0

0
3

文字

分享

0
0
3

史上第一部全自動的計算機——艾肯與 IBM 的恩怨情仇│《電腦簡史》數位時代(八)

張瑞棋_96
・2020/10/12 ・2932字 ・閱讀時間約 6 分鐘 ・SR值 527 ・七年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

當貝爾實驗室的史提畢茲已經在打造複數計算機,比他更早提案開發數位計算機的艾肯還在苦等。好不容易 IBM 願意開發,美國又捲入二次大戰戰局,究竟艾肯能否如願完成夢想……?

本文為系列文章,上一篇請見:終端機雛形、遠端操控、數據傳輸的首創者——史提畢茲│《電腦簡史》數位時代(七)

艾肯鍥而不捨,IBM 終於同意開發第一部通用型計算機

1937 年 11 月,還是博士生的艾肯帶著企劃案到 IBM 簡報,希望能說服他們也為科學家開發計算機。是的,很多科學家與艾肯一樣深受計算之苦,IBM 聽完之後深表同意。不過他們希望艾肯先去哥倫比亞大學看看,也許他會在那裡發現他想要的東西。

原來早在 1933 年,IBM 就曾接受天文學教授艾可特 (Wallace Eckert) 的提案,為他改造 IBM 601 商用計算機,用來計算天文物理的方程式。艾可特隨後還自己設計一套控制系統,將改造的 IBM 601、印表機,與打孔機連接起來,成為近乎全自動的機器。如果艾肯可以接受這套系統,IBM 就不用另外開發設計了。

IBM 601 商用計算機。圖:WIKI

艾肯拜訪之後,發現這套系統運作過程還是需要人工介入,不是全自動化。而且這台改造的 IBM 601 主要在於求取內插值,與他設想的通用型計算機相去甚遠,因此仍堅持得重新開發設計。

IBM 要求他與工程師先擬出詳細規格與研發成本,才能評估是否要投入開發。好不容易報告完成,IBM 高層又爭辯許久,無法取得共識。在此同時,哈佛大學自己內部也有不少的反對聲浪,質疑購置新型計算機的必要性。

直到 1939 年 2 月,IBM 董事長華森 (Thomas Watson) 才終於親自拍板定案,承諾無償為哈佛大學開發艾肯所規劃的「自動循序控制計算機」(Automatic Sequence Controlled Calculator,簡稱 ASCC )。恰好此時艾肯也已拿到博士學位,並在哈佛大學取得教職,便順理成章代表哈佛,繼續與 IBM 的團隊合作,自五月開始展開研發工作。

哈佛架構 vs. 馮紐曼架構

ASCC 沿用 IBM 原有的打孔卡片機制來輸入程式,但因為它是通用型計算機,所要執行的程式可能會很長,因此將打孔卡片改為打孔紙帶。打孔紙帶上的程式並不會先載入記憶單元,而是一次讀入一個指令,控制單元馬上根據指令動作。這麼做的好處是不佔用記憶單元,可以節省成本。但缺點是運算速度受限於讀取打孔紙帶的機械動作,結果 ASCC 做一次乘法要費時 6 秒,比楚澤 1941 年就造好的 Z3 還慢。

現代電腦採用的是「馮紐曼架構」,程式與數據都先全部載入記憶單元,然後再開始運作。像 ASCC 這樣,程式與數據分開,不共用記憶單元的架構,後來就稱為「哈佛架構」。

ASCC的程式用打孔紙帶輸入。圖:WIKI

ASCC 的運算方式仍是十進位制,因此對 IBM 的工程師而言,只要稍加修改原有運算單元就可以處理加減法。困難點在於 ASCC 要涵蓋三角函數、微分方程、遞迴函數、……等所有數學運算,但這些工程師對高深數學並不在行,無從想像如何設計。艾肯因此扮演關鍵的角色,必須一一拆解運算的步驟,講述給他們了解。

