0

0
0

文字

分享

0
0
0

用額頭「看」、用頭髮「聽」,觸覺科技讓一切不再只是電影──《觸覺不思議》

PanSci_96
・2017/06/30 ・1936字 ・閱讀時間約 4 分鐘 ・SR值 450 ・四年級

  • 【科科愛看書】我們是如何認識世界的呢?除了眼睛、鼻子、耳朵,我們居然也可以用皮膚來「看」或「聽」!在觸覺的力量下,絨毛毯讓你更安心、熱奶茶讓你變溫暖,這到底是什麼神奇魔法!?踏入《觸覺不思議》的世界,從觸感遊戲、感官實驗及最新研究,重新為你定義感官,讓你大開皮膚界(?)

看不到東西時,就摸一摸吧

在無法倚賴其他感覺時,結合觸覺的設計特別能夠發揮效用。

在浴室洗頭髮的時候,你是否曾經因為無法分辨洗髮乳與潤髮乳而感到困擾呢?事實上,即使閉著眼睛,還是有辦法摸出其中差異,因為幾乎所有洗髮精的瓶身側面,都有一凹一凸的刻痕。

這種巧思又稱「識別線」,在 1990 年代正式被應用在產品中。目前已成為日本工業標準所規範的通用設計之一。像是鮮奶盒的上面,在開口處的另一端有一個半圓形的缺口(果汁有二個),只要用手觸摸即可分辨飲料的種類和開口的位置。

「識別線」這類的概念,已在 1990 年代正式被應用在產品中。圖/取自《觸覺不思議

此類觸覺設計不僅對眼睛看不見的人有幫助,對沒有視覺障礙的人來說也很方便。作為生活支援型觸覺設計的強力後盾,觸覺科技是目前深受期待的領域。

-----廣告,請繼續往下閱讀-----

觸覺科技讓視障者重新「看見」世界

電子通訊大學的梶本裕之博士長年致力於電子觸覺顯示器的研發。在他的協助下,菅野米藏研發出了一款名為「視障前額導盲儀」(AuxDeco)的電子觸覺顯示器,目的是替視障者提供生活支援。

視障前額導盲儀的組成內容,包括一台頭戴式的小型攝影機,和裝置在額頭上的前額綁帶。這套儀器會從攝影機錄製的畫面擷取輪廓線,再透過電子訊號刺激使用者的額頭。在前額綁帶上五百一十二個電極所發出的經皮電刺激下,使用者會從額頭感覺到振動,並即時掌握眼前的景象。

圖/取自《觸覺不思議

菅野米藏當初會研發這個系統,據說是因為他讀到一篇由依芙琳.葛蘭妮(Evelyn Glennie)所寫的文章。葛蘭妮是一位蘇格蘭打擊樂手,天生就是聾啞人士的她,在經過訓練之後成為專業的打擊樂手,憑著感受腳底的振動與管弦樂團一起演奏。人類的大腦擁有驚人的柔軟度。菅野得知腳底可以代替鼓膜後,便鼓起勇氣投入研發,想試試看能不能用額頭來代替視網膜。

菅野在 TECHTILE 座談會上分享了以下這件事:

-----廣告,請繼續往下閱讀-----

有一位戴了 AuxDeco 的體驗者,親口說出「我看見了!」這樣的話喔!我絕對不可能問說:「你看得見嗎?」因為我不覺得這種感覺叫做「看見」。然而身為盲人的那孩子,竟然親口說出了「看見」這樣的話。老實說,我當下內心只有一個想法:「太好了,我做到了!」

配戴 AuxDeco 的人說出「看見」這樣的詞語時,我想應該不是出於表達上的習慣,而是因為他真的感覺自己「看見」了。另外也有後天失明者表示:「好像浮現出黑白照片的影像一樣。」他們用皮膚「看見」的東西或許與非視覺障礙者看見的東西不同,但在感知外界的光學模式上應該可視為同一件事。

輕巧的觸覺髮夾,讓頭髮「聽見」聲音

接下來,就來介紹一個嘗試用皮膚代替鼓膜的例子吧。

日本公立函館未來大學研究所的本多達也,研發出一款專為聾胞設計的生活支援型觸覺裝置,取名為「ONTENNA」。這款裝置的名字是由日文的「音(on)」與「天線(antenna)」所組成,造型就像髮夾一樣,可以輕鬆地夾在頭髮上,裡面則附有麥克風與振盪器,一旦周圍有任何聲音響起,它就會一邊發光一邊振動。

圖/取自《觸覺不思議

耳朵聽不見的人走在路上時,經常會碰到一種很危險的情況,就是聽不見後方來車的聲音。此外,水燒開或吸塵器插頭脫落的時候,也很難察覺到這些變化。在這樣的情況下,如果身上戴著 ONTENNA 的話,就能夠藉由觸感察覺到環境的變化。因為外型設計成圓弧狀的髮夾造型,所以可以很自然地當作裝飾品配戴在身上(另外也有耳環的造型)。

-----廣告,請繼續往下閱讀-----

這樣的觸感科技有望在未來更加廣泛地被應用在視聽覺資訊過剩的現代生活中。此外,在高齡者逐年增加的日本,這種無論身體是否有障礙都能夠提供我們安全和快樂生活的觸感科技,相信今後也會愈來愈重要吧。

身為 TECHTILE 的推動者,我們也希望能提出更多方法,讓大家更加親近觸覺,過著更美滿的生活。


 

 

