0

0
3

文字

分享

0
0
3

人口普查、打孔卡片、IBM——第一台插電的計算機│《電腦簡史》數位時代(一)

張瑞棋_96
・2020/08/24 ・3237字 ・閱讀時間約 6 分鐘 ・SR值 519 ・六年級

計算機從齒輪時代邁入新的數位時代,有兩個重大變革,一是硬體零件,一是運算方式。硬體改用電子元件取代機械齒輪,運算方式則從類比轉為數位化。不過光數位化還不夠,還必須從十進位改為二進位,才可以在貯存、運算或傳輸各方面都達到最佳效果。這過程並非一蹴而成,而是多位先驅——或提出理論架構,或動手發明——闢出不同的進路,最後才匯聚成現代電腦的樣貌。

本文為系列文章,上一篇請見:將類比計算機推向顛峰,也為未來科技舖好沃土的凡納爾.布希│《電腦簡史》(二十四)

人口普查統計搞了八年!怎麼辦?

計算機什麼時候開始用電的?上一篇提到凡納爾.布希與學生於 1926 年發明的「連續積分儀」首度利用電錶與可變電阻,但其實這並不是第一台插電的計算機。事實上,早在特斯拉於 1896 年為西屋公司電建立交流電網之前,就已經出現使用電力的計算機了。

1880 年,美國展開十年一度的人口普查。調查員挨家挨戶詢問各項基本資料,在表格上填寫完成後,統一送回華府的「美國普查局」(United States Census Bureau) 進行各項統計與交叉分析。當時美國人口已超過五千萬人,如此龐大的資料全賴人工作業,最後花了八年的時間才處理完畢。

當時美國普查局有個新進的菜鳥叫何樂禮 (Herman Hollerith),前一年才從大學畢業,在這次普查負責工業數據的統計。他看見局裡堆積如山的普查資料,已經可以預見處理起來勢必曠日廢時,於是與部門主管畢林斯 (John Shaw Billings) 討論是否有更好的作法。畢林斯告訴他有一種雅卡爾織布機,利用打孔卡片自動編織圖案,或許可以用這樣的原理打造一部機器,幫忙統計資料。何樂禮聽了記在心裡,開始私下進行研究。

何樂禮 (Herman Hollerith) 攝於1888年。圖/WIKI

如果結合打孔紙帶與繼電器……

一年後,普查計畫的主持人轉任 MIT 校長,回頭挖角何樂禮到 MIT 機械系任教,於是他只在普查局待了兩年,就於 1882 年前往波士頓。何樂禮在 MIT 執教之餘,仍抽空繼續研究自動統計的機器,不過教學工作遠比他想像的繁重,於是過了一年他就辭去教職,到華府的專利局工作。如此一來他有更多時間來設計機器,也可以順便學習如何為自己的發明布局專利。

1884 年,何樂禮提出第一項專利申請。在這個原始設計中,何樂禮用的是打孔的紙帶,紙帶上每一排有 26 格,藉由在不同位置打洞,來代表一個人的年紀、性別與人種。其中年紀就佔了 20 格,十位數與個位數各有 10 格代表 0 到 9,在其中兩格打洞表示歲數,因此只能記錄 00 到 99,百歲人瑞就沒辦法了。

紙帶通過滾輪時也會經過一排電刷,有打洞的那幾格,電刷會接觸到紙帶下方的金屬而構成電流迴路,對應的繼電器隨之啟動(裡面的電磁鐵通電後,產生磁力吸引金屬條移動),帶動計數器。整卷紙帶全部跑完,各項數字也就自動累加完畢。這就是史上首度使用電流的計算機——不過它只停留在設計圖的階段,並沒有真的製造出來。

打孔卡片取代紙帶,租賃合約取代買斷

因為何樂禮很清楚這樣一部機器仍無法應付人口普查。紙帶能再增加的寬度有限,所承載的資訊量遠遠不及普查的項目。此外也無法再進一步分類統計,例如不同性別或不同人種的年齡分布。因此何樂禮將專利申請送出去後,立即著手改善,最後他從當時的火車票得到靈感,用打孔卡片取代紙帶,一張卡片記錄一個人,便能放進更多個人資料。

何樂禮設計的打孔卡片。圖/WIKI

同時他改用矩陣式的探針穿過卡片上的洞,與孔洞下方的水銀凹槽接觸,就可以從特定組合的電路得出對應項目的分類統計;若要做不同項目的統計分析,只要更換不同的探針頭就可以了。此外,何樂禮還裝設了卡片歸類匣,共有 22 格。卡片經過探針頭後,電子訊號同時打開它應歸類的格子,操作人員就知道這張卡片應該放置何處,不需要再靠人工判讀比對。

