5

100
5

文字

分享

5
100
5

你認為閱讀只需要用眼嗎?先聽懂,才能讀懂!

雅文兒童聽語文教基金會_96
・2022/08/27 ・3967字 ・閱讀時間約 8 分鐘

  • 文/雅文基金會聽語科學研究中心研究員 詹益智
人類大腦最初演化的目的是為了聆聽口說語言。圖/EXECUTIVEMIND

人類習得語言的順序:先學會聽才能學會讀

於 2016 年上映的電影「寒戰 II」中,由梁家輝飾演的李文彬有一句經典的台詞

「沒有學會走,先學跑,從來不是問題,但先問一問自己是不是天才。如果不是,就要一步步來[1]。」

這就好似使用口語溝通者語言發展的歷程,除非你是天選之人,有過人的天份,否則通常會依聽、說、讀、寫的順序習得語言[2],這樣的順序透露了一個重要的訊息,即閱讀的學習應奠基於聽理解力。為何語言習得的順序是先聽再讀呢?從人類大腦的演化的足跡便可略知一二。除非特別說明,以下皆以使用口語者為主要談論對象。

人類大腦最初演化的目的是為了習得口說語言(後簡稱口語)[3],而是習得口語的最佳媒介。在幾十萬年前口語就已出現[4],而書面語則約在五千年前才誕生[5],因此人類祖先在開始透過文字溝通之前,早已有了數萬年的口語交流經驗。我們可以發現,使用口語溝通的兒童一出生便自然地開始聆聽口語,接著才是學會閱讀,這並非是巧合,而可能是大腦演化之下的產物。

閱讀不只是認字這麼簡單,還需要良好的聽理解力

談到閱讀,許多人的第一印象就只是閱讀文字,但僅只如此嗎?閱讀文字其實只是閱讀過程中最基本、最初階的的技能。兒童在學習閱讀的過程中,無不從識字開始,透過記憶字形、拼讀注音、部首或聲旁線索認讀文字,但即便能將文本所有的文字唸出,也不代表能理解文本背後的涵意,癥結在於是否能將唸出的文本賦予應有的意義,才可達到閱讀理解的目的[6]

兒童在早期學讀的過程中,所接觸文本的難度大多低於其口語理解的水準,因此其閱讀理解主要受到識字能力的限制[7],到了晚期透過閱讀來學習的階段,兒童的識字能力會因多次的練習而趨近自動化,也就是一眼便能提取文字的語音;此時,他們所接觸文本在內容與結構上也會變得更加困難與複雜,單憑識字能力,並不足以讓他們理解全文,而聽理解力,才是決定其閱讀成效的因素之一 [7]。

早期「學習閱讀階段」的文本內容相對容易,閱讀理解主要受識字能力的影響,晚期「透過閱讀學習階段」的文本內容相對困難,閱讀理解主要受聽理解力的影響。圖/筆者製圖 & TheSchoolRun

一般而言,聆聽口語可幫助一個人建構閱讀時所需的語言基礎,例如詞彙與句法[8],換言之,聽理解力可能會影響語言知識的習得,進而左右閱讀的表現。研究指出聽理解力對於閱讀理解的影響會隨著兒童年紀漸長而有所增加[9]。最終,聽理解力甚至可以完全預測其閱讀理解[10]

語言知識是閱讀發展的關鍵

你可能會質疑聾人朋友沒有聽力也可閱讀,原因在於他們仍可透過手語或讀唇的方式獲取語言知識。沒錯,語言知識便是其中的關鍵!有許多具有殘存聽力的兒童,因聽經驗較為缺乏而需要花更多時間奠定語言根基,相對於典型聽力的兒童,也較易有閱讀發展遲緩的現象[11]。有些研究甚至發現,聽損兒童的閱讀能力到了國小四年級時就停滯不前[12],顯見聽力對使用口語為主要溝通者閱讀發展的重要性。

聽理解力可用以區分不同類型的閱讀障礙

在臨床上,閱讀理解困難可分為三大類:失讀症(dyslexia),即有識字困難但保有完好的聽理解力;理解困難(poor comprehender),即有足夠的識字能力,但聽理解力有缺陷;廣泛性閱讀障礙(garden variety poor reader),即識字與聽理解力皆低落[7]。由此可見,聽理解力在閱讀理解上扮演著決定性的角色。

