0

0
0

文字

分享

0
0
0

曼德博誕辰|科學史上的今天:11/20

張瑞棋_96
・2015/11/20 ・931字 ・閱讀時間約 1 分鐘 ・SR值 530 ・七年級

-----廣告,請繼續往下閱讀-----

英國的海岸線有多長?這個由波蘭裔數學家曼德博在1967年的論文中所提出,乍看之下應該去問地理學家的簡單問題,不但有個出人意表的答案,還開啟了一個全新的數學分支──碎形,它將應用在各種不同領域,挖掘出複雜表象下的共同型態。

圖片來源:wikipedia

事實上,當時大概沒有多少人同意曼德博可以稱為數學家,雖然他拿的是數學博士,但並未留在學術圈,而是選擇落腳在IBM的研究中心。除了幫工程師分析電腦通訊的雜訊問題之外,他的研究範圍看來也雜亂無章,從收入高低的分布、棉花的歷史價格,到河川氾濫的頻率、語言結構,根本就像個漫無目標的野武士。但曼德博內心覺得其中隱約還是有某種關聯,他順從直覺,繼續鑽研。

然後有一天,一切都變得有意義。雜訊頻率、收入分布、棉花價格、氾濫次數,這些看似毫無交集的歷史數據用電腦繪製出來後,竟出現驚人的共通性!它們的數字高高低低難以預測,但它們在不同尺度上都宛如自我模仿般呈現極為相似的曲折變化。以雜訊來說,無論是以每小時或是每十分鐘、每分鐘為單位,所畫出來的曲線圖看起來都毫無二致;換個說法,想像你在平板電腦上把曲線圖的某一區間放大,接著再任選一段放大……,無論在哪個階段所看到的圖形幾乎都一樣。

曼德博在1975年將具有這種特性的幾何結構命名為「碎形」。回到一開始的問題,英國的海岸線有多長?這要看你的量尺長短而定。因為海岸線也是碎形,只要量尺夠小,你就可以一直往下量,長度就會無限延長(注意:並非收斂級數喔),直到分子的尺度為止。

-----廣告,請繼續往下閱讀-----

碎形處處可見。河流、樹枝、血管由粗到細的分歧與擴展是碎形幾何;地震、心跳、股市也是依碎形規律分布。於是地質學家、生物學家、物理學家、化學家、大型工業、金融機構都紛紛運用碎形來分析研究的對象。曼德博不但在實務面成為搖滾巨星,在學術圈,他也因為開創碎形幾何,並且另闢研究方法,利用電腦將資料視覺化以提升洞察力,而從一個不被正視的邊緣人物搖身一變成為學術研究的先驅。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1091 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
用積木創作,進行空間的四則運算──《轉幾.轉積.轉機:吳寬瀛積木幾何創作展》臺灣在地的數學藝術展
Sharkie Lin 林峽宇_96
・2017/12/23 ・3902字 ・閱讀時間約 8 分鐘 ・SR值 499 ・六年級

「木刻是減法,泥塑是加法,積木可以加減乘除!」– 吳寬瀛

積木是空間體操,雙手與大腦合力思考,掙脫被紙筆測驗困住的平面。以兒時熱愛的積木為素材,吳寬瀛老師在指間進行空間的四則運算,讓抽象深奧的數學化為具體可見的雕塑,排列組合出幾何造型的無限可能。

自 12 月 1 日開展的《轉幾.轉積.轉機:吳寬瀛積木幾何創作展》「轉幾.轉積.轉機」為主題,透過「平面幾何」與「立體幾何」兩種維度,呈現吳寬瀛老師充滿想像力的幾何創作,期待觀者從中感受創作的純粹與熱情,發掘數學的理性與感性。

展場設置積木體驗區,讓我們放下手機,與吳寬瀛老師一起翻「轉幾」何、玩「轉積」木,找尋屬於自己的「轉機」,喚回天真爛漫的赤子之心吧。

國內近來相當多積木展,像是奈森.薩瓦亞(Nathan Sawaya)的《潮!積木》以及西恩·肯尼(Sean Kenney)的《動物大奇積》創作,這回我要來介紹的展覽《轉幾.轉積.轉機》同樣精彩,是國內幾何雕塑家吳寬瀛老師的積木幾何創作展,也是繼上回介紹《多面自造》展後,嘉義大學委託我們策劃的第二檔數學藝術展。

這一檔我們推出可轉可翻可玩的超可愛文宣,對摺以後翻開來變成藍色「轉幾」,轉正後對摺翻轉文宣後得到黃色「轉積」,紅色「轉機」設計則是由木構作品而來,示範影片在此:

《轉幾.轉積.轉機》到底在轉什麼呢?展覽作品分成平面幾何與立體幾何兩種維度,其中立體幾何包含積木與木構作品,平面幾何包含各式對稱圖樣與多邊形,接下來我們就來介紹一些這次展覽吳寬瀛老師的TICO積木創作吧!