問題是,艾肯給予的只是描述性的說明,而不是數位邏輯,工程師還是得自己想出對應的邏輯電路。沒想到這竟為日後 IBM 與哈佛的決裂埋下了禍因。

艾肯入伍服役,三年後代表海軍徵用 ASCC

1939、1940 這兩年暑期,艾肯全程都待在 IBM 提供諮詢。但到了 1941 年,他被徵召到海軍服役,無法繼續參與研發,只能委託物理系一位研究生接手他的工作。在此同時,IBM 的工程師也改以國防任務為先,無法全心投入 ASCC 的開發,結果原本預計兩年的工程拖到 1943 年底才完成。

1944 年初,ASCC 在哈佛大學的物理研究室完成安裝,長達十五公尺,高兩米四,有 4.3 噸重,零件多達 765,000 個,是當時最大的計算機,直到一年半後才被貝爾實驗室的 Model V 超越。

ASCC 的左半部。圖:WIKI

安裝好才兩個月,艾肯便在當年四月重返哈佛,不過這次他是以海軍少校的身分回來接管 ASCC。戰爭時期國事為先,海軍決定徵用 ASCC,交由最熟悉的艾肯全權負責,帶領隨行人員計算雷達、磁場等軍艦遭遇的問題。

事實上,在海軍徵用前一個月,ASCC 就曾經為國效力。馮紐曼帶著兩位數學家前來,用 ASCC 計算原子彈的內爆模型,只是當時曼哈頓計畫仍屬絕對機密,哈佛與 IBM 的人員都不知道與原子彈有關。

艾肯獨攬發明之功,IBM 憤而與哈佛決裂

儘管 ASCC 已被海軍徵用,但這畢竟是 IBM 投入大量金錢與人力為哈佛開發的,預訂的捐贈典禮還是要照常舉辦,而艾肯自然是負責籌辦的最佳人選。捐贈典禮於 1944 年8 月舉行,不料艾肯準備的新聞稿中,竟然只將自己一人列為 ASCC 的發明者,完全沒有提及與他一起研究的那幾位 IBM 工程師。

IBM 董事長華森勃然大怒,刪除原本要給哈佛大學日後維持機器運作的經費,雙方的合作就此畫上句點,哈佛大學也乾脆將 ASCC 重新命名為「哈佛馬克一號」(Harvard Mark I)。

二次大戰結束後,艾肯退役回歸教職。即使沒有 IBM,他仍分別於 1947 年與 1949 年,為海軍開發出功能更強的哈佛馬克二號與馬克三號。

第一宗有蟲的真實案例,程式 debug 的由來

值得一提的是,1947 年 9 月 9 日這一天,海軍的程式設計師發現馬克二號總是出錯,他們檢查了半天,最後發現原來是一隻蛾在繼電器上造成短路。他們把這隻蛾取下,用膠帶貼在工作日誌上,除了註明是在 F 板塊的第 70 號繼電器發現,還戲謔地寫上「發現第一宗蟲的真實案例」(“First actual case of bug being found”)。

原來打從 1870 年代開始,蟲 (bug) 這個字就用來形容機器中的瑕疵。如今竟然是一隻真正的昆蟲造成程式執行發生錯誤,而將牠移除後就恢復正常,從此電腦程式的偵錯工作就叫 ”debug” 了。

「發現第一宗蟲的真實案例」。圖:WIKI

艾肯心血雖成昨日黃花,百年樹人影響更久遠

其實艾肯代表海軍徵用哈佛馬克一號時,美國陸軍委託另一批人馬打造的計算機已在祕密進行中,所用的真空管開關速度遠勝繼電器,艾肯這些機電式計算機很快就要被電子計算機淘汰。儘管如此,哈佛馬克一號仍是電腦史上一個重要的里程碑。它是第一部真正全自動化的計算機,只要用打孔紙帶輸入程式與數據,就能自動完成計算,並將計算結果印製成表格,過程中完全不需人力介入。

