Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

人造胰島素開啟生技產業——胰島素與生技產業的誕生(下)

賴昭正_96
・2017/02/24 ・4786字 ・閱讀時間約 9 分鐘 ・SR值 546 ・八年級

即將失業的麻省理工學院校友

1975 年的某個冬天,加州大學舊金山分校的生化教授博耶(Herbert Boyer)莫名其妙地接到一通自稱是在舊金山創投資公司 KPVC(Kleiner Perkins Venture Capital)工作之史旺森(Robert “Bob” Swanson)打來的電話,希望能與他會面談談;忙於工作的博耶,心不甘情不願地勉強答應在一個周五下午給史旺森 10 分鐘的時間。隔年元月 17 日,史旺森如約地拜訪博耶的實驗室,沒想到原本 10 分鐘的會談,從實驗室到酒吧,竟變成了三個小時;而在幾瓶啤酒下肚後,更沒想到一個革命性的生物科技產業就此誕生了!

  • 編按:KPVC 後加入了另外兩位合夥人,改稱為 KPCB(Kleiner Perkins Caufield & Byers),中文譯為「凱鵬華盈」。KPCB 位於矽谷,為一美國有名的大創投公司。。
史旺生。生化教授博耶在史旺生的說服下,一個革命性的生物科技產業就此誕生了!圖/By Chemical Heritage Foundation, CC BY-SA 3.0, wikimedia commons

史旺森 1947 年出生,1970 年在麻省理工學院同時取得化學學士及商業管理碩士學位。他畢業後即加入花旗銀行創投部門,卻經歷了一連串投資失敗。在他灰心想換工作時,曾與他合作過一次的克萊納(Eugene Kleiner)因他思想敏銳、做事效率高,而於 1974 年年底把他拉進 KPVC。

帕金斯(Thomas Perkins)回憶謂:史旺森雖然做了幾件案子,但均不是非常成功,因此連克萊納也漸漸對他不滿。是否因此之故,史旺森也不清楚,但克萊納及帕金斯在 1975 年年底告訴他説:「唉,我們很想只有我們兩人工作。……但在你知道要做什麼之前,你可以繼續保留辦公桌及電話。」這顯然暗示他明年就沒有工作了!

不過史旺森是個科普及科幻迷,當他看到重組 DNA(recombinant DNA)及基因工程等報導時,立即意識到了這將完全改變人們對基因與遺傳之思路。因此史旺森告訴 KPVC,他將看看生物科技方面有什麼可以做的……。

-----廣告,請繼續往下閱讀-----

青蛙王子

1972 年,史丹佛大學生化教授伯格(Paul Berg)成功將 λ 噬菌體(感染大腸菌)的一段 DNA,接連到 SV40 濾過性病毒(感染猴子)的 DNA 上,闡釋了「重組 DNA」的可行性(他因之獲得了 1980 年的諾貝爾醫學獎,分得一半的獎金)。

他原想讓這由兩種不同物種基因體組成的 SV40 去感染細胞,複製其混種 DNA 及蛋白質;但突然警覺到:雖然原來之 SV40 對人體無害,但改種過的過濾過性病毒,萬一變成無法控制、對人體有害的傳染病呢?他因此召集同行,於 1973 年元月及 1975 年二月在加州太平洋岸邊的 Asilomar,討論重組 DNA 可能引起的倫理道德及科學家責任等問題。

博耶就是在第二次的 Asilomar 會議裡,碰到了另一位由史丹佛大學來的生化教授科恩(Stanley Cohen);兩人在沙灘上的深夜長談後,發現他們的研究互補——博耶是基因限制酶(restriction enzyme)專家,而科恩則善長於細菌質體(plasmid ,註 5)的操作——因此兩人很自然地決定合作。

1974 年 5 月,他們成功地完成「青蛙王子」的實驗:將青蛙的部份基因導入大腸桿菌的質體內,讓它隨細菌大量繁殖(大腸桿菌每 20 分鐘複製一次)。當同事問科恩怎麼知道青蛙的基因被「表現」出來時,他總是開玩笑地説:與細菌親嘴,看它是否會變成王子就知道了!

-----廣告,請繼續往下閱讀-----

基因泰克公司

如果放進質體的不是青蛙的基因,而是製造胰島素的基因呢?