本文摘自《觸覺不思議 : 從觸感遊戲、感官實驗及最新研究,探索你從不知道的觸覺世界》,臉譜出版。

文章難易度
PanSci_96
1226 篇文章 ・ 2337 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
平板電腦能讓視力障礙者有更好的閱讀體驗
營養共筆
・2012/11/15 ・1754字 ・閱讀時間約 3 分鐘 ・SR值 492 ・五年級

(請注意,這是在一場醫學會議上發表的研究結果。由於尚未經過同儕評審的關係,我們應該把它看待為初步的訊息。)

研究發現 iPad 與其他背光式螢幕的平板電腦也許能讓數百萬視覺障礙者閱讀地更快、更輕鬆。

視力障礙(Low vision)是對那些經過眼鏡、隱形眼鏡、藥物或甚至是手術矯正後的人在閱讀、看電視或是其他日常活動依然有困難的總稱。處在這種情況下的人,僅有的選擇就是經常使用放大鏡或是其他協助視力障礙的裝置,只是這些東西通常是笨重而且不太容易使用。

隨著 iPadKindles 與其他背光式平板的問世,這些裝置或許能為視力障礙的人們帶來新的選擇。新的研究顯示這些裝置能讓他們閱讀的更舒適地閱讀。

用背光平板電腦閱讀

這個研究是由兩個實驗所構成。第一個研究找來 62 個人來閱讀實體印刷或是 iPad 2 上 3 篇《紐約時報》( The New York Times的文章。參與研究的人有超過一半的人有黃斑部疾病的證據。黃斑部是眼睛中讓我們能看清楚細節的部位。

根據這個研究發現,使用 iPad 閱讀的人閱讀速度比印刷版的人快。此外,改善的效果在雙眼均有視力障礙的人身上更是顯著。

第二個實驗,找來一百個人以下列三種方法閱讀:

  • 看真的書
  • iPad 2 上分別以 12 點與 18 點的文字大小閱讀
  • 在 Kindle 上分別以 12 點與 18 點的文字大小閱讀

研究者們會預先把 iPad 的背景亮度調到最高。而在這個試驗中使用的 Kindle 則沒有調整背景亮度的功能,不過亞馬遜後來推出 Kindle Fire 就可以調背景亮度。

在這個實驗當中,所有使用 iPad 2 的人,閱讀速度都比使用 Kindle 閱讀的人要來得快。而這個差距在文字大小調成 18 點的時候變得更大。

-----廣告,請繼續往下閱讀-----

當 iPad 2 文字大小調為 18 點的時候,人們的閱讀速度平均每分鐘比閱讀實體書本要多了 42 個字;而 在同樣的文字大小情況底下,使用 Kindle 的閱讀速度平均每分鐘比閱讀實體書本多了 12 個字。

對比很重要

背光能提昇對比敏感度或從背景中看到物體被凸顯的能力。研究者 Daniel Roth 醫師表示許多有視力障礙的人失去了上述的能力。Daniel 是羅伯伍德強生醫學院(Robert Wood Johnson School of Medicine )臨床副教授。

他說:「這個發現適用於任何一個閱讀視力受損的人。放大的文字以及背光能改善他們的閱讀能力並提昇舒適度。」

平板裝置的操作相當友善,而有視力問題的老化嬰兒朝世代應該能熟練的使用他們。很多時候這些人為因為視力的問題而放棄閱讀,如今他們並不需要這樣,藉由平板電腦他們依然能享受閱讀的樂趣。挑選一個背光顯示的平板,接著把亮度調到最亮,最後再把文字大小放大到舒適的程度。

-----廣告,請繼續往下閱讀-----

諾克斯丘醫院(Lenox Hill Hospital)眼科醫師 Mark Fromer 說:「iPad 幾乎對每一位有視力障礙、老年黃斑部病變以及糖尿病引起的眼睛的人都有幫助。這些裝置能在文字與背景之間產生對比好讓他們不需要放大鏡也能能夠容易地閱讀。比起實體印刷物,18 點的文字大小與顯著的對比讓他們更容易看出文字的形狀。」

平板裝置也打敗其他解決方案,放大鏡跟打燈的裝置通常都太過於笨重,使用上不是那麼地方便。此外,iPad 的價格也比視力障礙輔具的價格友善,有些視力障礙輔具的售價可能在美金 3,000 元以上,而一台 iPad 價格就相對便宜許多。

延伸閱讀

背光(Backlit)

背光是一種被用於LCD顯示上的照明形式。背光式和前光式不同之處在於背光是從側邊或是背後照射,而前光顧名思義則從前方照射。他們被用來增加在低光源環境中的照明度和電腦顯示器、液晶螢幕上的亮度,以和CRT顯示類似的方式產生出光。

-----廣告,請繼續往下閱讀-----

摘自 Wikipedia

關於本文

  • 文章來源:WebMD
  • 文章標題:iPads May Help Those With ‘Low Vision’ Read Better
  • 文獻與人物:
    Mark Fromer, MD, ophthalmologist, Lenox Hill Hospital, New York City.
    Janet Sunness, MD, ophthalmologist, Baltimore.
    Daniel Roth, MD, associate clinical professor, Robert Wood Johnson School of Medicine, New Brunswick, N.J.
    American Academy of Ophthalmology, annual scientific meeting, Chicago, Nov. 10-13, 2012.
  • 整理編譯:Sidney

轉載自 營養共筆

營養共筆
86 篇文章 ・ 3 位粉絲
應該是有幾個營養師一起寫的共筆,內容與健康議題有關。可能是新知分享、經驗分享或是有的沒的同學們~如果對寫這個共筆有興趣的話,歡迎一起豐富它的內容喔。