對艾肯而言,他也成功擔起傳承的使命,實現百年之前巴貝奇未竟的分析機夢想。

其實艾肯更大的貢獻在於作育英才。除了直接教導出霍普 (Grace Hopper) 、王安、……等舉足輕重的人物(霍普當年是海軍少尉,跟著艾肯去接管哈佛馬克一號,她後來寫出第一個編譯器,還領頭開發出第一個高階商用電腦語言「COBOL」;王安則是創辦「王安電腦」,首創電腦文書處理。),艾肯還首開先例,在哈佛大學開設可攻取碩士與博士學位的計算機學程,引領美國大學設立電腦科系的風潮。

這些艾肯直接與間接培育出來的電腦人才,比起他開發設計的計算機,對於電腦發展產生更久遠的影響。

文章難易度
張瑞棋_96
423 篇文章 ・ 661 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
用這劑補好新冠預防保護力!防疫新解方:長效型單株抗體適用於「免疫低下族群預防」及「高風險族群輕症治療」
鳥苷三磷酸 (PanSci Promo)_96
・2023/01/19 ・2874字 ・閱讀時間約 5 分鐘

本文由 台灣感染症醫學會 合作,泛科學企劃執行。

  • 審稿醫生/ 台灣感染症醫學會理事長 王復德

「好想飛出國~」這句話在長達近 3 年的「鎖國」後終於實現,然而隨著各國陸續解封、確診消息頻傳,讓民眾再度興起可能染疫的恐慌,特別是一群本身自體免疫力就比正常人差的病友。

全球約有 2% 的免疫功能低下病友,包括血癌、接受化放療、器官移植、接受免疫抑制劑治療、HIV 及先天性免疫不全的患者…等,由於自身免疫問題,即便施打新冠疫苗,所產生的抗體和保護力仍比一般人低。即使施打疫苗,這群病人一旦確診,因免疫力低難清除病毒,重症與死亡風險較高,加護病房 (ICU) 使用率是 1.5 倍,死亡率則是 2 倍。

進一步來看,部分免疫低下病患因服用免疫抑制劑,使得免疫功能與疫苗保護力下降,這些藥物包括高劑量類固醇、特定免疫抑制之生物製劑,或器官移植後預防免疫排斥的藥物。國外臨床研究顯示,部分病友打完疫苗後的抗體生成情況遠低於常人,以器官移植病患來說,僅有31%能產生抗體反應。

疫苗保護力較一般人低,靠「被動免疫」補充抗新冠保護力

為什麼免疫低下族群打疫苗無法產生足夠的抗體?主因為疫苗抗體產生的機轉,是仰賴身體正常免疫功能、自行激化主動產生抗體,這即為「主動免疫」,一般民眾接種新冠疫苗即屬於此。相比之下,免疫低下病患因自身免疫功能不足,難以經由疫苗主動激化免疫功能來保護自身,因此可採「被動免疫」方式,藉由外界輔助直接投以免疫低下病患抗體,給予保護力。

外力介入能達到「被動免疫」的有長效型單株抗體,可改善免疫低下病患因原有治療而無法接種疫苗,或接種疫苗後保護力較差的困境,有效降低確診後的重症風險,保護力可持續長達 6 個月。另須注意,單株抗體不可取代疫苗接種,完成單株抗體注射後仍需維持其他防疫措施。

長效型單株抗體緊急授權予免疫低下患者使用 有望降低感染與重症風險

2022年歐盟、英、法、澳等多國緊急使用授權用於 COVID-19 免疫低下族群暴露前預防,台灣也在去年 9 月通過緊急授權,免疫低下患者專用的單株抗體,在接種疫苗以外多一層保護,能降低感染、重症與死亡風險。

從臨床數據來看,長效型單株抗體對免疫功能嚴重不足的族群,接種後六個月內可降低 83% 感染風險,效力與安全性已通過臨床試驗證實,證據也顯示針對台灣主流病毒株 BA.5 及 BA.2.75 具保護力。

