0

0
0

文字

分享

0
0
0

曼德博誕辰|科學史上的今天:11/20

張瑞棋_96
・2015/11/20 ・931字 ・閱讀時間約 1 分鐘 ・SR值 530 ・七年級

英國的海岸線有多長?這個由波蘭裔數學家曼德博在1967年的論文中所提出,乍看之下應該去問地理學家的簡單問題,不但有個出人意表的答案,還開啟了一個全新的數學分支──碎形,它將應用在各種不同領域,挖掘出複雜表象下的共同型態。

圖片來源:wikipedia

事實上,當時大概沒有多少人同意曼德博可以稱為數學家,雖然他拿的是數學博士,但並未留在學術圈,而是選擇落腳在IBM的研究中心。除了幫工程師分析電腦通訊的雜訊問題之外,他的研究範圍看來也雜亂無章,從收入高低的分布、棉花的歷史價格,到河川氾濫的頻率、語言結構,根本就像個漫無目標的野武士。但曼德博內心覺得其中隱約還是有某種關聯,他順從直覺,繼續鑽研。

然後有一天,一切都變得有意義。雜訊頻率、收入分布、棉花價格、氾濫次數,這些看似毫無交集的歷史數據用電腦繪製出來後,竟出現驚人的共通性!它們的數字高高低低難以預測,但它們在不同尺度上都宛如自我模仿般呈現極為相似的曲折變化。以雜訊來說,無論是以每小時或是每十分鐘、每分鐘為單位,所畫出來的曲線圖看起來都毫無二致;換個說法,想像你在平板電腦上把曲線圖的某一區間放大,接著再任選一段放大……,無論在哪個階段所看到的圖形幾乎都一樣。

曼德博在1975年將具有這種特性的幾何結構命名為「碎形」。回到一開始的問題,英國的海岸線有多長?這要看你的量尺長短而定。因為海岸線也是碎形,只要量尺夠小,你就可以一直往下量,長度就會無限延長(注意:並非收斂級數喔),直到分子的尺度為止。

-----廣告,請繼續往下閱讀-----

碎形處處可見。河流、樹枝、血管由粗到細的分歧與擴展是碎形幾何;地震、心跳、股市也是依碎形規律分布。於是地質學家、生物學家、物理學家、化學家、大型工業、金融機構都紛紛運用碎形來分析研究的對象。曼德博不但在實務面成為搖滾巨星,在學術圈,他也因為開創碎形幾何,並且另闢研究方法,利用電腦將資料視覺化以提升洞察力,而從一個不被正視的邊緣人物搖身一變成為學術研究的先驅。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1016 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
用積木創作,進行空間的四則運算──《轉幾.轉積.轉機:吳寬瀛積木幾何創作展》臺灣在地的數學藝術展
Sharkie Lin_96
・2017/12/23 ・3888字 ・閱讀時間約 8 分鐘 ・SR值 499 ・六年級

「木刻是減法,泥塑是加法,積木可以加減乘除!」– 吳寬瀛

積木是空間體操,雙手與大腦合力思考,掙脫被紙筆測驗困住的平面。以兒時熱愛的積木為素材,吳寬瀛老師在指間進行空間的四則運算,讓抽象深奧的數學化為具體可見的雕塑,排列組合出幾何造型的無限可能。

自 12 月 1 日開展的《轉幾.轉積.轉機:吳寬瀛積木幾何創作展》「轉幾.轉積.轉機」為主題,透過「平面幾何」與「立體幾何」兩種維度,呈現吳寬瀛老師充滿想像力的幾何創作,期待觀者從中感受創作的純粹與熱情,發掘數學的理性與感性。

展場設置積木體驗區,讓我們放下手機,與吳寬瀛老師一起翻「轉幾」何、玩「轉積」木,找尋屬於自己的「轉機」,喚回天真爛漫的赤子之心吧。

國內近來相當多積木展,像是奈森.薩瓦亞(Nathan Sawaya)的《潮!積木》以及西恩·肯尼(Sean Kenney)的《動物大奇積》創作,這回我要來介紹的展覽《轉幾.轉積.轉機》同樣精彩,是國內幾何雕塑家吳寬瀛老師的積木幾何創作展,也是繼上回介紹《多面自造》展後,嘉義大學委託我們策劃的第二檔數學藝術展。

這一檔我們推出可轉可翻可玩的超可愛文宣,對摺以後翻開來變成藍色「轉幾」,轉正後對摺翻轉文宣後得到黃色「轉積」,紅色「轉機」設計則是由木構作品而來,示範影片在此:

《轉幾.轉積.轉機》到底在轉什麼呢?展覽作品分成平面幾何與立體幾何兩種維度,其中立體幾何包含積木與木構作品,平面幾何包含各式對稱圖樣與多邊形,接下來我們就來介紹一些這次展覽吳寬瀛老師的TICO積木創作吧!