史旺森似乎毫無困難地説服了博耶:兩人決定各出 500 美元,於 1976 年 4 月 7 月在舊金山正式登記成立 Genentech——由 Genetic Engineering Technology 縮寫而成,中文譯成「基因泰克」。史旺森回憶説:「我不支薪,靠每月 410 美元的失業保險金過日子;我與人同租一間 500 美元的公寓,月付 110 美元租一部 Datsun 240Z 的汽車;其它的就是花生醬三明治,以及偶爾看個電影。我當時雖有些存款,但不多。」

基因泰克公司。圖/By BrokenSphere – Own work, CC BY 3.0, wikimedia commons.

代表基因泰克的洛杉磯律師齊理(Thomas Kiley)——1980 年加入該公司,後來當了法律副總——到舊金山出差時,也只能睡在史旺森那「不起眼」公寓中的沙發。6 月,史旺森寫了一份 8 頁的計畫書,希望 KPVC 能投資 50 萬美元;KPVC 快速地審查後,認為「投機性太大」,因此只答應撥款 10 萬美元相助。1977 年 2 月第二次集資 85 萬美元時,KPVC又投入了 10 萬。

萬事俱備,只欠東風:那裡去找製造胰島素的基因呢?人類的胰島素基因在第 12 號的染色體上,可是要分離出來並不簡單,因此博耶決定自己合成。

-----廣告,請繼續往下閱讀-----
  • 哈佛大學的吉伯特(Walter Gilbert,註 6)及桑格(還記得他吧?)於 1977 年因發展出快速決定 DNA 核酸順序的方法,而合得 1980 年另一半的諾貝爾醫學獎

由於倫理道德的考量,將不同物種 DNA 重新組合的「重組 DNA」技術在兩次阿西洛馬會議(Asilomar conference)後,慢慢受到許多限制(例如政府補助)。因此博耶決定研發人工合成胰島素這「不經意」的決定,事實上可能「救」了基因泰克公司,使它能在「劇烈競爭」下脫穎而出:吉伯特及加州大學舊金山分校的另一團隊古徳曼(Howard Goodman)和盧特(William Rutter,註 7)也均在研究透過「重組 DNA」(使用「自然界基因」)來製造胰島素。

生長抑制素基因

博耶不是有機化學家,因此找了洛杉磯附近之「希望之城國家醫學中心」(City of Hope National Medical Center) 的兩位 DNA 合成專家板倉啓壹(Keiichi Itakura)及里格斯(Arthur Riggs)幫助。可是胰島素具有 51 個胺基酸,似乎太複雜了點;為了能快速確定他的想法是否行得通,博耶同意兩位專家的建議,並説服「要幹就幹實際的」的史旺森,決定先合成同樣也是胰臟分泌、卻只具 14 個胺基酸的生長抑制素(somatostatin)基因

在博耶著急地催促下,板倉啓壹及里格斯兩人果然不失眾望,在 1977 年 6 月邀博耶及史旺森南下一齊觀察最後的勝利產物:不幸地,他們並沒有偵測到大腸桿菌製造出來的生長抑制素!這對史旺森是個相當大的打擊,隔天早上他因急性消化不良,被送到急診室去。史旺森回憶説:「我看到我整個職業生涯付之流水。細菌(大腸桿菌)照理應製造出蛋白質,但我們一點都沒看到!」

為什麼失敗呢?與細菌為伍多年的博耶猜想:細菌可能以為生長抑制素是外來的入侵者而將它「吃掉」,因此他建議在生長抑制素基因上,加掛一些細菌本身的基因來誤導細菌,以爲它們在製造自己的蛋白質,然後將細菌的蛋白質部份切掉,即可得到生長抑制素。這一策略果然奏效,三個月後,在史旺森閉目不敢視的緊張局勢下,他們終於偵測到細菌製造出來的蛋白質,板倉啓壹轉身指著報表告訴史旺森說:「生長抑制素在此!」

-----廣告,請繼續往下閱讀-----

1977 年 12 月 2 日,各地新聞報導了類似《華爾街日報》所刊登之:

科學家首次透過基因操作製出了有用的蛋白質……這在醫藥研究上是一非常巨大的突破,它意味著科學家可能藉細菌製造出便宜的合成荷爾蒙。事實上正如美國科學促進學會(AAAS)所言,此一突破將導致「生物學上的革命」。