六大類人可公費施打 醫界呼籲民眾積極防禦

台灣提供對 COVID-19 疫苗接種反應不佳之免疫功能低下者以降低其染疫風險,根據 2022 年 11 月疾管署公布的最新領用方案,符合施打的條件包含:

一、成人或 ≥ 12 歲且體重 ≥ 40 公斤,且;
二、六個月內無感染 SARS-CoV-2,且;
三、一周內與 SARS-CoV-2 感染者無已知的接觸史,且;
四、且符合下列條件任一者:

(一)曾在一年內接受實體器官或血液幹細胞移植
(二)接受實體器官或血液幹細胞移植後任何時間有急性排斥現象
(三)曾在一年內接受 CAR-T 治療或 B 細胞清除治療 (B cell depletion therapy)
(四)具有效重大傷病卡之嚴重先天性免疫不全病患
(五)具有效重大傷病卡之血液腫瘤病患(淋巴肉瘤、何杰金氏、淋巴及組織其他惡性瘤、白血病)
(六)感染HIV且最近一次 CD4 < 200 cells/mm3 者 。

符合上述條件之病友,可主動諮詢醫師。多數病友施打後沒有特別的不適感,少數病友會有些微噁心或疲倦感,為即時處理發生率極低的過敏性休克或輸注反應,需於輸注時持續監測並於輸注後於醫療單位觀察至少 1 小時。

目前藥品存放醫療院所部分如下,完整名單請見公費COVID-19複合式單株抗體領用方案

  • 北部

台大醫院(含台大癌症醫院)、台北榮總、三軍總醫院、振興醫院、馬偕醫院、萬芳醫院、雙和醫院、和信治癌醫院、亞東醫院、台北慈濟醫院、耕莘醫院、陽明交通大學附設醫院、林口長庚醫院、新竹馬偕醫院

  • 中部

         大千醫院、中國醫藥大學附設醫院、台中榮總、彰化基督教醫療財團法人彰化基督教醫院

  • 南部/東部

台大雲林醫院、成功大學附設醫院、奇美醫院、高雄長庚醫院、高雄榮總、義大醫院、高雄醫學大學附設醫院、花蓮慈濟

除了預防 也可用於治療確診者

長效型單株抗體不但可以增加免疫低下者的保護力,還可以用來治療「具重症風險因子且不需用氧」的輕症病患。根據臨床數據顯示,只要在出現症狀後的 5 天內投藥,可有效降低近七成 (67%) 的住院或死亡風險;如果是3天內投藥,則可大幅減少到近九成 (88%) 的住院或死亡風險,所以把握黃金時間盡早治療是關鍵。

  • 新冠治療藥物比較表:
藥名Evusheld
長效型單株抗體
Molnupiravir
莫納皮拉韋
Paxlovid
倍拉維
Remdesivir
瑞德西韋
作用原理結合至病毒的棘蛋白受體結合區域,抑制病毒進入人體細胞干擾病毒的基因序列,導致複製錯亂突變蛋白酵素抑制劑,阻斷病毒繁殖抑制病毒複製所需之酵素的活性,從而抑制病毒增生
治療方式單次肌肉注射(施打後留觀1小時)口服5天口服5天靜脈注射3天
適用對象發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人與兒童(12歲以上且體重至少40公斤)的輕症病患。發病5天內、具有重症風險因子、未使用氧氣之成人(18歲以上)的輕症病患。發病7天內、具有重症風險因子、未使用氧氣之成人與孩童(年齡大於28天且體重3公斤以上)的輕症病患。
*Remdesivir用於重症之適用條件和使用天數有所不同
注意事項病毒變異株藥物交互作用孕婦哺乳禁用輸注反應

免疫低下病友需有更多重的防疫保護,除了戴口罩、保持社交距離、勤洗手、減少到公共場所等非藥物性防護措施外,按時接種COVID-19疫苗,仍是最具效益之傳染病預防介入措施。若有符合施打長效型單株抗體資格的病患,應主動諮詢醫師,經醫師評估用藥效益與施打必要性。