玩轉積木!TICO積木創作作品

門格爾海綿(Menger Sponge)為立體碎形的經典代表,每一面都是謝爾賓斯基地毯,不同尺度縮放自如依舊自我相似為碎形的重要特性。下圖為吳老師親自拆解門格爾海綿,讓大家知道如何以模組化的積木堆疊方式創作。

-----廣告,請繼續往下閱讀-----

〈門格爾海綿〉。圖片來源:轉幾.轉積.轉機

下圖左方兩件相似卻不同的碎形作品,是吳老師展覽以來首次背對背擺放在一起,方便大家在展場比較異同之處。這兩件作品的特點是只要觀看的視角改變,看到的形狀也會跟著變換,像是從作品前方會看到三角形,從作品上方則會發現原來是正方形組成的。

相較於下圖左方兩件作品的實體碎形,右方看起來像是兩個金字塔上下接在一起的作品,則是以空隙中的陰影呈現自我相似的碎形,此件幾何藝術作品以光影探討明暗、虛實、陰陽等概念;吳寬瀛老師的作品中除了強調造型本身,影子更是作品不可或缺的一部份。

碎形作品。圖片來源:轉幾‧轉積‧轉機

-----廣告,請繼續往下閱讀-----

金字塔-碎形系列創作。圖片來源:轉幾.轉積.轉機

〈99乘法變形〉為吳寬瀛老師最近探討數與形的新創作,由四個九乘九矩陣加上最高點十乘十組合而成,其高度為兩個數字乘積後的值。我對這件作品特別有共鳴,因為吠陀方形吠陀立方兩者的數學原理皆是從九九乘法表延伸而來。

〈99乘法變形〉。圖片來源:轉幾.轉積.轉機

別以為積木組出的造型就只能是方方正正的,吳老師用突破框架的想像力和特殊的連結方式,讓積木轉彎了,以下是顛覆想像的曲線系列:

-----廣告,請繼續往下閱讀-----

曲線系列。圖片來源:轉幾.轉積.轉機

除了精彩的立體作品之外,還有一件特殊的平面作品可以讓觀眾動手操作翻玩,甚至可以讓正方形斜斜地相互卡住,讓不同大小的正方形邊長形成曲線,類似蛇形藝廊2002設計概念,有趣到難以用言語形容,還好有吳寬瀛老師親自示範的影片可看:

圖片來源:轉幾.轉積.轉機

積木創作區展場照。圖片來源:轉幾.轉積.轉機

-----廣告,請繼續往下閱讀-----

這次展覽不只積木幾何創作,吳寬瀛老師還加碼展出木構創作如下,像是這件以〈費氏數列〉 1,1, 2, 3, 5, 8為立方體邊長的可拆解作品,除了形狀很有美感,老師也使用了質樸的材質。第一次看見這件作品的時候聯想到臺北二二八公園的紀念碑,但其實兩者並不相同。

〈費氏數列〉。圖片來源:轉幾.轉積.轉機

吳寬瀛老師的作品不僅造型優美,從木構作品的卡榫、導角等小細節,都可以看出吳老師紮實的木工基礎,上一檔展覽《多面自造》的展場木工為吳老師親自操刀,2017數學年會的紀念品「有秩序的糾纏」材料包是由老師及林義強老師共同設計,再由吳老師製作。

〈砲城〉為碎形系列創作。圖片來源:轉幾.轉積.轉機

-----廣告,請繼續往下閱讀-----

從這個角度看〈螺旋線〉,還以為漂浮在空中呢!圖片來源:轉幾.轉積.轉機

木構創作區展場照。圖片來源:轉幾.轉積.轉機

這次展覽呈現了吳寬瀛老師巧妙連結數學與童趣經驗的「轉積」,以及融合結構力學與美學的「轉幾」,接下來我們就來聊聊積木是如何成為藝術家一生的「轉機」。

三歲開始玩積木成為人生轉機

圖片來源:吳寬瀛藝術工作室

-----廣告,請繼續往下閱讀-----

吳寬瀛,1958年出生於新竹,現居住與工作於高雄,臺灣著名幾何雕塑家。

為延續從3歲開始對積木的熱情而成為教師,27歲進入大學就讀,畢業於國立彰化師範大學工業教育與技術學系,後於高雄高工電腦機械製圖科任教並退休。

吳寬瀛老師的創作多元且富實驗性,小至積木雕塑大至公共藝術,皆以數學為基礎進行縝密計算,結構造型多變同時蘊含秩序之美;多年培養的身體感讓他創作時經常進入心流狀態,沉浸在與自身對話的時間。理性的數理思維與感性的創作經驗相互交融於作品中,充分體現吳寬瀛老師對數學的豐富想像與旺盛熱情。