7 天後,以板倉啓壹為首的研究論文出現在 AAAS 所出版之 Science 期刊上。

南舊金山

這一令人鼓舞的結果讓史旺森決定基因泰克該有自己的實驗室了。在房地產朋友的推薦下,他終於決定在南舊金山的一片倉庫處定居下來。物以類聚,後來許多生化科技公司也相繼設廠於此城,使它意外地成為美國生化科技中心。如果讀者有機會拜訪該城(在舊金山機場附近),你將可在生化科技區的進口處看到「南舊金山/生化科技的誕生地」的標誌。

南舊金山,生化科技的誕生地!圖/By Coolcaesar, CC BY-SA 3.0, wikimedia commons

除此之外,史旺森也正式開始聘請一些自己的科學家:例如克萊德(Dennis Kleid)及他的博士後研究員哥德爾(David Goeddel)。在挖角克萊德時,克萊德謂如果不同時也雇用哥德爾的話,那他也不會離開史丹佛研究所(不屬於史丹佛大學的一個非營利研究中心)。克萊德果然慧眼識英雄:哥德爾於 1978 年 3 月加入基因泰克公司後,該公司所有的早期產品幾乎全是他(基因)「複製」出來的;他可以説是基因泰克公司之所以有今日之地位的最大功臣,為一生物科技及分子生物界的傳奇性人物。

-----廣告,請繼續往下閱讀-----

人造胰島素

成功製出生長抑制素蛋白質非但沒有讓他們慢下來,事實上反而讓他們更加快了腳步。

1978 年 5 月,他們成功地在細菌內「合成」胰島素的 A 及 B 鏈;7 月純化了那兩條蛋白質;8 月初去蕪存菁地將細菌的蛋白質剪掉;8 月 21 日的深夜,哥德爾——不錯,就是前面提到的那位傳奇性人物——成功地在試管內將 A、B 兩鏈連在一起,造出了第一個以生物科技「合成」的人造胰島素!由 12 人組成的全世界第一家生物技術公司,竟然以小搏大,贏了這場競賽。

克萊德回憶說:「我們到達終點時相當精疲力盡,過一段時間後我們才真正體會到贏了這場競賽。」

禮來製藥公司臨床試驗顯示了,這個人造胰島素不但同樣具人類胰島素的效果,且不會像動物胰島素一樣讓某些人過敏!四天後,禮來就先付 50 萬美元的(知識產權)授權費,與基因泰克公司簽定了 20 年的研發合約。這時間事實上來得正好:因為當克萊德加入基因泰克公司、去參觀禮來之一製造胰島素工廠時,他發現整列的火車載滿了冷凍的豬、牛胰臟,在那裡等著入庫。禮來每年需要五千萬頭的豬、牛才能勉強供應胃口越來越大的胰島素市場;因此如果基因泰克公司不能即時提供所需,禮來很可能去找其對手。

禮來每年須要五千萬頭的豬、牛才能勉強供應胃口越來越大的胰島素市場,對於胰島素的需求只會愈來愈大,因此人造胰島素也要想辦法大量生產。圖/By allyhook @ flickr, CC BY-NC-ND 2.0

但克萊德認為他們剛發展出來的效率太低,將不足應付需求。當他將此想法告訴史旺森時,史旺森回説:「我不想聽到『不可能』這個詞,告訴我你要怎麼樣才能做到。」1980 年,基因泰克公司的科學家們終於找到了一強大的控制基因,能在適當時刻「告訴」質體大量製造胰島素,使產能激增了 50 倍!

-----廣告,請繼續往下閱讀-----

哥德爾成功地在試管內將 A、B 兩鏈連在一起的兩個禮拜後,1978 年 9 月, 基因泰克公司申請「以重組 DNA 讓微生物製造任何蛋白質」的專利。有觀察家認為這等於承認基因泰克公司發明了(所有)重組 DNA 的微生物!