聆聽和閱讀都會在內心產生感官意象

聽理解力不單只是透過聽去理解口語中的詞彙與句法,良好的聽理解力還牽涉到是否能將這些語言及背景知識整合成一個心理模型(Mental Model)[13],也就是能在內心中,將人、事、時、地、物具像化,以幫助理解。舉例來說,你將和朋友去參加一場美食盛宴,你可能會在腦海中勾勒出當天會場的樣貌、會出席的要角、即將發生的事、食物的滋味、美妙的音樂等。

在聆聽言談與閱讀文本時,皆會觸發這種感官意象的形成[7]。因此聽理解力與閱讀理解其實同出一轍。換句話說,聽理解力和閱讀理解其實共用了相同的心理處理機制,只不過聽理解力並未涉及文字解碼的歷程。

閱讀時,內心也會聽到「聲音」

聽理解力對閱讀的影響也可從「默讀」(subvocalization or silent reading)的觀點來談。所謂「默讀」指的是在閱讀時,心中將文字唸出聲音,這是典型聽力者閱讀時的自然過程,它有助於大腦理解與記憶所讀過的內容,從而能夠減少認知負荷,並將剩餘的認知資源用在高層次的語言理解[14]

既是唸出「聲音」,自然就會牽涉到聽理解力,若是聽經驗不足,即便將文字唸出,對讀者而言只不過是一連串無意義的語音符號,因而也就無法達到閱讀理解的目的。

聆聽與閱讀同篇文章時,相同的大腦區塊都被激活了

這些透過顏色編碼的 3D 大腦地圖顯示了大腦在聽聆聽(頂部)和閱讀(底部)同一篇故事時,語意處理的過程基本相同。圖/Fatma Deniz University of California, Berkeley

一群加州大學柏克萊分校的腦神經學家 Deniz 等人[15],在《神經科學雜誌》(Journal of Neuroscience)上,發表了一篇有關大腦處理聽力與閱讀的論文,他們利用功能性磁振造影(Functional Magnetic Resonance Imaging, fMRI)技術,記錄一群成人受試者在閱讀和聆聽同一篇故事時,大腦活動的狀況,並根據結果繪製3D大腦互動式地圖(interactive map ,這個網頁可以讓你體驗 3D 大腦互動式地圖)。

這個地圖以不同的顏色標示大腦活動的區塊。研究人員不但發現聆聽和閱讀同一時詞彙時,相同的大腦區塊會被激活外,更發現不同類別的詞彙所激活的大腦區塊也有所不同。例如,與數字相關的單詞會激活一個區塊,而與時間​​相關的單詞則會激活另一個區塊。

也就是說,無論透過聆聽或是閱讀相同的文本,這兩種處理語意訊息的方式都是類似的,這也證實了聆聽與閱讀間緊密不可分割的關係。研究人員也提到了未來對於閱讀理解有障礙的兒童或許可以透過聆聽有聲書的方式來改善他們的閱讀理解力。

如何透過「聽」來提升閱讀理解?

TEDxTaipei 是個可用來訓練聽理解力的平台。圖/TEDxTaipei

既然聽與閱讀間的關係來自於語言理解,訓練聽力來提升語言理解進而促進閱讀能力應是可行的方法,那麼應該要怎麼透過聽來提升閱讀理解力呢?平時我們可以利用手機或電腦的 TEDxTaipei 平台聆聽不同主題的演說,並利用四種實證策略來聆聽[16]

1.預測(prediction)

在聆聽演講時,可試著預測講者後續要說的內容,因為對內容的理解有很大程度取決於我們所聽到的是否與預期的一樣,如與期待不符,則可能會產生誤解。相反地,如果我們能準確地預測接下來的內容,聆聽便會變得更有效率。

2.釐清(clarification)

除了預測外,釐清自己是否能理解所聽到的內容,也是聆聽中重要的一環。有時我們可能會發現講者使用了一些艱澀難懂的專有名詞或概念,此時不妨按下暫停鍵,稍微 Google 一下,找出相關的解釋,如此不但可豐富自己的背景知識,更有助內容的理解。若我們對不懂之處置之不理,就無法順利地理解演說的內容。

3.提問(questioning)