玩轉積木!TICO積木創作作品

門格爾海綿(Menger Sponge)為立體碎形的經典代表,每一面都是謝爾賓斯基地毯,不同尺度縮放自如依舊自我相似為碎形的重要特性。下圖為吳老師親自拆解門格爾海綿,讓大家知道如何以模組化的積木堆疊方式創作。

-----廣告,請繼續往下閱讀-----

〈門格爾海綿〉。圖片來源:轉幾.轉積.轉機

下圖左方兩件相似卻不同的碎形作品,是吳老師展覽以來首次背對背擺放在一起,方便大家在展場比較異同之處。這兩件作品的特點是只要觀看的視角改變,看到的形狀也會跟著變換,像是從作品前方會看到三角形,從作品上方則會發現原來是正方形組成的。

相較於下圖左方兩件作品的實體碎形,右方看起來像是兩個金字塔上下接在一起的作品,則是以空隙中的陰影呈現自我相似的碎形,此件幾何藝術作品以光影探討明暗、虛實、陰陽等概念;吳寬瀛老師的作品中除了強調造型本身,影子更是作品不可或缺的一部份。

碎形作品。圖片來源:轉幾‧轉積‧轉機

-----廣告,請繼續往下閱讀-----

金字塔-碎形系列創作。圖片來源:轉幾.轉積.轉機

〈99乘法變形〉為吳寬瀛老師最近探討數與形的新創作,由四個九乘九矩陣加上最高點十乘十組合而成,其高度為兩個數字乘積後的值。我對這件作品特別有共鳴,因為吠陀方形吠陀立方兩者的數學原理皆是從九九乘法表延伸而來。

〈99乘法變形〉。圖片來源:轉幾.轉積.轉機

別以為積木組出的造型就只能是方方正正的,吳老師用突破框架的想像力和特殊的連結方式,讓積木轉彎了,以下是顛覆想像的曲線系列:

-----廣告,請繼續往下閱讀-----

曲線系列。圖片來源:轉幾.轉積.轉機

除了精彩的立體作品之外,還有一件特殊的平面作品可以讓觀眾動手操作翻玩,甚至可以讓正方形斜斜地相互卡住,讓不同大小的正方形邊長形成曲線,類似蛇形藝廊2002設計概念,有趣到難以用言語形容,還好有吳寬瀛老師親自示範的影片可看:

圖片來源:轉幾.轉積.轉機

積木創作區展場照。圖片來源:轉幾.轉積.轉機

-----廣告,請繼續往下閱讀-----

這次展覽不只積木幾何創作,吳寬瀛老師還加碼展出木構創作如下,像是這件以〈費氏數列〉 1,1, 2, 3, 5, 8為立方體邊長的可拆解作品,除了形狀很有美感,老師也使用了質樸的材質。第一次看見這件作品的時候聯想到臺北二二八公園的紀念碑,但其實兩者並不相同。

〈費氏數列〉。圖片來源:轉幾.轉積.轉機

吳寬瀛老師的作品不僅造型優美,從木構作品的卡榫、導角等小細節,都可以看出吳老師紮實的木工基礎,上一檔展覽《多面自造》的展場木工為吳老師親自操刀,2017數學年會的紀念品「有秩序的糾纏」材料包是由老師及林義強老師共同設計,再由吳老師製作。

〈砲城〉為碎形系列創作。圖片來源:轉幾.轉積.轉機

-----廣告,請繼續往下閱讀-----

從這個角度看〈螺旋線〉,還以為漂浮在空中呢!圖片來源:轉幾.轉積.轉機

木構創作區展場照。圖片來源:轉幾.轉積.轉機

這次展覽呈現了吳寬瀛老師巧妙連結數學與童趣經驗的「轉積」,以及融合結構力學與美學的「轉幾」,接下來我們就來聊聊積木是如何成為藝術家一生的「轉機」。

三歲開始玩積木成為人生轉機

圖片來源:吳寬瀛藝術工作室

-----廣告,請繼續往下閱讀-----

吳寬瀛,1958年出生於新竹,現居住與工作於高雄,臺灣著名幾何雕塑家。

為延續從3歲開始對積木的熱情而成為教師,27歲進入大學就讀,畢業於國立彰化師範大學工業教育與技術學系,後於高雄高工電腦機械製圖科任教並退休。

吳寬瀛老師的創作多元且富實驗性,小至積木雕塑大至公共藝術,皆以數學為基礎進行縝密計算,結構造型多變同時蘊含秩序之美;多年培養的身體感讓他創作時經常進入心流狀態,沉浸在與自身對話的時間。理性的數理思維與感性的創作經驗相互交融於作品中,充分體現吳寬瀛老師對數學的豐富想像與旺盛熱情。