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
160 篇文章 ・ 270 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
將數學具象化!從複雜數學世界中看見規則——《大自然的數學遊戲》
天下文化_96
・2022/12/24 ・2696字 ・閱讀時間約 5 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

我還有另一個夢想。

我的第一個夢想「虛擬幻境機」只是個科技產物,它能幫助我們將抽象的數學視覺化,促使我們建立新的直覺,讓我們得以忽略數學問題中冗長沉悶的數字結構。

尤其重要的是,它能使數學家對心靈世界的探索變得更容易。但是,由於數學家在數學園地流連忘返時,偶爾也會創造出新景觀,因此虛擬幻境機也可扮演創造性的角色。

事實上,虛擬幻境機或者類似的產品,很快就會問世。

將數學的複雜運作歸類成簡單的模式

我將第二個夢想稱為「形態數學」(morphomatics),它並不是一種科技,而是思考方式。就創造性而言,形態數學具有極為重大的意義。但我卻不知道它是否真會出現,甚至不知道是否有此可能。

我希望答案是肯定的,因為我們都需要它。

上一章的三個例子「液滴、狐與兔、花瓣」彼此間的結構有很大的差異,可是對於這個宇宙如何運作,它們都顯示了相同的哲學觀。它們不像運動定律導出行星橢圓軌道那樣,能直接從簡單的定律導出簡單的模式。相反的,它們貫穿枝葉茂密的複雜性巨樹,最後在適當的尺度下,才終於陷縮成相當簡單的模式。

「水龍頭滴水」這個簡單的敘述,伴隨著極端複雜而不可思議的一連串變遷。

雖然我們已有了電腦模擬的證據,我們還是不知道從流體定律中「為何」會導致這些變遷。這是個簡單的結果,可是起因卻不單純。

在狐狸、兔子與草地構成的數學電腦遊戲中,則包含了許多複雜而隨機的規則。然而,這個人工生態的重要特徵,卻能以四個變數的動力系統來表現,精確度高達百分之九十四。

花瓣的數目是所有原基進行複雜交互作用的結果,但是藉著黃金角,這些作用卻剛好導致各種費布納西數。費布納西數是每位數學福爾摩斯的線索,而不是躲在幕後的元兇。在這個問題中,數學莫里亞提(Moriarty,譯注:福爾摩斯的死對頭)並非費布納西,而是動力學;是自然界的機制,而不是「自然界的數」。

花瓣的數目剛好是費布納西數。圖/envatoelements

在這三個數學故事中,蘊含著一個共同的訊息:自然界的模式都是「突現的現象」,它們從複雜性海洋中突然冒出來,就像波提且利(Sandro Botticelli, 1445-1510)的維納斯乍現於貝殼中,毫無預兆,而且超越了母體。

它們不是自然律的深層單純性帶來的直接結果,那些自然律在這個層級並不適用。它們無疑是從自然界的深層單純性間接衍生而來,但由於因果之間的路徑太過複雜,以致沒有人能夠追尋每一步足跡。

創造一種嶄新的數學

如果我們真想掌握模式的突現,首先需要擁有一個嶄新的科學方法,它要能跟重視定律與方程式的傳統方法並駕齊驅。電腦模擬就是其中一環,可是我們還需要更多。僅由電腦告訴我們某個模式存在,這樣並不能令人滿意,我們還想知道「為什麼」。

這就代表我們必須建立一種新的數學,這種數學能將模式當作模式處理,而不會僅視為細微尺度交互作用的偶然結果。

我並不想改變現存的科學思考方式,它已經帶我們走了很長、很長的一段路,我呼籲的是建立另一個與它相輔相成的體系。

晚近數學最驚人的特色之一,就是開始注重一般性原則與抽象的結構,重心已由定量問題轉移到了定性問題。偉大的物理學家拉塞福(Ernest Rutherford,1871-1937)曾經說過:「定性是差勁的定量描述」,但是這種心態現在已經沒什麼道理。