有目的的去聽一場演講比漫無目的聆更可使聽者對演說的內容產生共鳴,而自我提問便可以達到這樣的目的。自我提問的策略可在演講的任何時刻皆可使用,例如在演講前使用,便能將背景知識帶入自己的意識中,而有助內容的理解。在演講中使用,可以促使自己更專注的聆聽,因為在某種程度上,也是與內容作交流。若在演講後使用,則可訓練自己的批判性思維。

4.摘要(summary)

聽完一場演講後,試著用自己的話重述一遍講者的內容,但需將焦點放在講者主要闡述的想法是甚麼?有哪些細節可以支持這些想法?哪些訊息是不相關或非必要的?對演講的內容做摘要不但可幫助自己更積極且專注地聆聽,也可訓練自己整合訊息的能力,並對內容也會留下更深刻的印象。

閱讀若想要達到「讀你千遍也不厭倦」的境界,或許可從訓練自己的聽理解力開始,當建立起閱讀所需的語言與背景知識的基礎後,就不會產生「讀你一遍都感厭倦」的無奈感囉!

參考資料

  1. 寒戰II
  2. Pawarbrother21. (2022, February 11). Language skills- Listening, Speaking, Reading, Writing. 
  3. Victor. (2021, March 15). Three reasons listening is the most important skill to tackle first. 
  4. Scerri, E. M., Thomas, M. G., Manica, A., Gunz, P., Stock, J. T., Stringer, C., … & Chikhi, L. (2018). Did our species evolve in subdivided populations across Africa, and why does it matter?. Trends in Ecology & Evolution33(8), 582-594.
  5. Gelb, I. J. (n.d.). Sumerian language
  6. Hoover, W. A., & Gough, P. B. (1990). The simple view of reading. Reading and Writing2(2), 127-160.
  7. Hogan, T. P., Adlof, S. M., & Alonzo, C. N. (2014). On the importance of listening comprehension. International Journal of Speech-Language Pathology16(3), 199-207.
  8. Hogan, T. P., Bridges, M. S., Justice, L., M., & Cain, K. (2011). Increasing higher level language skills to improve reading comprehension. Focus on Exceptional Children, 44(3), 1-19.
  9. Catts, H. W., Hogan, T. P., & Adlof, S. M. (2005). Developmental changes in reading and reading disabilities. In The connections between language and reading disabilities (pp. 38-51). Psychology Press.
  10. Adlof, S. M., Catts, H. W., & Little, T. D. (2006). Should the simple view of reading include a fluency component?. Reading and Writing19(9), 933-958.
  11. Harris, M., Terlektsi, E., & Kyle, F. E. (2017). Literacy outcomes for deaf and hard of hearing primary school children: A cohort comparison study. Journal of Speech, Language, and Hearing Research, 60, 701–711
  12. Traxler, C. B. (2000). The Stanford Achievement Test, 9th edition: National norming and performance standards for deaf and hard-of-hearing students. Journal of Deaf Studies and Deaf Education, 5, 337–348.
  13. Kintsch, W., & Kintsch, E. (2005). Comprehension. In S. G. Paris & S. A. Stahl (Eds.), Current issues in reading comprehension and assessment (pp. 71-92). Mahwah, NJ: Erlbaum.
  14. Erickson, K. (2003). Reading comprehension in AAC. The ASHA Leader, 8(12), 6-9.
  15. Deniz, F., Nunez-Elizalde, A. O., Huth, A. G., & Gallant, J. L. (2019). The representation of semantic information across human cerebral cortex during listening versus reading is invariant to stimulus modality. Journal of Neuroscience39(39), 7722-7736.
  16. Aarnoutse, C., Brand-Gruwel, S., & Oduber, R. (1997). Improving reading comprehension strategies through listening. Educational Studies23(2), 209-227.
文章難易度
所有討論 5
雅文兒童聽語文教基金會_96
52 篇文章 ・ 210 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

0
0

文字

分享

0
0
0
找出品酒的「底層邏輯」——我們的身體如何品出酒品的獨特感受?
鳥苷三磷酸 (PanSci Promo)_96
・2023/10/27 ・1234字 ・閱讀時間約 2 分鐘

本文由 財政部國庫署 委託,泛科學企劃執行。

你注意到了嗎?在品酒時,品酒師不會一口乾,而是充分觀察、品嚐後才會下肚。這些動作可不是單純裝模作樣,而是有科學根據的。品酒有五個基本動作:觀察、搖晃、聞、啜飲與漱口、吞嚥,究竟我們的感官跟大腦是怎麼接收酒的訊號呢?

