年的歷史,各方面人才濟濟:多項技術創新和最多的專利,包括自動櫃員機、動態隨機存取記憶體 、軟碟、硬碟、磁條卡、關聯式資料庫、Fortran 和 SQL 程式語言、UPC 條碼、以及本文所提到之個人電腦等;其研究部是世界上最大的工業研究機構,員工因科學研究和發明而獲得了各種認可,包括六項諾貝爾獎和六項圖靈獎(Turing Award,註五)。因此筆者懷疑英特爾能夠重新奪回業界領先地位;CFRA Research 技術分析師齊諾 ( Angelo Zino ) 表示:「目前來看,它們重返輝煌的可能性非常渺茫。」

以目前來看,英特爾技術劣勢難以逆轉,重返業界領導地位機會渺茫。圖/unsplash

結論

這顆科技巨星真的要隕落了嗎?真的是「一失足成千古恨,再回頭已百年身」嗎?英特爾第三任首席執行官(1987-1998)格羅夫真的不幸言中了嗎:「商業上的成功蘊含著自身毀滅的種子」?當然,像英特爾這麼有成就的公司要徹底消失是不太可能,因此最可能的命運應該是分割拍賣或像仙童半導體公司一樣被其它公司收購(註六)。事實上去年高通公司就曾與英特爾洽談收購事宜,但最終放棄了這個想法。

-----廣告,請繼續往下閱讀-----

最後讓我們在這裡以同時被 IBM 培養狀大、在個人電腦上一起嘯吒風雲的微軟公司,其創辦人蓋茨(Bill Gates)元月 8 日的美聯社訪談來結束本文吧。蓋茨聲稱:如果英特爾沒有在 70 年代初期取得技術突破,創造出能夠驅動個人電腦的微型晶片,他的職業道路可能會有所不同。他接著表示:微軟也像英特爾一樣,在 18 年前錯過了從個人電腦到智慧型手機的轉變,但微軟已經恢復元氣,而英特爾的困境卻惡化到需要尋找新執行長的地步(註七),他說:

他們錯過了人工智慧晶片革命,(因為晶片設計和製造方面落後)其製造能力達不到英偉達和高通等公司認為是簡單的標準。我認為基辛格非常勇敢,他敢說:「不,我要解決設計方面的問題,我要解決晶圓廠方面的問題。」我(曾)希望為了他自己、為了國家,他能夠成功。我希望英特爾能夠復甦,但目前看來它們的處境相當艱難。

今天微軟公司已是全美市值最大的前三名公司之一,而英特爾卻淪落至此,能不讓人感嘆造化弄人嗎?

(2025 年 2 月 3 日補註)本文完稿於元月 15 日;英特爾元月 30 日第四季業績報告謂:營收連續三季下滑,較去年同期下降 7%;本季淨虧損總計 1.26 億美元(即每股 3 美分),而去年同期的淨收入為 26.7 億美元(即每股 63 美分)。今年第一季的業績指引令分析師失望!

備註

  • (註一)同一期間道瓊股指上升了 7 倍多。
  • (註二)這三家公司現在全是中國人在主導。在英特爾全盛時期,這三家全是在後者的陰影下求生存;而現今這三家的市值均遠遠超過英特爾!
  • (註三)2005 年,當英特爾的晶片在大多數個人電腦中充當了大腦時,執行長歐德寧( Paul Otellini)就已經意識到了圖形晶片最終可能會在資料中心承擔重要的工作,向董事會提出了一個令人震驚的想法:以高達 200 億美元收購電腦圖形晶片的矽谷新貴英偉達(英偉達的市值現已超過 3 兆美元)。但因英特爾在吸收公司方面的記錄不佳,董事會拒絕了這個提議,歐德寧退縮了!反觀 AMD 於 2006 年收購英偉達對手 Array Technology Inc. 後,現正挑戰英偉達的圖形晶片市場。
  • (註四)在 1993 年三月宣布將擔任執行長的記者招待會上,被問及用什麼牌子的計算機時,新執行長說他有一台筆記本電腦,但不記得是什麼牌子。
  • (註五)公認為計算機科學領域的最高榮譽,被稱為「計算機界的諾貝爾獎」。
  • (註六)仙童半導體公司於 2016 年 9 月被安森美(ON)半導體收購,品牌已不存在。
  • (註七)英特爾於 2025 年 3 月任命陳立武出任新執行長。