1886 年,何樂禮完成了改良後的原型機,取名為「何樂禮電力製表系統」(Hollerith Electric Tabulating System)。經由畢林斯的協助,這部機器獲得巴爾的摩公共衛生署 (Baltimore Department of Health) 用來做死亡統計,取得不錯的成效,於是隨後紐澤西州以及紐約市的公共衛生署也陸續採購使用。從巴斯卡以降,多少計算機先驅充滿期待卻無法達成的事——計算機的商業化,終於在何樂禮手中達成。

這當然要歸功於何樂禮結合打孔卡片與電流控制,讓計算機展現巨大的效能。但除了技術因素之外,還有一個成功關鍵在於新的商業模式。何樂禮並不是直接將機器賣給客戶,而是透過西屋電氣這樣的大公司提供租賃服務,讓客戶每月支付租金即可。如此一來客戶就不會因為購置金額龐大而裹足不前,何樂禮也能取得資金專心研發,瞄準最大的目標—— 1890 年的人口普查。

人口普查大放異彩,商用市場勢如破竹

其實何樂禮根本沒有對手,另外兩家參與標案的廠商仍是用人工作業,測試成績遠遠落後,因此美國普查局毫不猶豫地選用何樂禮電力製表系統。結果這次只花了六年就處理完畢,雖然只比上次縮短兩年,看起來不多,但其實美國人口已成長到將近六千三百萬人,比十年前增加了四分之一。

此外這次調查的項目也變多了,資料量大幅增加下,卻用更少的人力在更短的時間內完成(其實大部分的人力與時間都花在前置作業,他們得先將回收的調查表製成打孔卡片),已足以證明何樂禮這部機器確實有極大的效益。

用於1890年人口普查的自動製表機。圖/WIKI

何樂禮十年磨一劍,威震江湖。問題是人口普查十年才一次,在取得下次標案前,難道要喝西北風?何樂禮趕緊尋找新的客戶,他發現鐵道公司是最佳對象,因為如我們之前在巴貝奇的章節提到,隨著鐵路不斷增建,客運量與貨運量快速成長,鐵道公司每天都需要大量人力進行結算。如果獲得鐵道公司採用,就可以帶來穩定的收入。

不過原來針對人口普查設計的機器只能算是加法器,而鐵道公司進行結算時,加減乘除都會用到。因此何樂禮將萊布尼茲的步進滾筒整合進來,原本滾筒表面九根突起長條是以機械方式帶動齒輪,改成接觸導電而啟動繼電器,便能同樣用電流完成四則運算。何樂禮順便裝設了自動輸送卡片的機制,就不需靠人工一張一張的放進卡片。此外,他還從電話交換總機獲得靈感。當時仍是靠人工將電話線路在「插接板」(Plugboard) 上插拔來接通電話,何樂禮也在探針頭上加裝插接板,如此不用更換探針頭就能切換不同的交叉統計。

何樂禮終於在1896 年九月,獲得紐約鐵道公司同意採用這部全新的「整合製表機」(Integrating Tabulator)。有了這家全美第二大鐵道公司的合約,何樂禮在三個月後就放膽創業,成立「製表機器公司」(Tabulating Machine Company)。他不但再次贏得 1900 年人口普查標案,而且到了 1908 年,他的公司已經有三十家大型客戶,除了鐵道公司,還有壽險公司、公家機構,以及製造業。

公司合併誕生 IBM,影響電腦發展一世紀

不過事必躬親的何樂禮也因為業務擴張而健康亮起紅燈,於是在一位金融家的規劃下,於 1911 年讓公司與另外三家分別製造時鐘、打卡鐘,與精密磅秤的公司合併為「計算—製表—記錄公司」(Computing-Tabulating-Recording Company,簡稱C-T-R)。何樂禮本身轉任技術顧問,繼續為新公司效力十年才功成身退。

1924 年,C-T-R公司更名為定位更明確、更具雄心的名稱:「國際商業機器公司」,也就是我們現在熟知的 IBM (International Business Machines Corporation)。

IBM的前身——“Computing-Tabulating-Recording Company” 。圖/WIKI

雖然公司名稱用的是「商業機器」,但如我們所見,百年來IBM 一直都是以計算機為事業核心。這當然都源自於何樂禮的發明與開拓出來的商用市場,在他奠定的基礎上,IBM繼續成長茁壯,不斷在電腦的發展上扮演舉足輕重的角色。

除了孕育出 IBM,何樂禮對於電腦的技術創新也做出直接的貢獻。是他率先引進電力,開啟計算機從機械式轉向電子式之路;是他率先將打孔卡片實際用於計算機(雖然是巴貝奇最早提出,但畢竟他的分析機從未建造出來),引領後世繼續使用打孔卡片將近一世紀;也是他率先將插接板用於變更運算,而為後來的可程式化計算機仿效。

雖然何樂禮的自動製表機與現代電腦還有一大段距離,但是計算機能跳脫窠臼,往現代電腦邁進,何樂禮絕對居功厥偉。

文章難易度
張瑞棋_96
423 篇文章 ・ 658 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
計算機先驅:巴貝奇與他的小型差分計算機——《資訊大歷史》
azothbooks_96
・2022/07/01 ・3045字 ・閱讀時間約 6 分鐘