為了這次策展,我們貼身採訪吳寬瀛老師許多次,也曾拜訪了座落在高雄大寮農田間的吳寬瀛藝術工作室,這是個連 google map 都定位不到的地方,裡頭卻藏著各式有趣的積木作品,以及從3歲開始熱愛玩積木的一顆赤子之心。

吳老師從小數學成績不好,透過玩積木知道自己空間理解力強並不因此沮喪,他為了有個穩定的工作能夠繼續玩積木,因此辭掉工作去補習班準備聯考,對當時的他來說是個很大的賭注。吳老師打趣地說,讀了這一年死書讓他變笨。

自國小三年級從新竹搬到高雄旗津,吳老師幾乎每天都過著去海邊潛水抓螃蟹和龍蝦的生活,玩水之外還可以拿去賣錢。早期的這段經歷,讓吳老師練就十分驚人的體力與意志力,因此多年來能夠不斷創作與挑戰各種類型與尺寸的幾何作品,他在五十歲之前的一日睡眠時間經常少於四小時。

吳寬瀛老師經驗豐富且規劃縝密,強大的氣場讓人非常安心,在佈展過程中他總是說「不急」,提醒大家先想好再行動,工作起來輕鬆又有效率。除此之外,吳寬瀛老師還能因應場地調整作品尺寸,自在把玩積木當場創作,根本已經達到人積合一的境界。

-----廣告,請繼續往下閱讀-----

經過這幾個月的相處,私底下的吳寬瀛老師其實非常幽默,與上面那張藝術家照片中的冷峻感有股奇妙的反差,像是曾經用過《人到中年還有夢,禿頭一片天》當作藝術展覽標題,有觀眾因此跑來還以為是在治禿頭呢。

創作以外,吳寬瀛老師經常帶領工作坊,以積木與木條讓孩童/成人跳脫平面紙筆計算,從遊戲中產生對數學幾何的興趣。問到與孩童互動的秘訣時,他認為這是自然而然的,在過程中除了技術的傳授之外,還要照顧到觀眾的情緒,畢竟在課堂中學生經常被迫學習。

我們策這兩檔展覽希望能讓大家掙脫紙筆測驗中的數學夢魘,因此並未強調數學實用的那一面,而是想傳達數學的本質其實就和藝術一樣,需要無限的想像力;吳寬瀛老師巧妙結合理性的數學與感性的美學於作品中,誠摯邀請大家到展場走一趟感受吳老師對數學的豐沛想像力,讓雙手與大腦合力思考,一起用積木作個空間體操。

吳寬瀛老師和他熱愛的大型索瑪立方。圖片來源:轉幾.轉積.轉機

「木刻是減法,泥塑是加法,積木可以加減乘除。」– 吳寬瀛

"Carving is subtraction and moulding is addition, while bricks can solve them all." – WU Kuan-Ying

《轉幾‧轉積‧轉機:吳寬瀛積木幾何創作展》展覽資訊

參考資料:

  1. 吳寬瀛藝術工作室粉絲頁
  2. 數學不僅擁有真, 而且擁有非凡的美–Artist 藝術家吳寬瀛 積木幾何世界
-----廣告,請繼續往下閱讀-----
Sharkie Lin_96
24 篇文章 ・ 6 位粉絲
在國二無聊的早自習意外發現數學的趣味,因此近來體驗到數學研究、藝術創作、採訪寫作、展覽策劃、資優教育等工作。不是念數學也不是學藝術,但樂於從多元視角聊聊數學的各種姿態,以及進行數學藝術創作,希望能為世界帶來一點樂趣。科普部落格〈鯊奇事務所〉https://medium.com/sharkie-studio,聯絡信箱 sharkgallium@gmail.com

0

0
0

文字

分享

0
0
0
曼德博誕辰|科學史上的今天:11/20
張瑞棋_96
・2015/11/20 ・931字 ・閱讀時間約 1 分鐘 ・SR值 530 ・七年級

英國的海岸線有多長?這個由波蘭裔數學家曼德博在1967年的論文中所提出,乍看之下應該去問地理學家的簡單問題,不但有個出人意表的答案,還開啟了一個全新的數學分支──碎形,它將應用在各種不同領域,挖掘出複雜表象下的共同型態。