為了這次策展,我們貼身採訪吳寬瀛老師許多次,也曾拜訪了座落在高雄大寮農田間的吳寬瀛藝術工作室,這是個連 google map 都定位不到的地方,裡頭卻藏著各式有趣的積木作品,以及從3歲開始熱愛玩積木的一顆赤子之心。

吳老師從小數學成績不好,透過玩積木知道自己空間理解力強並不因此沮喪,他為了有個穩定的工作能夠繼續玩積木,因此辭掉工作去補習班準備聯考,對當時的他來說是個很大的賭注。吳老師打趣地說,讀了這一年死書讓他變笨。

自國小三年級從新竹搬到高雄旗津,吳老師幾乎每天都過著去海邊潛水抓螃蟹和龍蝦的生活,玩水之外還可以拿去賣錢。早期的這段經歷,讓吳老師練就十分驚人的體力與意志力,因此多年來能夠不斷創作與挑戰各種類型與尺寸的幾何作品,他在五十歲之前的一日睡眠時間經常少於四小時。

吳寬瀛老師經驗豐富且規劃縝密,強大的氣場讓人非常安心,在佈展過程中他總是說「不急」,提醒大家先想好再行動,工作起來輕鬆又有效率。除此之外,吳寬瀛老師還能因應場地調整作品尺寸,自在把玩積木當場創作,根本已經達到人積合一的境界。

-----廣告,請繼續往下閱讀-----

經過這幾個月的相處,私底下的吳寬瀛老師其實非常幽默,與上面那張藝術家照片中的冷峻感有股奇妙的反差,像是曾經用過《人到中年還有夢,禿頭一片天》當作藝術展覽標題,有觀眾因此跑來還以為是在治禿頭呢。

創作以外,吳寬瀛老師經常帶領工作坊,以積木與木條讓孩童/成人跳脫平面紙筆計算,從遊戲中產生對數學幾何的興趣。問到與孩童互動的秘訣時,他認為這是自然而然的,在過程中除了技術的傳授之外,還要照顧到觀眾的情緒,畢竟在課堂中學生經常被迫學習。

我們策這兩檔展覽希望能讓大家掙脫紙筆測驗中的數學夢魘,因此並未強調數學實用的那一面,而是想傳達數學的本質其實就和藝術一樣,需要無限的想像力;吳寬瀛老師巧妙結合理性的數學與感性的美學於作品中,誠摯邀請大家到展場走一趟感受吳老師對數學的豐沛想像力,讓雙手與大腦合力思考,一起用積木作個空間體操。

吳寬瀛老師和他熱愛的大型索瑪立方。圖片來源:轉幾.轉積.轉機

「木刻是減法,泥塑是加法,積木可以加減乘除。」– 吳寬瀛

"Carving is subtraction and moulding is addition, while bricks can solve them all." – WU Kuan-Ying

《轉幾‧轉積‧轉機:吳寬瀛積木幾何創作展》展覽資訊

參考資料:

  1. 吳寬瀛藝術工作室粉絲頁
  2. 數學不僅擁有真, 而且擁有非凡的美–Artist 藝術家吳寬瀛 積木幾何世界
-----廣告,請繼續往下閱讀-----
Sharkie Lin 林峽宇_96
24 篇文章 ・ 6 位粉絲
在國二無聊的早自習意外發現數學的趣味,因此近來體驗到數學研究、藝術創作、採訪寫作、展覽策劃、資優教育等工作。不是念數學也不是學藝術,但樂於從多元視角聊聊數學的各種姿態,以及進行數學藝術創作,希望能為世界帶來一點樂趣。科普部落格〈鯊奇事務所〉https://medium.com/sharkie-studio,聯絡信箱 sharkgallium@gmail.com

0

1
0

文字

分享

0
1
0
如何測量蘇格蘭的海岸線與科羅拉多河?—《股價、棉花與尼羅河密碼》
PanSci_96
・2016/10/25 ・2563字 ・閱讀時間約 5 分鐘 ・SR值 547 ・八年級