查爾斯.巴貝奇

查爾斯.巴貝奇(Charles Babbage),1792 至 1871 年。

1843 年,一位英國數學家提出了分析機原理,這個構思將在一百零三年後由後人付諸實踐,並有了一個為大家熟知的名字——計算機(今日俗稱電腦)。很遺憾,查理斯.巴貝奇終其一生也沒能實現造出分析機的願望,但他依舊是當之無愧的計算機先驅。

直到今天,許多計算機書籍扉頁裡仍然刊載著他的照片,以表紀念。

巴貝奇發明小型差分計算機

一七九二年,巴貝奇出生於倫敦一個富有的銀行家家庭,十八歲進入著名的劍橋大學三一學院,成為牛頓的校友。後來他擔任了牛頓擔任過的「盧卡斯數學教授」職務。在進入大學之前,他就展現出極高的數學天分。

進入大學後,巴貝奇發現,當時英國人普遍接受的牛頓建立在運動基礎之上的微積分,不如萊布尼茨基於符號處理的微積分那樣便於理解和傳播。為了推廣已被歐洲大陸普遍接受的萊布尼茨的微積分,他和其他人一同創辦了英國的(數學)分析學會。

不過巴貝奇並不是一個安分的學生,他一方面顯現出超凡的智力,另一方面又不按照要求完成學業,為此他不得不轉了一個學院,才能繼續學業。在學校裡,他還對很多超自然的現象感興趣。

延伸閱讀:巴貝奇誕辰|科學史上的今天:12/26

如果不是趕上工業革命,巴貝奇或許會尋找某個傳統的數學領域或者自然哲學領域做一輩子研究,並且留下一個巴貝奇定律或者巴貝奇定理。但是,工業革命的大背景,讓他把畢生精力和金錢都投入研究一種能夠處理資訊的機械中。

這也不奇怪,因為工業革命為資訊處理提供了思想上的依據、技術上的條件和廣闊的市場。工業革命是人類歷史上最偉大的事件。它不僅第一次讓人類從此進入可持續發展的時代,也改變了人們的思想。人類從相信神,到今天開始變得自信起來,相信這個世界是確定的、有規律的,而自己能夠發現世界上所有的規律。

早在牛頓時代,著名物理學家玻意耳(Robert Boyle)在總結牛頓等人的科學成就之後,就提出了「機械論」,也被稱為「機械思維」。

提出「機械論」的玻意耳(Robert Boyle)。圖/Wikipedia

玻意耳等人(包括牛頓、哈雷等)認為,世間萬物的規律都可以用機械運動的規律來描述,包括蒸汽機和火車在內的工業革命中那些最重要的發明,都受益於機械思維。人們熱衷於用機械的方法解決問題,從精密的航海導航,到能夠奏樂的音樂盒,再到能織出各種圖案的紡織機。

既然能想到的所有規律都可以用運動規律來描述,那麼就很容易想到讓具有特殊結構的齒輪組運動來完成計算,這便是設計機械計算機的思想基礎。

其實,這種想法早在十七世紀就有人嘗試過。法國數學家帕斯卡(Blaise Pascal)發明了一種手搖計算器——雖然有時人們將它稱為最早的機械計算機,但實際上它和我們今天理解的電腦概念沒有太多相似之處,稱之為「計算器」更為恰當。

帕斯卡計算器從外觀上看有上下兩排旋鈕,每個旋鈕上都刻著○至九這十個數字。在做加減法時,只要將參加運算的兩個數字分別撥到相應的位置,然後轉動手柄,計算器裡的一組組齒輪就會轉動,完成計算。

帕斯卡計算器。圖/Wikipedia

帕斯卡計算器最初只能做加法,後來經過改良, 可以做減法和乘法, 但做不了除法。在帕斯卡之後,萊布尼茨改良了計算器。他發明了一種以他名字命名的轉輪「萊布尼茨輪」,方便實現四則運算中的進位和借位。

到了十九世紀初,經過近兩個世紀的改進,機械計算器已經能夠完成四則運算,但是計算速度很慢,精度也不夠高,而且設備造價昂貴。不過,這種計算器更大的缺陷在於,對於複雜的運算(比如對數運算和三角函數運算)都做不到。

十九世紀機械工業的發展需要進行大量的複雜計算,比如三角函數的計算、指數和對數的計算等。在微積分出現之前,完成這些函數的計算是幾乎不可能的事。

十八世紀之後,歐洲數學家用微積分找到了很多計算上述函數的近似方法,不過這些方法的計算量極大,需要很長的時間,而且當時除了數學家,一般人是完成不了那些計算的。為了便於工程師在工程中和設計時完成各種計算,數學家設計了數學用表,如此一來工程師就可以從表中直接查出計算的結果。