可是生命是自然界的現象,能專利嗎?1980 年奇異公司(General Electric Company, GE)的科學家查克拉巴蒂(Ananda Chakrabarty)發展出一種可以分解原油的細菌,申請專利時卻被美國專利局以「就一般所瞭解,生物不是可專利的題材」駁回;經上訴(基因泰克的齊理也曾出庭為奇異公司辯護),美國最高法院最後以 5 比 4 裁決奇異公司獲勝。

最後美國專利局於 1981 年 3 月 31 日正式核准了該項專利,為基因泰克公司預舖了通往康富的大道。1982 年 10 月 26 日美國專利局批准了基因泰克公司的第一個(也是科技歷史上最賺錢的)專利。1983 年美國藥物管理局批准了禮來用重組 DNA 所製造出來的胰島素(第一個基因工程藥物)上市。雖然從動物胰臟中提煉的舊法成本較低,但因各種(包括心理在內之)因素,用重組 DNA 所製造出來的胰島素現今幾乎已全取代了所有的動物胰島素。據估計,全世界胰島素的市場將從 2015 年的 270 億美元增加到 2021 年的 436 億美元。

生物科技產業

基因泰克公司於 1980 年 10 月 4 日上市,為全世界第一個上市的生物科技公司,在一小時內從開價每股 35 元,跳到 88 元,最後以 71.25 元收盤,共集資 3500 萬元,為最成功的「首次公開募股」(華爾街日報謂「最令人注目之一的首次市場亮相」)。2009 年瑞士羅氏大藥廠(Roche)以 468 億美元收購所有它未擁有的基因泰克公司股票(意即基因泰克公司已不再是一獨立的上市公司)。

-----廣告,請繼續往下閱讀-----

史旺森於 1999 年 12 月因腦癌而英年(52 歲)早逝。他被認為是生物科技革命的先知與先鋒;在 1998 年 12 月出版之《千年千人:影響千年的男性、女性排行榜》(1,000 Years, 1,000 People: Ranking the Men and Women Who Shaped the Millennium)一書內,以他是「生物科技革命的先鋒」排名第 612 位。

麻省理工學院校長魏司特(Charles Vest)説:「麻省理工學院很榮幸有史旺森這樣的校友。……他是典型的美國企業家,不只創辦了一個公司,而是整個產業——一個創造財富及工作、但更重要地改進了健康和生活品質的產業。」

註解

  • 5. Plasmid 中文譯成「質體」,實讓人不知所云。它是細菌染色體之外的小圈形雙螺旋 DNA 分子,可像染色體一樣自行複製,也帶基因(大部份是為了生存),很容易取得、注入、或在(不同)細菌間互換,因此成了生物科技的「寵物」:做為其它基因的攜帶體。
  • 6. 1978 年合創 Biogen,最成功的藥物是基因改蛋白質 α 干擾素(α‑interfero)。
  • 7. 1981 年合創 Chiron,發展第一個透過酵母菌重組 DNA 製出之疫苗(B 型肝炎)。
-----廣告,請繼續往下閱讀-----
文章難易度
賴昭正_96
47 篇文章 ・ 59 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此獲有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲它轉載我的科學月刊上的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
喝糖比吃糖更肥?飲料慢慢喝比較不會胖!——《大自然就是要你胖!》
天下文化_96
・2024/06/25 ・1953字 ・閱讀時間約 4 分鐘

飲料中的添加糖和食物中的添加糖,造成的影響有所不同嗎?

如果生存開關的啟動只與熱量有關,無論是吃軟糖,還是喝汽水,高果糖玉米糖漿所產生的作用理當一樣。但事實並非如此,喝糖通常比吃糖更糟得多。為什麼會這樣?生存開關是由於肝臟中的 ATP 濃度下降所觸發,因此關鍵在於有多少果糖到達肝臟。如果肝臟接收到大量果糖,則 ATP 會大幅下降,刺激生存開關強烈反應。倘若只有少量果糖到達肝臟,果糖代謝效應會比較溫和。這意味著,儘管我們在談論生存開關時,一直將它簡化為一種按鈕,可控制為開或關,但實際狀況比較像是可調整強度的旋轉鈕,會根據狀況產生強弱不同的反應。

換句話說,肝臟的反應是依據接收到的果糖濃度,而不是果糖量。比起果糖一次全部進入的狀況,當果糖緩慢進入時,肝臟接觸到的果糖濃度會比較低。也因為如此,軟性飲料比固體糖類更容易啟動生存開關。軟性飲料含有大量的糖分(以 600 毫升的汽水為例,當中含有約 17 茶匙的高果糖玉米糖漿,其中約 9 茶匙是果糖),通常幾分鐘即可喝完,而且由於是液體,不需要消化,這會讓肝臟中迅速充滿果糖和葡萄糖。相較之下,固體食物必須經過消化,需要更長的時間才能到達肝臟。(這也是完整水果較不易啟動生存開關的原因,因為水果纖維有助於減緩吸收。)因此,固體食物中的果糖到達肝臟的速度較慢,不會讓生存開關一下子轉到最強狀態。