拉塞福的名言剛好應該倒過來說:定量是差勁的定性描述。因為,能幫助我們了解並描述自然的數學性質種類繁多,數字只不過是其中一種。我們若想將所有的自由度都擠進局限的數值體系,就絕對無法了解樹木的生長或沙丘的形成。

建立一種新數學的時機業已成熟。拉塞福對定性推理的批評,主要在於失之草率;而這種新數學則擁有相當的嚴密性,卻又包含了更多觀念上的靈活性。

我們的確需要一種研究模式的有效數學理論,這就是我將我的夢想稱為「形態數學」的原因。令人遺憾的是,科學的許多分支如今正朝相反方向發展。

舉例來說,DNA常被視為生物體形態與模式的唯一解答,然而當今的生物發育理論,卻不足以解釋為何有機與無機世界分享了那麼多的數學模式。或許,DNA是將動力學規則編入了密碼,而非僅僅控制發育完成的模式。假如真是這樣,當今理論顯然忽視了發育過程的許多關鍵步驟。

建立適當的自然數學體系

數學與自然形態有密切關聯的想法源自湯普生,事實上,還可以遠溯到古希臘人,甚至巴比倫人。然而,直到最近這些年,我們才開始發展堪稱適當的數學。

過去的數學體系本身都太死板,都是為了遷就鉛筆與紙張的限制而創製的。

比如說,湯普生注意到,有多種生物體的形狀與流體的形態極為相似,可是如果想要模擬生物體,當今的流體力學使用的方程式卻嫌簡單得過分。

如果我們在顯微鏡下觀察一個單細胞生物,最不可思議的就是它的運動顯得有明確的目的,看來好像真的知道該往哪裡走。事實上,它是以一種非常特殊的方式,對周遭的環境與內在的狀態做出回應。

生物學家正逐步揭開細胞運動機制的神祕面紗,這些機制比起傳統的流體力學可要複雜許多。細胞最重要的特色之一,是擁有所謂的「細胞骨架」(cytoskeleton),它是某種互相糾纏的管狀網絡,看起來就像一捆稻草,功能是做為細胞內部的剛性支架。

細胞骨架具有驚人的靈活性與動態結構,在某些化學物質的影響下,它可以完全消失無蹤;而不論任何地方需要支撐,又都可以在該處生長。

細胞質中的微管。圖/wikipedia

其實,細胞運動所憑藉的,就是拆卸某些骨架而改搭在另一處。

細胞骨架的主要成分是微管,在討論對稱時我曾經提到它。我在那一章說過,這種不尋常的分子呈長管狀,是由兩種單元:α─微管蛋白與β─微管蛋白組成的,兩者排列成如同西洋棋盤的黑白相間圖樣。

微管可藉增加新單元而生長,也能像香蕉皮那樣從頂端向後捲縮。它的捲縮速率遠大於生長速率,但這兩種傾向都可用適當的化學物質來刺激產生。

——本文摘自《大自然的數學遊戲 》,2022 年 11 月,天下文化出版,未經同意請勿轉載。

天下文化_96
116 篇文章 ・ 600 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

2
1

文字

分享

0
2
1
半導體以前的半導體:從礦石收音機到電晶體——《圖解半導體》
台灣東販
・2022/11/21 ・3430字 ・閱讀時間約 7 分鐘

從礦石收音機到電晶體

直到 1947 年末,美國發明電晶體後,人類才正式開始使用半導體。不過在這之前,人類已經在使用類似半導體的東西,礦石檢波器就是其中的代表。

日本從 1925 年開始放送廣播,最早的收音機使用的是礦石檢波器。檢波器是一種可以接收電波,並從中提取出聲音與音樂等資訊訊號的元件。使用天然存在之礦石製作出來的檢波器,就叫做礦石檢波器。