不過,那個時代的數學用表錯誤百出,為生產和科學研究帶來了很多麻煩。而這個問題很難避免,因為手算很難保證完全不出錯。如果很多數學家分別獨立計算,還可以比對結果發現錯誤。但是巴貝奇發現,那些不同版本的數學用表都是抄來抄去,而犯的錯也都一樣。

因此,巴貝奇想設計一種機械來完成微積分的計算,然後用它來計算各種函數值,得到一份可靠的數學用表。當時他只有二十二歲。

延伸閱讀:兩艘軍艦換不到兩噸重的計算機?巴貝奇與差分機|《電腦簡史》 齒輪時代(十八)

在隨後的十年裡,巴貝奇造出來一台有六位精度(巴貝奇最初的目標是達到八位精度)的小型差分計算機。隨後巴貝奇用它算出了好幾種函數表,用於解決航海、機械和天文方面的計算問題。

值得指出的是,巴貝奇的這次成功受益於工業革命的成就——當時機械加工的精度比瓦特時代已經高出了很多,這讓巴貝奇能夠加工出各種尺寸獨特的齒輪。

但是,當時並沒有二十世紀的精密加工技術,製造小批量特製齒輪和機械部件的成本高、難度大,這給巴貝奇後來的工作帶來了諸多不便。

巴貝奇小型差分計算機的部分模組。圖/Wikipedia

不過,首次成功還是讓巴貝奇獲得了英國政府的資助,用以打造一台精度高達二十位的計算機。

幾年後,他又獲得了劍橋大學盧卡斯數學教授的職位,讓他有了穩定的收入。在此之前,他一直在花自己繼承的十萬英鎊遺產。勝利女神似乎正向他招手,但接下來的時日,他在計算機研究方面一籌莫展。

從表面上看,巴貝奇遇到的困難是因為那台差分機太複雜了,裡面有包括上萬個齒輪的二點五萬個零件,當時的加工水準根本無法製造。但更本質的原因是,巴貝奇並不真正理解計算的原理。他不懂得對於複雜的計算來說,不是要把機器做得更複雜,而是要用簡單的計算單元來實現複雜的計算。

當然,在那個年代沒有人瞭解這些。作為現代計算機基礎理論的布林代數要再等十幾年才會被提出來,而且要再過近一個世紀,才會被應用到計算技術中。

後人根據巴貝奇的設計打造而成的差分機。圖/Wikipedia

——本文摘自《資訊大歷史:人類如何消除對未知的不確定》,2022 年 6 月,漫遊者文化,未經同意請勿轉載。

azothbooks_96
38 篇文章 ・ 11 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

0

8
1

文字

分享

0
8
1
學測該怎麼出題?——點評高中數學教育與 111 年數學學測
科學月刊_96
・2022/03/02 ・3952字 ・閱讀時間約 8 分鐘

  • 文/張鎮華|臺灣大學數學系名譽教授。

Take Home Message

  • 今年學測試題為 108 課綱實施的第一次學測。數學考題公布後,各界普遍對本次的試題感到失望。張鎮華認為,本次試題大多符合 108 數學課綱的精神,但試題的份量太重,學測應回歸「初步篩選門檻」的定位。
  • 張鎮華表示,數學考題的份量應調整適中,過去考題內容大多偏難,學生學習時遂常以對付考試為方向,以歷年考試題型為依據,背公式以求速解,忽略基礎概念的學習。
  • 近年來數學教學及評量已融入計算機使用,但大考仍禁止使用計算機,張鎮華認為,培養數感是計算機融入教學的重要理念之一,未來大考應允許使用計算機。
  • 張鎮華建議大考中心除了公布簡答之外,也能出版詳細的文件,闡述出題理念,協助引導教師的教學方向。

111 年學測於今(2022)年元月下旬登場,這是 108 課綱實施之後的第一次學測,各界都引頸觀望大考中心會如何回應 108 課綱,這更是教學現場師生關注的焦點。在數學科有兩個為人重視的方向,其一是回應數學自高二起分流教學,數學 A 和數學 B 如何命題;其二是學測數學科考題近年來在難易間來回擺盪,今年會是如何?

學測宜回歸「初步篩選門檻」的定位

學測始於民國 83 年,其定位是「初步篩選門檻」。但是數學科的考題並沒有對位,一直到民國 100 年之前,試題普遍都較難,滿級分人數占考生的百分比幾乎各年都只比 1% 略多,民國 85 年的 0.16% 更是歷年來滿級分比例最低的一次。這樣的難題,引發大部分學生害怕數學,現場老師更無法正常教學。自民國 100 年起,數學科考題逐漸回歸基礎,但卻在難易之間來回擺盪,讓師生每年惴惴不安。