碎形幾何理論中最引人注目的,恐怕是對空間的獨特看法

自歐幾里得以來,數學家一直認為「點」是零度空間,「線」屬於一度空間,「平面」屬於二度空間,而我們所熟悉的環境則是三度空間。愛因斯坦則提出了第四度空間,也就是「時間」。數學上可以繼續以此類推,舉出假想的五度、六度,甚至七度空間,雖然只是假想的理論,但是對於解決工程、經濟或物理方面的問題很有幫助。

拓樸學是數學領域裡研究「表面」的一支,提供了相當有趣的新發現。就拓樸學的觀點而言,黃瓜和橘子是一樣的,因為不需要切割黃瓜的表面就可以將它重新塑造成橘子的形狀,反之亦然。一個圓的圓周跟曲曲折折的海岸線一樣,同屬一度空間。圓周和鋸齒線都是連續的線,將鋸齒線展開、攤平再彎曲,可以形成一個圓;同樣的,將圓周拉直再加以曲折,可以形成鋸齒線——都不需要切割。

拓樸學中的莫比烏斯帶。圖 / By David Benbennick @ Wiki
拓樸學中的莫比烏斯帶。圖 / By David Benbennick @ Wiki

然而,所謂的空間,真的就如此而已嗎?

-----廣告,請繼續往下閱讀-----

拿一顆線球當例子。首先,以歐幾里得的觀點來看:假設這個線球的直徑是五英寸,而線的粗細遠不及一英寸。若站在很遠的地方,幾乎看不到球;根據古典幾何學,可以說它是個零度空間的點。若握在手中,這個線球則確實是三度空間中的立體物件。近一點看,會發現它其實是由一團一度空間的線所纏成的。再更近一點看,會發現這線其實也是立體的,屬於三度空間。這麼追根究柢下去,一直到在電子顯微鏡下觀察到原子,才又回到零度空間的點。那麼,這線球到底是零度空間、一度空間,還是三度空間?答案依個人觀點而異。

8035280601_dbf0665d89_z
線球到底是零度空間、一度空間,還是三度空間?圖 / By Anadem Chung @ flickr

就自然界中複雜的形狀而言,空間是相對的。空間的定義隨著觀察者的角度而改變。同一個物體可隸屬於不同維度的空間,看你觀測的角度與用途為何。維度不必然是整數,也可以是分數。這樣的觀點賦予古老的空間觀念一個嶄新的定義。

維度不該是死板而一成不變的,而是應測量的需求而有所改變。那麼,你要怎麼測量某個東西呢?要量一條直線的長度,你可以用尺;要測量曲線,你可以用稍短的尺,順著曲線弧度一小段一小段地測量,然後將結果加總。用的尺越短,測量的結果就越準確,測得的長度也比較長(參見下面關於「碎形維度」的解說),當然過程較為繁瑣費時。隨著量尺越來越短,最後得到的結果最接近實際,我們就將此結果當做曲線的長度。

-----廣告,請繼續往下閱讀-----

如果遇到曲折的鋸齒線或不規則曲線,該怎麼辦?蘇格蘭的海岸線又如何測量?可以用測量員的測量鏡,測量岬角與岬角間的距離,這是較粗略的方法。也可以用極長的軟尺測量點與點之間的距離,或者用碼尺、彎腳規或顯微鏡。但這都是白費工夫。嶙峋的海岸線跟圓滑曲線不同,測量結果往往因用途而異,並沒有一個「最好」的答案。隨著地圖比例尺的大小或政治動機的不同,測量結果也不一樣。

蘇格蘭海岸線到底有多長?圖 / By Jonathan Stonehouse @ flickr
蘇格蘭海岸線到底有多長?圖 / By Jonathan Stonehouse @ flickr

將近一個世紀之前,英國心理、物理學家路易斯.理查森(Lewis Fry Richardson)就曾針對這個問題加以研究。他根據官方資料上的國界長度測量結果進行研究,發現西班牙政府測量該國與葡萄牙的邊界長度是 987 公里,而葡萄牙政府的測量結果卻多達 1214 公里。至於荷蘭跟它那面積較小、經濟能力較差的鄰居比利時,荷蘭政府測得的邊界是 380 公里,而比利時政府則聲稱有 449 公里。

那麼,東西有多長?由上述例子可以看出,這個問題沒有多大意義。解決方法之一,是將不同長度的尺所測得的結果畫成圖表。當然了,測量的結果會隨著尺的長度縮短而增加。可喜的是,測量結果幾乎是以一定的比例增加。以一條直線為例:假設用來測量的第一把尺剛好跟該直線等長,第二次用的尺比較短,正好是直線的一半,因此測量結果是尺長的兩倍,第三把尺是上一把尺的一半長,因此測量結果直線是尺的四倍長,依此類推。