圖片來源:wikipedia

事實上,當時大概沒有多少人同意曼德博可以稱為數學家,雖然他拿的是數學博士,但並未留在學術圈,而是選擇落腳在IBM的研究中心。除了幫工程師分析電腦通訊的雜訊問題之外,他的研究範圍看來也雜亂無章,從收入高低的分布、棉花的歷史價格,到河川氾濫的頻率、語言結構,根本就像個漫無目標的野武士。但曼德博內心覺得其中隱約還是有某種關聯,他順從直覺,繼續鑽研。

然後有一天,一切都變得有意義。雜訊頻率、收入分布、棉花價格、氾濫次數,這些看似毫無交集的歷史數據用電腦繪製出來後,竟出現驚人的共通性!它們的數字高高低低難以預測,但它們在不同尺度上都宛如自我模仿般呈現極為相似的曲折變化。以雜訊來說,無論是以每小時或是每十分鐘、每分鐘為單位,所畫出來的曲線圖看起來都毫無二致;換個說法,想像你在平板電腦上把曲線圖的某一區間放大,接著再任選一段放大……,無論在哪個階段所看到的圖形幾乎都一樣。

-----廣告,請繼續往下閱讀-----

曼德博在1975年將具有這種特性的幾何結構命名為「碎形」。回到一開始的問題,英國的海岸線有多長?這要看你的量尺長短而定。因為海岸線也是碎形,只要量尺夠小,你就可以一直往下量,長度就會無限延長(注意:並非收斂級數喔),直到分子的尺度為止。

碎形處處可見。河流、樹枝、血管由粗到細的分歧與擴展是碎形幾何;地震、心跳、股市也是依碎形規律分布。於是地質學家、生物學家、物理學家、化學家、大型工業、金融機構都紛紛運用碎形來分析研究的對象。曼德博不但在實務面成為搖滾巨星,在學術圈,他也因為開創碎形幾何,並且另闢研究方法,利用電腦將資料視覺化以提升洞察力,而從一個不被正視的邊緣人物搖身一變成為學術研究的先驅。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1016 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
如何測量蘇格蘭的海岸線與科羅拉多河?—《股價、棉花與尼羅河密碼》
PanSci_96
・2016/10/25 ・2563字 ・閱讀時間約 5 分鐘 ・SR值 547 ・八年級

碎形幾何理論中最引人注目的,恐怕是對空間的獨特看法

自歐幾里得以來,數學家一直認為「點」是零度空間,「線」屬於一度空間,「平面」屬於二度空間,而我們所熟悉的環境則是三度空間。愛因斯坦則提出了第四度空間,也就是「時間」。數學上可以繼續以此類推,舉出假想的五度、六度,甚至七度空間,雖然只是假想的理論,但是對於解決工程、經濟或物理方面的問題很有幫助。

拓樸學是數學領域裡研究「表面」的一支,提供了相當有趣的新發現。就拓樸學的觀點而言,黃瓜和橘子是一樣的,因為不需要切割黃瓜的表面就可以將它重新塑造成橘子的形狀,反之亦然。一個圓的圓周跟曲曲折折的海岸線一樣,同屬一度空間。圓周和鋸齒線都是連續的線,將鋸齒線展開、攤平再彎曲,可以形成一個圓;同樣的,將圓周拉直再加以曲折,可以形成鋸齒線——都不需要切割。

拓樸學中的莫比烏斯帶。圖 / By David Benbennick @ Wiki
拓樸學中的莫比烏斯帶。圖 / By David Benbennick @ Wiki

然而,所謂的空間,真的就如此而已嗎?

-----廣告,請繼續往下閱讀-----

拿一顆線球當例子。首先,以歐幾里得的觀點來看:假設這個線球的直徑是五英寸,而線的粗細遠不及一英寸。若站在很遠的地方,幾乎看不到球;根據古典幾何學,可以說它是個零度空間的點。若握在手中,這個線球則確實是三度空間中的立體物件。近一點看,會發現它其實是由一團一度空間的線所纏成的。再更近一點看,會發現這線其實也是立體的,屬於三度空間。這麼追根究柢下去,一直到在電子顯微鏡下觀察到原子,才又回到零度空間的點。那麼,這線球到底是零度空間、一度空間,還是三度空間?答案依個人觀點而異。

8035280601_dbf0665d89_z
線球到底是零度空間、一度空間,還是三度空間?圖 / By Anadem Chung @ flickr

就自然界中複雜的形狀而言,空間是相對的。空間的定義隨著觀察者的角度而改變。同一個物體可隸屬於不同維度的空間,看你觀測的角度與用途為何。維度不必然是整數,也可以是分數。這樣的觀點賦予古老的空間觀念一個嶄新的定義。