民國 108、109 年的學測數學科試題極為適當,但卻因為滿級分考生的百分比高而獲罪,讓人無法理解;隔年數學科考題轉難,這雖在大家預料之內,但是各界熱切期望其回歸基本。本來期盼分程度測驗的數學 A 和數學 B 能解此困境,但是在今年數學 A 考完當晚,許多國高中老師、大學教授紛紛發表評論,對考題表示失望與不解。

筆者因為要協助高中數學學科中心,拍攝數學 A 和數學 B 的解答影片,先獨自逐題解答了兩份試卷,感覺題目其實都出得很好,大致上回應了 108 數學課綱的精神。但是其份量太重,100 分鐘的考試時間並不是合理的安排,難怪各界覺得太難;就連數學 B 試卷,其對象是低數學需求的學生,筆者也認為份量太重。

我猜想,數學 A 的份量會如此重,可能是想與數學 B 有所區隔。但是兩份試卷內容都太重了,學測還是應該回歸「初步篩選門檻」的定位,以利現場教學。

數學的教與學宜重視基礎概念,避免依考試題型學習

面對大考,數學的教與學也應該反思。數學的知識密度高,比起其他學科,有更多的邏輯推理,解題更宜細緻緩慢,需要充分的時間。可惜的是,面對「科科等值」的壓力,數學科的考試時間只能和各科一樣。在這樣的限制下,如果數學考題份量適當,也無不可;偏偏各處的考題大多偏難,學生的學習遂常以對付考試為方向,以歷年考試題型為依據,背公式以求速解,忽略基礎概念的學習。

在引導學生的學習應注重基礎概念這件事情,大考中心歷年來極盡努力。以今年數學 A 第 1 題為例,就是在傳達一個理念,排列組合只要重視基礎原理及組合數 Ckn 就夠了。早年有關排列組合的學習內容極多,許多內容都是被「製造」出來的考試難題,不關乎組合學的根本。後來 99 課綱刪除了環狀排列,108 課綱則刪除重複組合,將內容回歸到基礎概念。審視大考中心這些年來有關排列組合的試題,其實都是基本的概念,高中師生應該要理解,重視基礎概念才是王道。

111 年學測數學 A 第 1 題。資料來源/大學入學考試中心

再以今年數學 A 第 4 題為例,涉及的只有等差數列的定義,以及對數的換底公式和常用對數的 3 條對數律。早年有關對數的教學,涉及極多一般底的變形對數律公式,也出現底為函數的偏鋒考題,於對數本質的學習幫忙不大,但學生卻窮於背公式、解難題。其實對數相關的問題,只要以換底公式回歸常用對數,必要時再輔以常用對數的 3 條對數律,均能順利回答。99 及 108 數學課綱均重視此理念,大考中心的試題亦都契合此想法,高中師生當可放心依此教與學。

111 年學測數學 A 第 4 題。資料來源/大學入學考試中心

今年學測數學 A 還有許多值得稱道的題目。例如第 7 題中,絕對值代表數線上兩點間的距離,若能搭配數線上的圖形判斷,並不需要進行去絕對值的耗時計算;第 10 題有關三次函數的性質,不必記憶對稱中心的公式,不淪為費時的三次配方,是相當用心的題目;第 12 題揭示,不必背誦一元二次方程式的公式解;第 6、15 題提醒,不能忘記國中所學的基礎平面幾何知識,凡此種種都很精采。

更多有關今年數學 A 考題的分析,可參考延伸閱讀的《高中數學學科中心電子報》文章。

計算機融入教學與評量

108 數學課綱除了從高二起分三軌教學以外,還有一個重點,就是計算機融入教學與評量。108 數學課綱高中範圍的 84 條學習內容中,有 24 條使用計算機作為參考教具。實施要點各處亦闡明,教材要設計計算機相關內容,教學應重視學生使用計算機的方法與態度,教學資源應包括計算機,學習評量宜容許學生使用計算機。

如今,6 家出版社的高中數學教科書,均依照課綱的精神將計算機教學融入,學校老師們也開始教導學生正確使用計算機的方法與態度,許多回應都指出,計算機融入教學收到不錯的成效,過去一些害怕數學的學生,因為有了工具,逐漸開始喜歡數學。只是令人不解的是,大考中心並不允許學生在學測考試時使用計算機,理由之一是害怕學生利用計算機作弊;這是一個不可思議的藉口,請看世界極多國家的考試都已經允許學生使用計算機,並沒發生什麼不良事件。

審視今年學測數學科考題可以發現,為了害怕被批評不能使用計算機,一些需要使用真實數據的應用題目都不見了,因此考題中缺少高二的一些重要學習內容,例如指數、對數、三角函數的應用問題。取而代之的竟然是設計了第 2 題那種虛假情境的問題,如下:「某品牌計算機在計算對數 logab 時需按 log(a,b)……。」這種考題在以前的題目鋪陳上,是以題目抄錯順序為情境,這次刻意以計算機的操作布題,實為假情境。市售計算機的對數計算皆以 10 或自然對數 e 為底,並沒任意底數操作的方式,與現實矛盾的情境,無法回應 108 數學課綱的理念,倒不如讓學生在考試時使用計算機,才能讓他們更有感。