從最簡單的「嗅覺」開始,酒杯湊近口鼻、進入口腔,我們可以聞到「外部」和「內部」的香氣。外部指的就是用鼻子聞到的香氣,是先穿越鼻孔到達嗅上皮組織,形成我們所熟悉的正鼻嗅覺。而內部呢?那些已經在我們嘴巴裡的酒液,會走鼻咽和後鼻孔這條路,最終到達嗅覺粘膜。即使這口酒已經被喝下去,只要輕輕呼口氣,也依然能「聞」到酒味。

圖/giphy

另外,口鼻之間的通道,也就是鼻咽,在吞嚥的過程中會關閉,所以在吞嚥時會有一種「味道好像弱掉了」的錯覺,但其實只是你暫時無法靠鼻間的任何通道呼吸而已。這也是為什麼品酒師會要把酒液含在嘴巴裡漱口,甚至還會打開嘴巴吸一口氣。

緊接在嗅覺之後的「味覺」,則是重頭戲!食物進到嘴巴,溶解在唾液中,啟動了味覺受器。人類可以透過味蕾的受器感受到「鹹、酸、苦、甜、鮮」五種味道。不過,也有部分的人不喜歡酒的原因,正是因為味覺。美國賓州大學農學院過去研究發現,人體中的苦味受體來自基因 TAS2R13 和 TAS2R38,辣椒素受體則來自基因 TRPV1。因此不同的基因表現,影響著人們對這兩種味道的感受,也決定了他們的攝取喜好。

圖/giphy

講完了嗅覺和味覺,別忘了品酒前的「觀察」。事實上,人們對風味的知覺基礎,來自多重感官的整合。當我們在觀看一杯酒的色澤和濁度時,大腦已經在默默「品嚐」它了。就像是望梅止渴、看到好吃的大餐肚子就先餓了起來。

除上述提到的「身體」感官,其實喝酒的時段、溫度、聲音、順序也會影響我們「心裡」的感受。但話說回來,在品酒前,最重要的應是選擇安全以及衛生的酒品來源,就是要慎選合法的販售業者,並挑選標示內容清晰、完整的酒品。

財政部自 2003 年起委託專業執行機構共同推動「優質酒類認證」制度,從原料、製程、品管、後續追蹤等層層把關,最後通過優質酒類認證技術委員會審查的酒品,才能被授予使用 W 字型認證標誌。因此,選購有 W 認證標誌的優質酒品,可以讓我們在品飲時更加安心!

 資料來源:財政部國庫署 廣告

鳥苷三磷酸 (PanSci Promo)_96
184 篇文章 ・ 293 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
指甲刮黑板的聲音,為何讓人難以忍受?
雅文兒童聽語文教基金會_96
・2023/10/22 ・2519字 ・閱讀時間約 5 分鐘

  • 朱家瑩/雅文基金會聽語科學研究中心 研究員

想像一下當你聽到手指甲刮著黑板產生的摩擦聲,或者是拿著叉子摩擦著不鏽鋼碗的聲音,抑或是小孩的哭叫聲,有沒有哪一個聲音會讓你全身起雞皮疙瘩,想要用手摀住耳朵,甚至是情緒爆炸、只想要遠離現場呢?這些讓人不適的聲音,是有其特有的聲學特質?或是其他緣故呢?

想像一下指甲刮黑板的聲音。圖/Pexels

不是尖銳、高頻音就刺耳,而是流淌在你我血液的祖先智慧

一般認為,令人不適的聲音是因為刺耳的高頻聲,尤其像是手指甲刮黑板時所產生的摩擦聲,其中那種「ㄍㄧ ㄍㄧ ㄍㄧ」的聲音,似乎是造成不適感的主因。

然而,Halpern、Blake 和 Hillenbrand(1986)這三位研究者對於這個現象感到好奇,因此他們進行了一項實驗 [1],他們將那些令人不適聲音(如:刮金屬或石板的聲音)中的高頻音減弱。

結果顯示,即使減弱尖銳的高頻聲音,受試者仍然感到不適,因而主張尖銳的高頻音並不是造成不適感的主因。接續 Halpern 等人在企圖尋求答案時,意外發現刮黑板的聲音頻譜圖跟靈長類猴子的警告叫聲非常相似,因而大膽推測這個不適感並非高頻音造成的,而是源於人類祖先的記憶。