礦石檢波器。圖/東販

圖 1-1 是礦石檢波器的原理。檢波器的構造是以金屬製的針碰觸著方鉛礦這種特殊礦石(圖 1-1(a))。

電流容易從金屬針流向礦石,卻很難從礦石流向金屬針(圖 1-1(b))。這種特殊的性質稱為整流性,也是半導體的特性。

對於擁有整流性的物質來說,容易讓電流通過的方向稱為順向,不容易讓電流通過的方向則稱為逆向

換言之,順向的電阻較低,逆向的電阻較高。之後會說明理由,總之有這種特性的元件,可用於製作檢波器。而順向與逆向的電阻比值愈大,可以製成愈靈敏的礦石檢波器。

礦石檢波器的原料是天然礦石,所以品質並不固定。針的接觸位置不同時,靈敏度也不一樣。所以製作礦石檢波器時,必須試著尋找能夠使針的敏感度達到最佳的特定位置。雖然品質不穩定,但製作簡便又便宜,也不用消耗電力,所以早期的收音機常會使用礦石檢波器。

當時的收音機少年也熱中於用礦石檢波器,自己動手製作礦石收音機。以前筆者(井上)年紀還小的時候,就曾自己製作礦石收音機。調整好礦石檢波器後,就可以清楚聽到廣播電台的聲音,讓人相當興奮。為了盡可能提高接收電波時的靈敏度,我當時也下了不少工夫。

這裡就來簡單說明用檢波器,從電波中提取出資訊訊號的原理吧。

訊號的接收與提取

接收無線電波訊號。圖/東販

如圖 1-2 所示,欲以無線電波傳送聲音、音樂等頻率較低的波時,需先將其轉變成頻率較高的波才行。

這個操作稱為調變。圖中,以調變器混合資訊訊號波(同圖①)與頻率較高的載波(同圖②)後,可以得到同圖③般的波,然後再發送這種無線電波(同圖④)。

檢波器接收到這種無線電波(同圖⑤)後,由於只會讓正向的調變波通過,故可得到同圖⑥般的波。這種波含有頻率較低的訊號波與頻率較高的載波,所以需再通過低通濾波器(只讓低頻率的波通過的濾波器),抽取出訊號波(同圖⑦)。

在真空管收音機盛行起來之後,人們便不再使用礦石檢波器。不過,在第二次世界大戰時,礦石檢波器又起死回生。使用礦石檢波器的雷達,在第二次世界大戰相當活躍。

雷達的原理。圖/東販

雷達如圖 1-3 所示,可透過指向性高的天線,朝特定對象發射高頻率電波脈衝,再接收由該對象反射回來的電波,並計算時間差,以測量出與該對象的距離與方向。之所以要使用高頻率電波,是因為頻率愈高,愈能正確識別出細小的物體。

這種雷達使用的無線電波叫做微波,頻率在 3GHz~10GHz 左右。若要用真空管檢波器,從頻率那麼高的無線電波中檢出訊號,必須使用體積很大、電容量很大的真空管才行,所以真空管不適用於高頻率的檢波器。

重出江湖的礦石檢波器

此時就輪到礦石檢波器重出江湖了。使用礦石檢波器時,針與礦石只要有一個接觸點就行了,電容量很小,在高頻率時也能正常運作。

如前所述,礦石檢波器的運作並不穩定,無法直接用於戰爭。於是歐美國家便紛紛投入研發性能更好、能夠取代礦石檢波器的新型檢波器,最後得到的就是矽晶(半導體)與鎢針的組合。

矽晶是由人工製成的均質結晶,所以不需要像使用礦石時那樣,用金屬針尋找、調整最佳的接觸位置。

而且,隨著雷達矽檢波器的研究持續發展,科學家們也發現了矽晶是相當典型的半導體。

為了提高結晶的純度,矽晶的精製技術也跟著進步,這和戰後電晶體的發明也有一定關聯。而且,因為製造出高性能的檢波器,所以人們也開始使用像是微波這類過去幾乎不用的高頻率無線電波。相關技術在戰後開放給民間使用,於是電視與微波通訊也開始使用這些無線電波。