延伸閱讀:圖形處理單元與人工智能

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
46 篇文章 ・ 59 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
巴克斯誕辰|科學史上的今天:12/3
張瑞棋_96
・2015/12/03 ・1197字 ・閱讀時間約 2 分鐘 ・SR值 503 ・六年級

-----廣告,請繼續往下閱讀-----

電腦的發明讓人類文明從工業時代躍入十倍速的資訊時代。大家耳熟能詳的圖靈、馮·紐曼、夏農都是催生電腦的偉大先驅。然而除了這些大師之外,在IBM擔任程式設計師的巴克斯也是居功厥偉,由於他率先倡議並發明高階語言,才有後來蓬勃發展的各種應用軟體,讓電腦真正改變我們的生活。

Fortran剛發明的年代所使用來編寫程式碼的打孔卡。圖片來源:wikipedia

在進入IBM之前,絕對沒有人認為巴克斯將來會扮演如此重要的角色。他自小就不愛讀書,成績平平,念大學時還因翹課被死當,適逢美國加入二次世界大戰,他索性退學參加陸軍。退伍後他來到紐約,因無一技之長,跑去參加修理電視與收音機的課程,若非授課的教師介紹他去哥倫比亞讀數學系,他恐怕就真的會成為修電視的技師了。

結果這一次巴克斯不但順利大學畢業,還念到碩士。問題是1950年的美國,一個數學碩士除了當老師還真沒啥工作可以做,但巴克斯又不想教書,難道搞了半天還是得修電視?!他想起大四參觀IBM時認識的解說員,於是試著向她打聽工作機會,沒想到還真的得以與部門主管面談,並被錄取當程式設計師。

-----廣告,請繼續往下閱讀-----

說穿了這一點也不稀奇。第一台可以跑程式的電腦四年前才發明,根本還沒有電腦相關的科系,還有什麼比有清楚邏輯概念的數學碩士更適合當程式設計師?只是當時的程式都還是機器語言,也就是必須直接描述電腦硬體的二進位位址,而且所有指令只能用0與1的排列組合來表示;寫程式、除錯、修改程式都非常曠日廢時。巴克斯幹了三年後深覺這實在太沒效率,於是在1953年向主管提議發展比較接近人類語言的高階語言,結果獲得老闆大力支持。經過三年多的努力,巴克斯領導的小組終於在1957年推出全世界第一套高階語言 Fortran,以及將之轉譯成機器語言的編譯器。

IBM 704主機,為第一次運作Fortran語言的電腦主機。圖片來源:wikimedia

Fortran揭櫫了許多現代程式仍在使用的觀念,例如 DO loop、副程式、……等等。更重要的是它開啟了程式語言獨立於電腦硬體之外的可能性,在此之前的機器語言都只能依附於專屬的電腦。Fortran公開之後,其它不同用途的各種高階語言也陸續問世,如今當然又進化到另一番截然不同的光景了,而這一切都得感謝巴克斯將程式語言從電腦硬體的禁臠解放出來;他本人也於1977年榮獲計算機界的最高榮譽──圖靈獎。

延伸閱讀:

-----廣告,請繼續往下閱讀-----
  1. 2月14日──第一台電子計算機
  2. 4月30日──夏農誕辰

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1026 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
從離子阱到拓樸量子位元:量子計算的未來還有多少可能?
PanSci_96
・2024/10/13 ・2069字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

量子電腦的新戰場:Atom Computing 的崛起

量子電腦的發展一直以來被視為科技的終極挑戰,從 Google 的量子霸權,到 IBM 不斷推進的Condor 超導電腦,業界翹首以待。然而,截至 2024 年,量子計算領域出現了一個新的變數。Atom Computing 一家美國新興公司,推出了擁有 1,180 個量子位元的量子電腦,不僅超越了IBM神鷹量子電腦的 1,121 個量子位元,甚至德國達姆施塔特工業大學也宣布開發出 1,305 個量子位元的超級電腦。

這些新興勢力的出現,不僅在位元數量上超越了 Google 與 IBM 的現有設備,更顛覆了量子電腦技術路線的既有認知。與以往依賴超導技術的量子電腦不同,Atom Computing 與達姆施塔特大學採用了「離子阱」( Ion Traps ) 技術,利用雷射與電場操控離子,形成穩定且壽命較長的量子位元。這是否意味著,超導量子電腦將不再是量子計算的唯一未來?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

離子阱技術:量子計算的新契機?