人類對特定頻率區間的聲音感知最敏感,加上跨感官的連結,讓人聽到某些音就不適

可惜,到底是不是來自老祖先的智慧傳承,這點未獲得後續研究的支持。另一方面,Kumar 等人(2008)進一步以聲學分析探究是否是因特定頻率導致聆聽的不適感時,發現聲音中涵蓋 2500-5500 赫茲這個頻率區間的聲學頻率似乎特別容易引起聽者的不適感 [2]

有沒有哪一個聲音會讓你全身起雞皮疙瘩,想要用手摀住耳朵?圖/Pexels

他們推測這可能是因為這個頻率範圍的聲音感知上最為強烈,同時也具有最高的能量,因此使得聽覺系統特別對這些頻率的聲音敏感。

但是,我們平常聊天談話中也涵蓋了這個頻率範圍的聲音,除了頻率之外,是不是還有其他因素造成對某些聲音的不適感呢?

Ro 等人(2013)發現當聽到聲音時,聲音進入大腦的聽覺皮質同時,會傳遞訊號到觸覺感官系統,啟動了觸覺感官,讓聽者聽到聲音時,「感覺」到自己的皮膚彷彿被指甲刮的刺痛感 [3]

聽聲音會啟動身體觸覺感官系統並非只存在刮黑板這類聲音,有些人在聽到音樂聲,像是聽到低音貝斯的聲音時,也會感覺到自己的身體也在震動,甚至感受到皮膚的不適感 [4、5]

也許因為這個跨感官的訊號傳遞,讓身體的其他部位也出現不適的感受,才會讓聽者對於這些聲音感到不適。

當感知到令人不適的聲音,杏仁核會依據習得經驗,決定是否啟動保護機制!

Zald 與 Pardo(2002)發現當聽到讓人感到不適的聲音刺激時,大腦中的杏仁核(amygdala)會高度活化 [6],而杏仁核在大腦中負責掌控恐懼、焦慮、害怕等負面情緒,換句話說,當聲音訊息抵達杏仁核時,它會誘發情緒反應,進而導致我們做出不同行為反應 [7]

杏仁核的啟動是大腦的一種保護機制,透過過往的經驗連結學習會對讓人不適的聲音發出警報[8] ,當聽者遇到可能危及安全的聲音時,杏仁核就會發出警報。

例如,當聽到車子緊急剎車的聲音時,這個聲音傳送到杏仁核,會進而引起我們想要逃離的反應,或者產生對駕駛者行為的憤怒反應。

由於杏仁核在聆聽這些聲音時會高度活化,Kumar 等人(2012)進一步試圖了解在聆聽令人不適的聲音時,杏仁核在大腦中扮演著怎樣的角色,以及聲音資訊如何被傳遞到杏仁核。

他們的研究結果顯示,聲音刺激會最先傳送到聽覺皮質(auditory cortex)進行聲學訊息處理和分析,解碼聲音所代表的意義,例如,聽到「ㄍㄧ」的剎車聲,解碼出來的是來自汽車或者腳踏車的剎車聲。聽覺皮質處理完畢後,將資訊傳遞到杏仁核,當杏仁核接收到來自聽覺皮質的訊號後,依據這些訊息及過去經驗發出警報 [8],誘發恐懼、焦慮或憤怒等負面情緒,並可能促使進一步的行為反應,像是尖叫、摀住耳朵,或逃離現場。

舉例來說,如果是汽車的剎車聲,基於過去的經驗,可能存在危險,因此可能會誘發恐懼情緒,並引發立馬逃離現場的行為舉動。

有些人基於過去的經驗,聽到汽車的剎車聲,可能會誘發恐懼情緒。圖/Pexels

然而,如果解碼後的聲音是腳踏車的剎車聲,根據過去的經驗,可能不會有危及生命的危險,因此即便會觸發閃躲的動作行為,但負面情緒可能不如汽車剎車聲來的強烈,可能只會憤怒的罵騎車的人不長眼。

聽到某些聲音,讓人立馬想逃或想戰,也許這個過往的經驗是來自遠古時代祖先的傳承,但更可能是因為聽到這些聲音時,觸覺感官系統被啟動了,身體上「感覺」到不適,所以當不適的聲音再次出現時,杏仁核的活化反應就更增強,讓我們除了單純的接收到聲音之外,也產生了身體及情緒上的反應。