111 年學測數學 A 第 2 題。資料來源/大學入學考試中心

另外,數學 B 第 15 題的答案:機率為 14/15,以及第 16 題的答案:機率為 31/45,都不如 0.93、0.69 能讓人感受機率的大小。讀者可試想,你會跟朋友說買了一間 2022 坪的房子嗎?當然要說 44.97 坪才讓人有感。培養「數感」是計算機融入教學的一個重要理念。另外,第 19 題需要學生動手計算 2.3/48、2.3/19、4/57 來作答,也不是高中數學學習的重點,應該允許他們用計算機算。

另外有些小瑕疵的題目,例如數學 A 第 14 題的高斯消去法宜慎重出題。

大考中心宜出版學測參考答案,闡述出題理念以引導現場教學

整題來說,今年學測的數學科考題大方向可圈可點。回顧大考中心成立的歷史,民國 80 年 10 月 14 日,教育部長毛高文在臺灣省教育行政會議中頒發的書面致詞說:「如果將來的入學方式能多元化,學生的學習方式就不能固定一個模式,要用最基本的道理來應付各種的需求和挑戰,導向正常教學。」

反應在教育部於 1992 年提出的《我國大學入學制度改革建議書-大學多元入學方案》,其第五項理念是:

(五)考試方法應輔助教育,而非教育去適應考試方法。

而「良好的大學入學制度」的 14 項評判規準中,被認為「第一重要」的規準是:

3. 能引導高中正常教學。

由前述文件觀之,大考中心應平衡兩個服務面向,一面是為大學選才服務,另一面是為高中學習成效檢定服務,不該過度傾向於某一面的需求而犧牲另一面。目前仍顯得太傾向為大學服務,數學相對表現令多數高中教師失望。

本文最後不禁要再多提出一個請求。除了因為時間有限,宜減輕數學試題的份量以外,建議大考中心能出版學測參考答案,闡述出題理念以協助現場教學。雖然有許多人都已經釋出參考答案,但他們到底不是出題者,有些地方並不一定能精確了解出題的用心,如果中心能在公布簡答之外,出版詳細的文件、闡述出題理念、引導教學方向,對現場教學將有極大助益。

延伸閱讀

  1. 張鎮華,〈學測數學怎麼考?分程度測驗或許是正解〉,《科學月刊》,第 615 期,2021 年。
  2. 歐志昌,〈從 111 年學測數學 A 試題省思 108 數學課綱之教學與學生學習〉,《高中數學學科中心電子報》,第 168 期,2022 年。
  3. 大學入學考試中心,《我國大學入學制度改革建議書-大學多元入學方案》, 1992 年。
  • 〈本文選自《科學月刊》2022 年 3 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
科學月刊_96
232 篇文章 ・ 2396 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

4

9
4

文字

分享

4
9
4
超乎想像的運算力:量子電腦時代來臨,幾件你需要知道的事
科技大觀園_96
・2021/08/14 ・4039字 ・閱讀時間約 8 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

臺灣大學 IBM 量子電腦中心主任張慶瑞表示,IBM 希望 15 年內讓量子位元數突破千萬,屆時傳統電腦耗費「萬年」才能計算的線性代數難題,量子電腦在數分鐘就可迎刃而解,因此現在密碼學的系統必須調整,立即進入「抗量子」時代。

為什麼「量子電腦」像隻巨獸般無所不能呢?難道它是「超級電腦」的加強版,由更多的位元組成嗎?不是的,傳統電腦和量子電腦是兩種截然不同的資料處理形式。

IBM量子電腦的內部構造,上面的一根根的都是同軸電線。(圖/flickr IBM Q,https://www.flickr.com/photos/ibm_research_zurich/32390815144/in/album-72157663611181258/)
IBM量子電腦的內部構造,上面的一根根的都是同軸電線。(圖/flickr IBM Q,) 

神秘的量子行為,連愛因斯坦都無法接受 

傳統電腦以位元(bit)的形式處理資料,每一個位元會在兩種狀態中切換, 這兩種狀態被標為 0 和 1;量子電腦則用量子位元(qubit)來做, 它可以 0、1 的線性組合的疊加態。 

量子位元在疊加態(superposition)時,張慶瑞主任表示,假如把位元的位置以球體標示,南、北極位置分別代表 0 和 1,傳統電腦的位元只能在兩極之間切換,但若是量子位元疊加時,它能在二維球面上任何位置,不限於南北極。 

傳統電腦與量子電腦的位元差別。(圖/沈佩泠繪)
傳統電腦與量子電腦的位元差別。(圖/沈佩泠繪) 