營養學家兼遺傳學家斯皮克曼(John Speakman)進行的實驗證實了這一點,他發現餵食液體糖的小鼠,比餵食固體糖的更肥胖。人體臨床研究也比較食用液體糖(來自軟性飲料或其他飲料)和固體糖(來自糖果和甜點)的差別,所有證據都指向同一個結果:液體糖導致肥胖和(或)糖尿病前期的可能性,比固體糖更高。在一項研究中,將年輕受試者隨機分成兩組,一組每天喝一杯 240 毫升的軟性飲料,一組吃下含糖量相等的軟糖,持續四週,然後恢復正常飲食,也持續四週,並在這段「淨化」期之後,讓兩組受試者交換,原本喝軟性飲料的改吃軟糖,反之亦然,再持續四週。試驗結束時,研究人員發現,受試者在「喝糖」期間攝取的總熱量,比「吃糖」期間多了約 17%。在喝了四週的軟性飲料後,受試者的體重增加,脂肪也增加。相較之下,吃軟糖的四週內,他們的體重並未增加。

液體糖導致肥胖和(或)糖尿病前期的可能性,比固體糖更高。圖/envato

液體糖比固體糖更容易導致肥胖,而且喝液體糖的速度也會造成影響。為了證明這一點,我們在伊斯坦堡科曲大學的合作夥伴坎貝,提供蘋果汁給志願的受試者,這些蘋果汁內的果糖含量與軟性飲料相似。坎貝讓一半的人在 5 分鐘內喝下 500 毫升果汁,另一半則是每隔 15 分鐘喝下 125 毫升,用一小時喝完 500 毫升的果汁。一小時結束時,雖然兩組人喝下的蘋果汁分量一樣,但兩組間的差異卻非常驚人。5 分鐘內喝完蘋果汁的人,體內的尿酸和血管加壓素(肥胖荷爾蒙)快速增加。相較之下,花一小時喝完蘋果汁的受試者,尿酸和血管加壓素的變化比較緩和。由於尿酸和血管加壓素升高相當於生存開關活化的證據,這表示如果一定要喝軟性飲料,慢慢享用會比大口豪飲來得安全。

-----廣告,請繼續往下閱讀-----
含糖飲料慢慢喝會比大口豪飲來得安全。圖/envato

幾年前,曾有人基於軟性飲料含糖量高,提議紐約市政府對軟性飲料課稅。軟性飲料業者指出其他食品也含有大量的糖,專挑軟性飲料課稅並不公平。基於這項爭議,再加上其他因素,飲料稅法案最後沒有通過。但根據前面提到的研究,軟性飲料業界的論點其實有誤。

根據液體糖和固體糖的研究,還可以得到一個結論:「魚與熊掌或許可以兼得」。也就是說,享用富含糖類的甜點時,如果吃得夠慢,或許可能避免觸發生存開關。這時蛋糕就只是熱量而已。問題是,要慢慢的吃甜點幾乎是不可能的事!

喝軟性飲料時不能大口暢飲,而得用一小時的時間慢慢啜飲完畢,也同樣不容易。另外,與其單獨飲用軟性飲料,不如在用餐之間慢慢喝,畢竟邊吃邊喝,讓液體中的糖與食物混合,可減慢吸收速度。

重點

液體糖比固體糖更有害,大口喝下軟性飲料是啟動生存開關最有效的方法。含糖軟性飲料、能量飲料、果汁、含糖的茶和咖啡,全都應該避免。如果偶爾想放縱一下,請放慢飲用速度,並一定要與食物搭配。

-----廣告,請繼續往下閱讀-----

——本文摘自《大自然就是要你胖!》,2024 年 06 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

0
0

文字

分享

0
0
0
縮短發炎期、促進癒合?健保給付糖尿病足潰瘍新式乳膏,遠離截肢風險!
careonline_96
・2024/05/31 ・2446字 ・閱讀時間約 5 分鐘

糖尿病足潰瘍治療對於經濟負擔極大,若患者未能及早發現、儘速治療將一步步走向截肢的結局。

「那是一位 50 多歲的糖尿病患者,走進診間一跛一跛地,相當吃力。」衛生福利部臺北醫院整形外科主任劉明偉醫師表示,「根據患者的描述,一開始是大腳趾頭上出現小傷口,但遲遲沒有癒合。由於缺乏良好的傷口照護,患者的腳便逐漸紅腫,傷口流出滲液,連走路都不方便。」