參考文獻

  1. Halpern, D. L., Blake, R., & Hillenbrand, J. (1986). Psychoacoustics of a chilling sound. Perception & Psychophysics39, 77-80.
  2. Kumar, S., Forster, H. M., Bailey, P., & Griffiths, T. D. (2008). Mapping unpleasantness of sounds to their auditory representation. The Journal of the Acoustical Society of America124(6), 3810-3817.
  3. Ro, T., Ellmore, T. M., & Beauchamp, M. S. (2013). A neural link between feeling and hearing. Cerebral cortex, 23(7), 1724-1730.
  4. Koenig, L., & Ro, T. (2022). Sound Frequency Predicts the Bodily Location of Auditory-Induced Tactile Sensations in Synesthetic and Ordinary Perception. bioRxiv.
  5. Lad, D., Wilkins, A., Johnstone, E., Vuong, Q.C. (2022). Feeling the music: The feel and sound of songs attenuate pain. British Journal of Pain, 16(5), 518-527. 
  6. Zald, D. H., & Pardo, J. V. (2002). The neural correlates of aversive auditory stimulation. Neuroimage16(3), 746-753.
  7. LeDoux, J. E. (2000). Emotion circuits in the brain. Annual review of neuroscience23(1), 155-184.
  8. Kumar, S., von Kriegstein, K., Friston, K., & Griffiths, T. D. (2012). Features versus feelings: dissociable representations of the acoustic features and valence of aversive sounds. Journal of Neuroscience, 32(41), 14184-14192.
雅文兒童聽語文教基金會_96
52 篇文章 ・ 210 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

0
1

文字

分享

0
0
1
我的孩子有聽力障礙,戴上助聽器是否就能恢復聽力?
衛生福利部食品藥物管理署_96
・2023/10/09 ・4044字 ・閱讀時間約 8 分鐘

本文轉載自食藥好文網

  • 撰文/雅文兒童聽語文教基金會 黃上維、張晏銘 聽力師

聽覺是兒童接觸外在聲音世界、學習口語語言的基礎,聽得到且聽得清楚,孩子的語言及認知表現才有機會適齡發展,因此一旦確認有聽力損失,就有助聽器的使用需求。不過,當醫生判斷孩子有聽力損失後,父母心中都想知道:有沒有吃藥、手術或其它方式,來治療聽力問題?又或是戴上助聽器後,就能讓孩子的聽力恢復嗎?要解答這兩個問題,我們必須先了解聲音的傳遞方式。

我們如何聽見聲音?

耳朵是接收聲音的管道,分成外耳、中耳、內耳,隨後透過聽覺神經將聲音訊號傳遞至大腦解讀,任何一個區域出了差錯就有可能造成聽力損失。

外耳及中耳問題會造成「傳導性聽損」,例如:小耳症、耳道閉鎖、中耳積水、聽小骨硬化或斷裂等;這類聽損有醫療治癒的機會,但若治療的時機未到或期程過久,仍將耽誤孩童的聽語學習,因此可能需要階段性使用助聽器。內耳及聽神經問題會造成「感覺神經性聽損」,例如:毛細胞損傷、基因遺傳導致的細胞功能變異、神經細小等;這類聽損至今仍不可逆,也占先天性聽損的多數,需要終生使用助聽器或其它聽覺輔具。

耳朵剖面圖。引自馬英娟(2016,第267頁)[1]

助聽器的技術發展與時俱進

「工欲善其事,必先利其器。」要讓受損的耳朵重拾聽覺,要先了解助聽器的來歷。 助聽器顧名思義是幫助聽力的器具,如果說任何能把聲音有效傳進耳內的工具都是助聽器,那 17 世紀所誕生像漏斗、號角般的「耳朵喇叭(Ear trumpet)」就開啟了助聽器的時代篇章 [2]。不過這樣單純依靠聲學作放大的音量勢必有限,18 世紀末出現了以碳形成磁場,能有效提高音量的「碳助聽器」,同時引進不同頻率的聽力損失應有不同放大量的概念,隨後更歷經以「真空管」提供電力、以「電晶體」減少耗電及縮小外觀尺寸的時代。

到了 19 世紀末,助聽器開始「數位化」處理,與過往類比式不同,數位式助聽器在麥克風收音時,便將聲音轉成 0/1 的數位訊號,透過處理器分析、過濾和放大這些聲音,以此達成方向性接收語音、降低噪音、消除回饋音(漏音)等功能,最後再把 0/1 的數位訊號解碼化回聲波,傳遞至耳朵內。

耳朵喇叭(Ear trumpet)。來源/Science Museum Group

助聽器可以像近視眼鏡一戴就好?