為了理解這一新興技術的潛力,我們首先需要認識量子位元的製作原理。超導量子電腦運用電子在超低溫下的行為,來實現穩定的量子狀態。然而,隨著量子位元數量增加,超導系統面臨物理尺寸與能耗的挑戰。這也是為何離子阱技術逐漸受到重視。

離子阱技術是透過電場陷阱將帶電的離子懸浮在空中,並利用雷射操控其量子態。這種技術擁有更高的穩定性,且能在更長時間內維持量子位元的疊加態。然而,由於需要超低溫、精確的電場控制以及真空環境,離子阱技術在商業應用中的成本仍然偏高,但它的潛力不容忽視。

-----廣告,請繼續往下閱讀-----

中性原子與光學魔法:更進一步的量子技術

除了離子阱技術,Atom Computing 與德國團隊則採用另一種不同的策略——使用中性原子來取代離子。中性原子不帶電,這意味著無法直接依賴電場控制,那它們如何操控?答案在於光學技術。他們運用光鑷(光學鑷子)和雷射致冷技術,用光來束縛和操控中性原子。光鑷是 2018 年諾貝爾物理學獎的技術,利用雷射的動量來推動和控制微小的粒子。

在這種方法下,雷射不僅能束縛原子,還能通過致冷技術將原子的運動降到極低,使得量子態更穩定。這種新興技術雖然仍處於實驗階段,但已顯示出其在量子計算中的巨大潛力。

量子點與鑽石空缺:人造原子的力量

另一個在量子計算領域獲得關注的技術是「量子點」( Quantum Dots )。量子點被視為人造原子,科學家透過在矽晶體等半導體材料中束縛電子,並利用微波來控制其自旋狀態。這項技術的最大優勢是半導體產業已經相當成熟,因此如果量子點技術能成功商業化,其普及速度將非常快速。即便如此,量子點技術仍需要在低溫環境下運作,且面臨如何克服材料內部雜訊干擾的挑戰。

與此類似的技術還包括「鑽石空缺」( Diamond Vacancies ),它透過在人造鑽石中替換部分碳原子,以氮原子取代,並使用雷射來激發這些空缺結構。鑽石空缺技術的最大優點是它不需要極低溫,能在室溫下運作,這使得它在未來的量子計算應用中具有很大的潛力。

-----廣告,請繼續往下閱讀-----
量子電腦模擬的原子核 。圖/wikimedia

二維世界的探索:拓樸量子位元

隨著三維物理的極限逐漸顯現,科學家們將目光投向了二維世界,探索其中的量子計算可能性。微軟與貝爾實驗室都在研究的「拓樸量子位元」( Topological Qubits ) 便是一個例子。拓樸量子位元基於一種稱為「任意子」( Anyon ) 的準粒子運作,這種粒子只存在於二維空間中,並且擁有無視傳統量子力學法則的特性。

拓樸量子位元透過操控粒子的空間幾何軌跡來實現運算,這種軌跡在二維空間中表現出穩定且高度容錯的特性。因此,與其他量子位元相比,拓樸量子位元的穩定性與耐久性更佳。然而,這項技術仍處於實驗階段,距離實際應用還有一段路要走。

量子電腦的未來:量子糾錯與穩定性挑戰

儘管量子電腦擁有極大的潛力,但其目前仍面臨著許多挑戰,最重要的便是量子位元之間的「保真度」( Fidelity ) 與「量子糾錯」( Quantum Error Correction ) 技術。現代的量子電腦對外界干擾極為敏感,甚至微小的環境變化都可能導致計算結果的錯誤。因此,提升量子位元的精確率,並開發有效的糾錯技術,是量子計算未來必須跨越的關鍵。

以 Google 為例,他們在 2023 年發布的研究顯示,通過增加量子位元數量並使用「表面碼」( Surface Code ) 技術,他們成功降低了量子計算中的錯誤率。這項進展意味著量子糾錯技術正逐步成為現實,然而,大規模商業化的量子電腦仍需更多時間才能問世。

-----廣告,請繼續往下閱讀-----

誰將引領量子計算的未來?