量子電腦的具體表現,可以用「翻硬幣」的量子博弈遊戲來想像,一個黑盒子中有一枚硬幣,你跟電腦輪流去黑盒子裡翻硬幣,你可以選擇翻或不翻,你和電腦都不會知道彼此對硬幣做了什麼,數輪下來,打開盒子如果是人頭朝上就是你勝,反之就是電腦勝。

張慶瑞表示,如果是古典博弈,你跟古典電腦的勝率各是一半一半,因為古典行為只有翻或是不翻,位元只能以 0、1 兩種方式呈現;但量子電腦不一樣,它在黑盒子裡可能不直接翻成正或反面,而可能是將硬幣「轉動」起來,而這個量子轉動,不懂量子策略的人無法察覺。最後,只要你一開蓋觀測,硬幣就會變成反面朝上,量子電腦勝率達百分之百。

這聽起來非常不可思議,對吧!連愛因斯坦也難以接受量子力學,他曾說:「是不是只有當你在看它的時候,月亮才在那裡呢?」這個奇怪問題點出「量子行為過程無法被觀測」的神秘性質。沒有人知道在黑盒子裡,量子電腦到底對硬幣做了什麼事情,量子具體處在什麼位置,只要我們一觀測,量子疊加和糾纏等行為便會消失,量子就恢復古典粒子行為。

「要了解這個現象,恐怕要讀個十幾年物理學了。但現在量子電腦都被製造出來,你不如就接受它、用它吧!」張慶瑞笑著說。 

臺大IBM量子電腦中心主任張慶瑞曾至IBM參訪與量子電腦合照。(圖/張慶瑞提供)
臺大 IBM 量子電腦中心主任張慶瑞曾至 IBM 參訪與量子電腦合照。(圖/張慶瑞提供) 

量子糾纏 帶來雙指數成長的計算能力

量子的神秘力量不只如此,當粒子處於量子狀態時會有糾纏的特性,又稱為「量子糾纏」(quantum entanglement)。如同字面上的意思,「糾纏」指的是數個量子綁在一起成為命運共同體,張慶瑞提到,這就是「你泥中有我,我泥中有你」,彼此的狀態會連動,力量還能夠加乘,同時處理不同於古典電腦的計算。

大家都聽過「摩爾定律」(Moore’s law),指的是積體電路上容納的電晶體數量,每隔兩年便會增長一倍,大致說明電腦運算能力會呈指數型的成長,即 2¹ 、2²、2³ 。不過,張慶瑞表示,纏繞特性會讓量子電腦的計算能力以「雙指數成長」,即 2、2、2,這是今年Google量子人工智慧實驗室主任 Hartmut Neven 所提出的,又稱為 “Neven Law” [註1]

去年世界最快超級電腦 Summit 每秒能夠執行 20 億億次(2*1018)的浮點運算,它的非揮發性記憶體(NVRAM)達 800GB(gigabyte,10億位元組) [註2]。但張慶瑞提到,如果能控制量子彼此糾纏,並經過運算的除錯程序,量子電腦就能以 40 個左右邏輯量子位元,達成「兆」位元(1012)才有的運算能力,目前一般認為一個有除錯功能的邏輯量子位元,可能需要一千到一萬左右的物理量子位元組成。

「這很難做到!」張慶端表示,目前 IBM 開放 5 個量子位元供大眾使用,只有兩位元糾纏而已,臺大與 IBM 合作可使用 20 個量子位元,也沒有全部位元糾纏。今年十月 IBM 53 個量子位元的新機器即將上線,預計有 16 個量子位元可以直接糾纏 [註3] 。 

圖左上是IBM 20qbits系統,圖下是50qbits系統示意圖,可以發現量子位元沒有全部彼此互聯,圖右上則是量子處理器的封裝照。(圖/flickr IBM Q,https://www.flickr.com/photos/ibm_research_zurich/38270974841/in/album-72157663611181258/)
圖左上是 IBM 20qbits系統,圖下是 50qbits 系統示意圖,可以發現量子位元沒有全部彼此互聯,圖右上則是量子處理器的封裝照。(圖/flickr IBM Q

 張慶端進一步解釋,量子難以糾纏是因為粒子是很難達到量子狀態,即便達到量子狀態,要長時間控制它也不容易,像 IBM 就採超導體材料製造量子位元,並以微波控制位元,但超導體必須在接近絕對零度(-273.15℃)的嚴苛環境下運作,亦有相干狀態壽命短等許多問題待克服,目前各國科學家還在尋求不同方式突破,主要當然政府也砸錢支持才會有突破。

為了維持超導體的低溫,量子電腦下方會裝設稀釋冷凍器。(圖/flickr IBM Q Credit: Graham Carlow,https://www.flickr.com/photos/ibm_research_zurich/26774588908/in/album-72157663611181258/)
為了維持超導體的低溫,量子電腦下方會裝設稀釋冷凍器。(圖/flickr IBM Q Credit: Graham Carlow) 

量子電腦的應用:量子通訊、量子金融  

目前世界上量子電腦商業運轉的進程是 IBM 量子電腦 53 位元,去年(2018)Google 發表 72 位元的量子處理器,但並未提供大眾使用。張慶瑞表示,量子電腦至少要 500 位元以上才能逐漸顯現威力,並進入量子優勢的階段。儘管量子電腦離商用還有段距離,不過現階段量子科技已在量子通訊及軟體應用上百花齊放呢! 