多數情況下,戴助聽器跟戴眼鏡不一樣,無法一戴就好,原因除了助聽器硬體的外部限制,如麥克風收音的品質與距離影響,人耳的生理也有內部限制。對少數「傳導性聽損」者而言,聽力損失相對單純,只要聲音的「音量」被放大還原,克服了外耳或中耳的阻礙,就能有正常的聆聽潛力,然而多數「感覺神經性聽損」者,損失的不單是音量,尚有對高低音「頻率」的差異分辨,如此當說話語音與環境噪音的頻率太過相近時,大腦很難將語音從噪音中抽離;以及對聲音「時間序列」的解析力降低,因為大聲音(或比較重的音節)會遮蔽緊跟其前後的小聲音,加上生活中的語音及噪音忽大忽小,大腦很難在交錯的聲音中鎖定目標語音 [3]

以視覺模擬聽力損失之面向。來源/作者。

以視覺做比擬,音量損失就像字體變小了,語音變得不易看見;頻率解析度下降就像字形變模糊了,讓本來就看起來相仿的字變得更混淆;而時間序列解析度下降就像比較大的字會凸顯而掩蓋前後比較小的字,或字跟字會有重疊情形,讓整句話變得不完整。

現代助聽器有許多進階功能,如頻率降轉技術 [4]、噪音消除技術,能協助濾化聲音,幫助聽損者更好接收到目標音,但無法從本質上根治感覺神經性聽損敏銳度低的問題,因此助聽器是以矯正聽力損失、利用殘餘聽力為目的,有賴後續聽能復健訓練以最大化助聽器的使用成效。

「最好」的助聽器是「最合適」自己孩子的助聽器

國內經衛生福利部核准的助聽器醫療器材超過 180 種,各家廠牌的設計訴求不一,若家長在為孩子選購助聽器時陷入苦思,不妨先依序檢視下述原則:

一、選擇:助聽器的種類與適用對象

傳導方式適用對象注意事項
氣導助聽器因為能夠達成左右分耳、分頻率的矯正,為所有耳部具支撐力的聽損者之優先選項外型款式(如耳掛型、耳道接收器型、耳內型)除了要考量固定性,也會影響助聽器最大可支應的聽損程度,因此需依評估結果與聽力師討論。
擴音範圍與喇叭的輸出大小有關,應該視聽力穩定性預留調整空間,但音量輸出最大的幾款同時會使頻率響應的範圍變窄或不平順,造成音質差異,因此大小適當為佳。
傳導方式適用對象注意事項
骨導助聽器小耳症及耳道閉鎖者
聽力常變化的傳導性聽損者
內耳聽力在輕度聽損以內的混合性聽損者
配戴側:左右各有麥克風收音才能貼近人耳真實的聆聽感受,因此雙耳聽損仍要以雙耳配戴為佳。
刺激側:雖然內耳的骨頭是左右相連,在正常傳導機制下,聲音會傳至兩側;但若兩側的內耳聽力有落差,又或兩側的傳導性聽損阻礙程度不同,聲音仍會以優耳感受。
傳導方式適用對象注意事項
雙對側傳生型助聽器 (CROS)單側不具殘餘聽力的聽力不對稱性聽損者需雙耳配戴,但會將聲音無線傳輸至優耳聆聽,即捨棄刺激劣耳聽神經。
  • 整理/雅文兒童聽語文教基金會

二、配置:助聽器的規格與使用需求

聽損者的聽力在不同聲音頻率間,多有不同的感知受損程度,助聽器要達成分頻率地矯正,有賴於可調整的「壓縮頻道」,頻道數的多寡也常反應在助聽器的等級與價格,但越多的壓縮頻道不一定會聽得越好。對於聽力圖屬於平坦型,即高低頻的聽損程度相近者,擁有 6 個壓縮頻道就足以達成理想的語音辨識清晰度;對於聽力圖屬於極陡降型,即高低頻聽力可能橫跨輕度至重度聽損範圍的人,提高壓縮頻道至 18 個才有改善語音聆聽清晰度的顯著意義 [5]。此外要留意,若您的孩子適用政府輔具費用補助資格,壓縮頻道在 6 個以上就能符合〈身心障礙者輔具費用補助基準表-進階型助聽器〉的頻道數要求,該「進階型」的意義與市面上廠商所定義「入門款、基本款、高階款」等不相同。