量子電腦的發展方向多樣,從超導量子電腦、離子阱、中性原子、量子點、鑽石空缺,到拓樸量子位元,每一種技術都有其獨特的優勢與挑戰。誰能成為量子計算的最終霸主,仍然是未解之謎。或許在不遠的將來,量子電腦將以我們無法想像的速度改變世界,重新定義我們對計算、數據與科技的理解。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

4
3

文字

分享

0
4
3
從「工人智慧」到「人工智慧」——《普林斯頓最熱門的電腦通識課》
商業周刊
・2022/03/13 ・3569字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/ 布萊恩·柯尼罕( Brian W. Kernighan)
  • 譯者/ 李芳齡

人工智慧的開端

在電腦發展之初的二十世紀中期,人們開始思考可以如何用電腦來執行通常只有人類才能做到的事情,一個明顯的目標是玩西洋跳棋和西洋棋之類的棋盤遊戲,因為這領域有個優點,那就是有完全明確的規則,並有一大群感興趣且有資格稱為專家的人。

另一個目標是把一種語言翻譯成另一種語言,這顯然困難得多,但更為重要,例如,在冷戰時期,從俄文到英文的機器翻譯是很要緊的事。其他的應用包括語音辨識與生成,數學與邏輯推理,做決策,及學習過程。

這些主題的研究很容易取得資助,通常是來自美國國防部之類的政府機構。我們已經在前文中看到,美國國防部對早期網路研究的資助有多珍貴,它引領出網際網路的發展。人工智慧的研究也同樣受到激勵及慷慨資助。

我認為,把 1950 年代及 1960 年代的人工智慧研究形容為「天真的樂觀」,應該是公允的。當時的科學家覺得突破就快到來,再過個五或十年,電腦就能正確地翻譯語言,在西洋棋比賽中擊敗最優的人類棋手。

我當時只是個大學生,但我著迷於這個領域和潛在成果,大四時的畢業論文就以人工智慧為主題。可惜,那篇論文早已被我搞丟了,我也想不起當年的我是否也抱持相同於當時普遍的樂觀態度。

-----廣告,請繼續往下閱讀-----

但是,事實證明,幾乎每個人工智慧的應用領域都遠比設想的要困難得多,「再過個五或十年」總是一次又一次被端出來。成果很貧乏,資金用罄了,這領域休耕了一、二十年,那段期間被稱為「人工智慧之冬」。

網際網路發展成未來趨勢。圖/Pexels

把專家的判斷規則,直接寫成一堆判斷式的「工人智慧」階段

到了 1980 年代和1990年代,這個領域開始用一種不同的方法復耕了,這方法名為專家系統(expert systems)或規則式系統(rule-based systems)。

專家系統是由領域專家寫出很多規則,程式設計師把這些規則轉化為程式,讓電腦應用它們來執行某個工作。醫療診斷系統就是一個著名的應用領域,醫生制定研判一名病患有何問題的規則,讓程式去執行診斷、支援、補充,或理論上甚至取代醫生。

MYCIN 系統是早期的一個例子,用於診斷血液感染,它使用約 600 條規則,成效至少跟一般醫生一樣好。這系統是由專家系統先驅愛德華.費根鮑姆(Edward Feigenbaum)發展出來的,他因為在人工智慧領域的貢獻,於 1994 年獲頒圖靈獎。

專家系統有一些實質性的成功,包括顧客支援系統、機械維修系統以及其他焦點領域,但最終看來也有重大限制。

實務上,難以彙集一套完整的規則,而且有太多例外情況。這種方法未順利擴大應用於大量主題或新問題領域,需要隨著情況變化或了解的改進,更新規則,舉例而言,想想看,在 2020 年遇上一名體溫升高、喉嚨痛、劇烈咳嗽的病患時,診斷規則該如何改變?這些原本是一般感冒的症狀,或許有輕微的併發症,但很可能是新冠肺炎,具有高傳染性,且對病患本身及醫療人員都非常危險。

-----廣告,請繼續往下閱讀-----

擺脫「工人智慧」,讓電腦能自學——機器學習的基本概念

機器學習的基本概念是對一種演算法給予大量的例子,讓它自行學習,不給它一套規則,也不明確地編程讓它去解決特定問題。

最簡單的形式是,我們為程式提供一個標記了正確值的訓練集(training set),例如,我們不試圖建立如何辨識手寫數字的規則,而是用一個大樣本的手寫數字去訓練一套學習演算法,我們對每個訓練資料標記其數值,這演算法使用它在辨識訓練資料時的成功及失敗來學習如何結合這些訓練資料的特徵,得出最佳辨識結果。

當然,所謂的「最佳」,並不是確定的:機器學習演算法盡力去提高得出好結果的機率,但不保證完美。訓練之後,演算法根據它從訓練集學到的,對新的資料進行分類,或是預測它們的值。

監督式學習——人類教電腦看見特徵,由演算法來算出規則

使用有標記的資料(labeled data/tagged data)來學習,此稱為監督式學習(supervised learning)。大多數監督式學習演算法有一個共通的架構,它們處理大量標記了正確類別(正確值)的例子,例如,這文本是不是垃圾郵件,或者,這照片中的動物是哪種動物,或者,一棟房子的可能價格。演算法根據這個訓練集,研判能讓它得出最佳分類或做出最佳預測的參數值;其實就是讓它學習如何從例子做出推斷。