IBM量子電腦實驗室,電腦裝在白色的罩子中受保護。(圖/flickr IBM Q,https://www.flickr.com/photos/ibm_research_zurich/38296273694/in/album-72157663611181258/)
IBM 量子電腦實驗室,電腦裝在白色的罩子中受保護。(圖/flickr IBM Q

張慶瑞提到,糾纏的量子之間,當一方狀態改變,另一方也會跟著變,所以開發量子網路系統就能增加訊息傳遞效率,因為知道一方的內容,就能得知另外一方的訊息。再者因為量子不可測量的性質,如果以量子作為秘密鑰匙,任何嘗試取得密碼的行為,都會造成量子狀態改變,因此可確保通訊無法被竊聽。

軟體開發以及應用部分正是「臺大 IBM 量子電腦中心」主攻的部分,張慶瑞提到今年在科技部支持下與 IBM 合作成立量子電腦中心,提供臺灣學界連接進入 IBM Q 系統的服務平臺。

目前 IBM 提供 20 個量子位元供臺灣的學術界成員使用,主要著墨的部分有兩類,一是處理基礎物理和化學的計算問題;二則是解決特定問題,尋找最佳解,例如:貨車要跑 100 個地點配送貨品,如何配送最有效率;工廠進出貨如何管理最有效率,金融最佳投資與風險控管等。

「現今 70% 量子電腦相關的新創公司,都只針對一個特定問題來研究與發展量子電腦解決方案。」張慶瑞表示,量子電腦最適合解複雜和大數據的難題,量子人工智慧、量子金融與區塊鏈都是很熱門的題目,

根據 IBM 報告估計,他們期待在 15 年後能進入千萬量子位元時代,也就是有超過 1000 個除錯的邏輯量子位元。屆時不用量子電腦就會喪失競爭力,因此即便現在硬體還不到位,新創公司也要搶奪先機、申請專利。

「我現在常跟大學生開玩笑說,你們及你們的下一代,應該無法脫離量子電腦了!五十歲以上可以不學,但是 20 歲以下必須要立刻開始。」張慶瑞坦言,這兩年大家才驚覺量子電腦的時代即將來臨,但大多並不重視,就如同 1968 年個人電腦剛出現一樣,當時並不知道現在會有人手多機的世界。

IBM 5位元的量子晶片(圖/flickr IBMQ,https://www.flickr.com/photos/ibm_research_zurich/26093923343/in/album-72157663611181258/  )。
IBM 5 位元的量子晶片(圖/flickr IBMQ )。 

在家就能用量子電腦了!跟上前沿科技的第一步 ,從學寫量子電腦程式開始

IBM 在 2016 年就推出 IBM Q5 五位元量子電腦,供大眾在線上體驗量子電腦,在家就可以在 IBM Q Experience上註冊帳號,雲端連線使用它了!

至今全球約有 18 萬名用戶在 IBM 量子電腦上做超過1千萬量子電腦模擬計算,並發表超過 150 篇量子電腦相關文章,台灣目前則有約 50 名用戶 [註4] 。不過目前它沒有辦法像現在電腦一樣友善,有各種軟體直接幫你解答,你必須要自己寫程式告訴它:問題是什麼及如何解決問題。

不過,學習量子電腦的程式語言並不會太難,所以全球目前有許多聰明的高中生也在使用。張慶瑞表示,只是你要懂一點物理與數學,又有 Python 的程式語言基礎,把一些量子概念像是 Hadamard gate(H gate)等概念加入程式中,努力就可以學會。

臺大 IBM 量子電腦中心不定期開設量子電腦的入門課程,臺大校內也有選修課,每個月巡迴到臺灣各大學舉辦量子電腦課程。目前正預備辦理高中老師的培訓,希望也能在高中推廣量子計算的應用,培育未來的人才。九月底科技部也與量子電腦中心合辦「 量子電腦導航」,內容包括:量子電腦與其計算原理、量子程式教學、量子邏輯閘初用,大家可以至臺大 IBM 量子電腦中心查詢相關活動。

如果覺得學寫程式太可怕,不妨就下載 IBM 推出的 “Hello Quantum” 的手機遊戲吧!用破關解題的方式,逐步認識量子電腦的運算規則。破關征服它後,說不定你會愛上它。 

臺大IBM量子電腦中心(圖/臺大IBM量子電腦中心提供)
臺大 IBM 量子電腦中心(圖/臺大 IBM 量子電腦中心提供) 
所有討論 4
科技大觀園_96
82 篇文章 ・ 1109 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。