接著,承前述助聽器與人耳的限制,助聽器需要與「無線傳輸系統」相容,不論是搭配各助聽器廠牌自有的藍牙麥克風,亦或是搭配現今教育部針對聽覺障礙學生提供之遠端麥克風系統(舊稱調頻系統)[6],才能讓孩子在具有複雜聲音環境的學習場域聽得清楚,克服與老師間的距離、周遭的噪音回音等影響,減輕長時聆聽的疲勞。

三、驗證:確認助聽器的使用效果

因為兒童還無法完善表達自身需求,要確認使用助聽器效果時,除了家長的日常觀察,下述的客觀檢測不可少,包含「聲場矯正後聽力圖」用以確認孩子最小可以接收到的音量有無改善;「語詞辨識測驗」用以確認孩子在不同聆聽情境(如安靜環境下的遠距離說話音量、及吵雜環境下的一般說話音量)皆能聽得清楚;「真耳或耦合器量測」用以確認助聽器的處方公式設定與輸出音量相符,並確認最大輸出音量,避免過度擴音造成傷害。「聲電分析」用以確認助聽器的效能(如增益量、內部噪音量、聲音失真率等)隨時間可能衰減後是否仍在容忍值。

然而,不同聽損程度或助聽器的配戴經驗會影響驗證的細節,因此在購買助聽器之前,記得向聽力師了解這些檢測的理想目標、同樣能達成目標的其它選項有何差異、目標未達成時可努力的方向,以此兼顧助聽器的購買成本及使用效果。

和戴上助聽器同樣重要的下一步

看起來助聽科技很厲害,但別忘了,助聽器不是治療聽損的萬靈丹,聽覺大腦的路徑具有神經可塑性,需要透過正確配戴輔具,來增進聽損者對聲音的感知 [7]。對語言及認知能力還在發展階段的兒童來說,養成全日配戴的習慣、培養良好的傾聽技巧 [8]、學習聲音與意義的連結,是擁有適齡發展的要素。此外,你可以想像即便是聽力正常人,在聆聽環境複雜的時候,不總能聽得如此清晰,也需要依靠上下文解讀、請他人重述,或轉換環境做聆聽等,因此,「聽能復健訓練」是從建立核心的聽能技巧開始,擴展到語言及認知能力的促進,再到有效溝通策略的練習,是最佳化輔具成效所不可或缺的步驟。

參考資料

  • [1] 馬英娟(2016):淺談聽覺系統。載於林桂如(主編),以家庭為中心的聽覺障礙早期療育——聽覺口語法理論與實務(265-282頁)。新北市:心理。
  • [3] 劉殿楨等譯(2019)。聽覺輔具,第 1 章。台北市:華騰文化。(Harvey Dillon, 2012)
  • [5] Jason Galster & Elizabeth A. Galster.(2011).The Value of Increasing the Number of Channels and Bands in a Hearing Aid. AUDIOLOGYONLINE. Retrieved from https://www.audiologyonline.com/articles/value-increasing-number-channels-and-826.
  • [7] Karawani, H., Jenkins, K., & Anderson, S. (2022). Neural Plasticity Induced by Hearing Aid Use. Frontiers in aging neuroscience, 14, 884917.

延伸閱讀

  • [2] 楊又臻(2018)。助聽器是尊貴的象徵?從聲學椅到聲學拐杖,為了聽清楚的怪招式還真多。
  • [4] 張逸屏(2022)。高音唱不上去可以降 KEY,高頻聽不清楚可以……?──談助聽器降頻技術。
  • [6] 林淑芬(2022)。教室聆聽小幫手—遠端麥克風系統。
  • [8] 楊琮慧(2020)。有聽沒有到,為何學會「傾聽」這麼重要?
衛生福利部食品藥物管理署_96
65 篇文章 ・ 21 位粉絲
衛生福利部食品藥物管理署依衛生福利部組織法第五條第二款規定成立,職司範疇包含食品、西藥、管制藥品、醫療器材、化粧品管理、政策及法規研擬等。 網站:http://www.fda.gov.tw/TC/index.aspx