我們仍然得告訴演算法,哪些「特徵」能幫助做出正確研判,但我們不對這些特徵給予權值或把它們結合起來。舉例而言,若我們試圖訓練演算法去過濾郵件,我們需要與垃圾郵件內容有關的特徵,例如類似郵件用詞(「免費!」)、已知的垃圾郵件主題、怪異字符、拼字錯誤、不正確的文法等等。

這些特徵單獨來看,並不能研判一份郵件就是垃圾郵件,但給予足夠的標記資料,演算法就能開始區別垃圾郵件與非垃圾郵件——至少,在濫發垃圾郵件者做出進一步調整之前,這演算法具有此過濾成效。

-----廣告,請繼續往下閱讀-----

手寫數字辨識是一個眾所周知的問題,美國國家標準與技術研究院(National Institute of Standards and Technology,NIST)提供一公開測試組,有 60,000 個訓練圖像集和 10,000 個測試圖像集,<圖表>是其中一個小樣本。機器學習系統對此資料的辨識成效很好,在公開競賽中,錯誤率低於 0.25%,亦即平均 400 個字符中只有一個錯誤。

機器學習演算法可能因種種因素而失敗,例如,「過度擬合」(over-fitting),演算法對其訓練資料的表現很好,但對新資料的表現遠遠較差。或者,我們可能沒有足夠的訓練資料,或是我們提供了錯誤的特徵集,或者,演算法產生的結果可能確證了訓練集內含偏誤。

這在刑事司法應用系統(例如判刑或預測再犯)中是特別敏感的問題,但在使用演算法來對人們做出研判的任何情況,也會造成問題,例如信用評等、房貸申請、履歷表篩選。

垃圾郵件偵測及數位辨識系統是分類型演算法(classification algorithms)的例子:對資料項做出正確分類。

-----廣告,請繼續往下閱讀-----

預測型演算法(prediction algorithms)則是試圖預測一數值,例如房子價格、運動比賽得分、股市趨勢。

舉例而言,我們可能試圖根據位置、年齡、客廳面積與房間數等主要特徵來預測房子價格,更複雜的模型——例如 Zillow 使用的模型——會加入其他特徵,例如相似房屋之前的售價、社區特色、房地產稅、當地學校素質。

非監督式學習——讓電腦自己找出特徵與規則

不同於監視式學習,非監督式學習(unsupervised learning)使用未加入標記的訓練資料,亦即沒有對資料加上任何標記或標籤。非監督式學習演算法試圖在資料中找出型態或結構,根據資料項的特徵,把它們分組。有一種盛行的演算法名為「k 群集分析」(k-means clustering),演算法盡力把資料分成 k 群,讓每一群中的資料項相似性最大化,並且各群之間的相似性最小化。

舉例而言,為研判文件的作者,我們可能假設有兩名作者,我們選擇可能的關聯性特徵,例如句子的長度、詞彙量、標點符號風格等等,然後讓分群演算法(clustering algorithm)盡它所能地把文件區分成兩群。

-----廣告,請繼續往下閱讀-----

非監督式學習也適用於在一群資料項中辨識離群項(outliers),若大多數資料項以某種明顯方式群集,但有一些資料項不能如此群集,可能代表必須進一步檢視這些資料項。

舉例而言,設若<圖表>中的人工資料代表信用卡使用情形的某個層面,多數資料點分別群集於兩大群之一,但有一些資料點無法群集於這兩群中的任何一群,或許,這些資料點沒什麼問題——群集分析不需要做到完美,但它們也可能是詐欺或錯誤的情況。

群集分析以辨識異常值。圖/普林斯頓最熱門的電腦通識課

非監督式學習的優點是不需要做可能滿花錢的訓練資料標記工作,但它不能應用於所有情況。使用非監督式學習,必須思考出與各群集相關的一些可用的特徵,當然,對於可能有多少個分群,也需有一個起碼的概念。

我曾經做過一個實驗,使用一個標準的 k 群集分析演算法來把約 5,000 個臉孔影像區分為兩群,我天真地期望這演算法或許能區分出性別。結果是,它的正確率約 90%,我不知道它是根據什麼來下結論的,我也無法從那些錯誤的情況中看出什麼明顯型態。

——摘自《普林斯頓最熱門的電腦通識課》,2022 年 2 月,商業周刊

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----