雖然我並沒有要肯定戰爭行為,但戰爭確實也有促進科學技術發展的一面。

戰爭確實也有促進科學技術發展的一面。圖/pexels

半導體就是這種東西—溫度與雜質可提高電導率

接著就讓我們進一步說明,半導體究竟是什麼東西吧。

所有物質大致上可依導電性質分為兩類,分別是可導電的「導體」,以及不能導電的「絕緣體」。

導體的電阻較低,電流容易通過,譬如金、銀、銅等金屬皆屬於導體。另一方面,絕緣體的電阻較高,電流難以通過,橡膠、玻璃、瓷器皆屬於絕緣體。

我們可以用電阻率 ρ(rho:希臘字母)來描述物質的電阻大小。電阻率的單位是〔Ω・m〕,電阻率愈大,電阻就愈大。

導體、半導體、絕緣體的分類。圖/東販

如圖 1-4 所示,雖然沒有明確的定義,不過導體指的通常是電阻率在 10-6Ω・m 以下的物質,絕緣體指的則是電阻率在 107Ω・m 以上的物質。

相對於電阻率,有時會用電導率 σ(sigma:希臘字母)來描述物質的電阻大小。電導率為電阻率的倒數(σ=1∕ρ),單位為〔Ω-1・m-1〕。與電阻率相反,電導率愈大,電阻就愈小。

相對於此,半導體如名所示,性質介於導體與絕緣體之間;電阻率也介於導體及絕緣體之間,即 10-6〜107Ω・m。代表性的半導體如矽(Si)與鍺(Ge)。

半導體的特徵不僅在於電阻率的大小,更有趣的是,隨著溫度與微量雜質濃度的不同,半導體的電阻率數值也會有很大的變化。圖 1-5 為溫度對半導體電阻率的影響示意圖。圖中縱軸寫的是電導率 σ,但要注意的是,縱軸的 σ 值其實是對數尺度。

溫度對半導體電阻率的影響。圖/東販

由這個圖可以看出,一般而言,隨著溫度的上升,金屬的電導率會下降(電阻率上升);但半導體則相反,在 200℃ 以下的範圍內,溫度上升時,半導體的電導率會跟著上升(電阻率下降)。

1839 年,法拉第在硫化銀 Ag2S 上首次發現了這種隨著溫度的上升,電導率會跟著上升的奇妙現象。雖然他不知道為何會如此,不過,這確實是人類首次發現半導體性質的例子。

電流是電子的流動,所以電導率提升,就代表半導體內的電子數變多了。電子原本被半導體原子的+電荷束縛著,無法自由移動。不過當溫度上升,獲得熱能後,電子就能脫離原子的束縛自由移動了。

這種能自由移動的電子(自由電子)數目增加後,會變得較容易導電,電導率跟著上升。這就是半導體的一大特徵。

高純度的半導體結晶在室溫下熱能不足,幾乎不存在自由電子,所以可視為絕緣體。

不過,如果在半導體結晶內添加極微量的特定元素雜質(Ge 與 Si 以外的某些元素),便可大幅降低電流通過半導體的難度。這也是半導體的一大特徵(詳情將在 1-5 節中說明)。

半導體的自由電子,也可以透過光能觸發。

英國的史密斯於 1873 年時發現了這種現象。他用光照射擁有半導體性質的硒(Se)時,發現硒的電阻變小了(內光電效應)。

1907 年,英國的朗德對碳化矽(SiC)結晶施加電壓賦予能量時,發現結晶會發光。這種能讓光與電能互相變換的特性,也是半導體的特徵。

——本文摘自《圖解半導體:從設計、製程、應用一窺產業現況與展望》,2022 年 11 月,台灣東販出版,未經同意請勿轉載。

台灣東販
5 篇文章 ・ 1 位粉絲
台灣東販股份有限公司是在台灣第1家獲許投資的國外出版公司。 本公司翻譯各類日本書籍,並且發行。 近年來致力於雜誌、流行文化作品與本土原創作品的出版開發,積極拓展商品的類別,期朝全面化,多元化,專業化之目標邁進。