維度不該是死板而一成不變的,而是應測量的需求而有所改變。那麼,你要怎麼測量某個東西呢?要量一條直線的長度,你可以用尺;要測量曲線,你可以用稍短的尺,順著曲線弧度一小段一小段地測量,然後將結果加總。用的尺越短,測量的結果就越準確,測得的長度也比較長(參見下面關於「碎形維度」的解說),當然過程較為繁瑣費時。隨著量尺越來越短,最後得到的結果最接近實際,我們就將此結果當做曲線的長度。

-----廣告,請繼續往下閱讀-----

如果遇到曲折的鋸齒線或不規則曲線,該怎麼辦?蘇格蘭的海岸線又如何測量?可以用測量員的測量鏡,測量岬角與岬角間的距離,這是較粗略的方法。也可以用極長的軟尺測量點與點之間的距離,或者用碼尺、彎腳規或顯微鏡。但這都是白費工夫。嶙峋的海岸線跟圓滑曲線不同,測量結果往往因用途而異,並沒有一個「最好」的答案。隨著地圖比例尺的大小或政治動機的不同,測量結果也不一樣。

蘇格蘭海岸線到底有多長?圖 / By Jonathan Stonehouse @ flickr
蘇格蘭海岸線到底有多長?圖 / By Jonathan Stonehouse @ flickr

將近一個世紀之前,英國心理、物理學家路易斯.理查森(Lewis Fry Richardson)就曾針對這個問題加以研究。他根據官方資料上的國界長度測量結果進行研究,發現西班牙政府測量該國與葡萄牙的邊界長度是 987 公里,而葡萄牙政府的測量結果卻多達 1214 公里。至於荷蘭跟它那面積較小、經濟能力較差的鄰居比利時,荷蘭政府測得的邊界是 380 公里,而比利時政府則聲稱有 449 公里。

那麼,東西有多長?由上述例子可以看出,這個問題沒有多大意義。解決方法之一,是將不同長度的尺所測得的結果畫成圖表。當然了,測量的結果會隨著尺的長度縮短而增加。可喜的是,測量結果幾乎是以一定的比例增加。以一條直線為例:假設用來測量的第一把尺剛好跟該直線等長,第二次用的尺比較短,正好是直線的一半,因此測量結果是尺長的兩倍,第三把尺是上一把尺的一半長,因此測量結果直線是尺的四倍長,依此類推。

-----廣告,請繼續往下閱讀-----

接著,測量前面提到的鋸齒狀海岸線。隨著使用的尺越來越短,我們可以觀察到不尋常的現象:

測量結果增加的幅度,要高過尺縮小的幅度。用來測量這個現象的度量衡,就叫做碎形維度(fractal dimension)。

從簡單的例子講起:一條直線的碎形維度是一,而直線正好屬於一度空間。然而,英國海岸線的碎形維度卻是 1.25。這講得通嗎?那當然!崎嶇的海岸線比一度空間的直線來得複雜,但不論海岸線多麼曲折,還不至於複雜如二度空間。

不只這樣。澳洲的海岸線沒有英格蘭西南部康瓦爾地區的那麼曲折,所以它的碎形維度只有 1.13。相形之下,平滑的南非海岸線碎形維度更低,只有 1.02,只比直線高一些。

河流是另一個很好的例子。美國地質調查局(U.S. Geological Survey)研究美國境內大型河流的路徑,發現東部的河流碎形維度大約是 1.2,西部曠野的河流則是 1.4。這項調查結果恰好符合大眾的認知——西部的科羅拉多河(Colorado River)蜿蜒曲折,而東部的查爾斯河(Charles River)較為平順。

-----廣告,請繼續往下閱讀-----

5976574896_1fedbd5036_z
西部的科羅拉多河蜿蜒曲折。圖 / By K.Oliver @ flickr

再舉一例:觀察肺臟內部支氣管錯綜複雜的表面,這些表面的面積加起來足足有一個網球場那麼大,這些錯綜複雜表面的碎形維度將近三。這層薄膜非常彎曲、有很多皺褶,因此幾乎有如三度空間。

以上種種說明了什麼呢?一個新的度量工具誕生了,不是測量長度、重量、溫度或分貝,而是測量物體曲折或不規則的程度。終於,科學界有了第一個測量「不規則」形狀的工具。


書封:股價、棉花與尼羅河密碼

 

本文摘自《股價、棉花與尼羅河密碼》,早安財經出版社。

 

-----廣告,請繼續往下閱讀-----
PanSci_96
1257 篇文章 ・ 2383 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。