-----廣告,請繼續往下閱讀-----

接著,測量前面提到的鋸齒狀海岸線。隨著使用的尺越來越短,我們可以觀察到不尋常的現象:

測量結果增加的幅度,要高過尺縮小的幅度。用來測量這個現象的度量衡,就叫做碎形維度(fractal dimension)。

從簡單的例子講起:一條直線的碎形維度是一,而直線正好屬於一度空間。然而,英國海岸線的碎形維度卻是 1.25。這講得通嗎?那當然!崎嶇的海岸線比一度空間的直線來得複雜,但不論海岸線多麼曲折,還不至於複雜如二度空間。

不只這樣。澳洲的海岸線沒有英格蘭西南部康瓦爾地區的那麼曲折,所以它的碎形維度只有 1.13。相形之下,平滑的南非海岸線碎形維度更低,只有 1.02,只比直線高一些。

河流是另一個很好的例子。美國地質調查局(U.S. Geological Survey)研究美國境內大型河流的路徑,發現東部的河流碎形維度大約是 1.2,西部曠野的河流則是 1.4。這項調查結果恰好符合大眾的認知——西部的科羅拉多河(Colorado River)蜿蜒曲折,而東部的查爾斯河(Charles River)較為平順。

-----廣告,請繼續往下閱讀-----

5976574896_1fedbd5036_z
西部的科羅拉多河蜿蜒曲折。圖 / By K.Oliver @ flickr

再舉一例:觀察肺臟內部支氣管錯綜複雜的表面,這些表面的面積加起來足足有一個網球場那麼大,這些錯綜複雜表面的碎形維度將近三。這層薄膜非常彎曲、有很多皺褶,因此幾乎有如三度空間。

以上種種說明了什麼呢?一個新的度量工具誕生了,不是測量長度、重量、溫度或分貝,而是測量物體曲折或不規則的程度。終於,科學界有了第一個測量「不規則」形狀的工具。


書封:股價、棉花與尼羅河密碼

 

本文摘自《股價、棉花與尼羅河密碼》,早安財經出版社。

 

-----廣告,請繼續往下閱讀-----

0

0
0

文字

分享

0
0
0
曼德博誕辰|科學史上的今天:11/20
張瑞棋_96
・2015/11/20 ・931字 ・閱讀時間約 1 分鐘 ・SR值 530 ・七年級

英國的海岸線有多長?這個由波蘭裔數學家曼德博在1967年的論文中所提出,乍看之下應該去問地理學家的簡單問題,不但有個出人意表的答案,還開啟了一個全新的數學分支──碎形,它將應用在各種不同領域,挖掘出複雜表象下的共同型態。

圖片來源:wikipedia

事實上,當時大概沒有多少人同意曼德博可以稱為數學家,雖然他拿的是數學博士,但並未留在學術圈,而是選擇落腳在IBM的研究中心。除了幫工程師分析電腦通訊的雜訊問題之外,他的研究範圍看來也雜亂無章,從收入高低的分布、棉花的歷史價格,到河川氾濫的頻率、語言結構,根本就像個漫無目標的野武士。但曼德博內心覺得其中隱約還是有某種關聯,他順從直覺,繼續鑽研。

然後有一天,一切都變得有意義。雜訊頻率、收入分布、棉花價格、氾濫次數,這些看似毫無交集的歷史數據用電腦繪製出來後,竟出現驚人的共通性!它們的數字高高低低難以預測,但它們在不同尺度上都宛如自我模仿般呈現極為相似的曲折變化。以雜訊來說,無論是以每小時或是每十分鐘、每分鐘為單位,所畫出來的曲線圖看起來都毫無二致;換個說法,想像你在平板電腦上把曲線圖的某一區間放大,接著再任選一段放大……,無論在哪個階段所看到的圖形幾乎都一樣。

-----廣告,請繼續往下閱讀-----

曼德博在1975年將具有這種特性的幾何結構命名為「碎形」。回到一開始的問題,英國的海岸線有多長?這要看你的量尺長短而定。因為海岸線也是碎形,只要量尺夠小,你就可以一直往下量,長度就會無限延長(注意:並非收斂級數喔),直到分子的尺度為止。

碎形處處可見。河流、樹枝、血管由粗到細的分歧與擴展是碎形幾何;地震、心跳、股市也是依碎形規律分布。於是地質學家、生物學家、物理學家、化學家、大型工業、金融機構都紛紛運用碎形來分析研究的對象。曼德博不但在實務面成為搖滾巨星,在學術圈,他也因為開創碎形幾何,並且另闢研究方法,利用電腦將資料視覺化以提升洞察力,而從一個不被正視的邊緣人物搖身一變成為學術研究的先驅。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1091 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。