後續由於感染很嚴重,患者只好接受手術清創,並截掉兩根腳趾。劉明偉醫師表示:「其實,如果患者在發現傷口時便立刻就醫,好好接受治療,應該有機會讓傷口早點癒合,不用面臨截肢的狀況。」但因為患者是弱勢群體,加上步行不便,每一次的回診對於沒有家庭支持的患者來說真的是舉步艱難,後續即使有社工的介入,該名患者依舊未能有效控制傷口潰瘍的進程,往後更可能面臨再次截肢的命運。

在台灣,糖尿病是相當普遍的問題,劉明偉醫師說,糖尿病會造成血管病變與神經病變,而漸漸演變為糖尿病足,約有 25% 的糖尿病患者會有足部潰瘍問題。血管病變會使血管狹窄、阻塞,而影響足部血液循環,可能產生潰瘍、壞疽;神經病變會讓患者感覺遲鈍,容易在無意間受傷、燙傷,因為不覺得疼痛,患者常常會輕忽傷口,容易遭到感染,進展為蜂窩性組織炎、壞死性筋膜炎,而需要動手術清創,甚至截肢。

-----廣告,請繼續往下閱讀-----

「糖尿病足潰瘍患者常常會因為感染而反覆住院、接受清創手術,甚至截肢。」劉明偉醫師說,「研究指出,糖尿病足患者因為感染而再次住院的比例高達 40%,其中每 6 名患者就有 1 人在感染 1 年後死亡。若是不幸截肢,更有高達 5 成患者會在截肢後 5 年內死亡。」

導致糖尿病足患者面臨截肢的原因很多,劉明偉醫師說,常見原因包括傷口照護不良、誤信偏方、使用不明藥膏塗抹傷口,這些藥膏非但沒有治療效果,還可能加速傷口感染、惡化;患者可能完全不曉得足部有傷口,等到足部腫脹、滲液、化膿、發臭才發現;即使知道足部有傷口、潰瘍,患者可能因為不覺得疼痛,而延誤就醫。血糖控制不佳對糖尿病足潰瘍也有負面影響,除了讓足部血液循環惡化、傷口難以癒合、也會增加傷口感染的機會。

糖尿病的併發症相當多,倘若糖尿病足潰瘍惡化、截肢,可能導致行動不便,又會衍生出更多棘手的問題。劉明偉醫師說,糖尿病友平時要儘量避免足部出現潰瘍,而在出現潰瘍之後,一定要及早就醫,接受正確的治療,讓潰瘍儘快癒合。

清創後糖尿病足傷口新式乳膏助糖尿病足傷口早日癒合

在過去,糖尿病足潰瘍的照護大多使用抗生素藥膏。劉明偉醫師說,使用抗生素藥膏的主要目的是預防感染,避免進展為蜂窩性組織炎、骨髓炎等狀況。

-----廣告,請繼續往下閱讀-----

根據中華民國心臟學會與台灣整形外科醫學會於 2024 年公布的「糖尿病足潰瘍治療共識」中建議,若患者周邊血管變病與阻塞已處理完成、傷口也完成清創後,建議下一步可以使用糖尿病足傷口新式乳膏治療,可以幫助傷口快速癒合,降低截肢風險。劉明偉醫師補充,糖尿病足傷口新式乳膏的作用是調控影響傷口癒合的微環境,抑制傷口中會增加發炎的 M1 巨噬細胞,增加促進癒合的 M2 巨噬細胞,促使血管新生、傷口修復。幫助縮短傷口發炎期,進入增生期,促進傷口癒合。

糖尿病足傷口新式乳膏是照護患者傷口的利器,根據臨床使用經驗,確實有助於縮短傷口癒合的時間。劉明偉醫師補充,有些情況患者可能還會搭配高壓氧治療、手術,並利用各種醫材來幫助傷口癒合。

目前糖尿病足傷口新式乳膏已納入健保給付,只要符合條件,醫師便會協助申請使用,健保給付條件如下:

糖尿病足部潰瘍常見分級(Wagner System)為 2 級,清創後最大傷口面積 ≦ 5 平方公分,且符合以下所有條件:

-----廣告,請繼續往下閱讀-----
  1. 傷口深及肌肉層且經抗生素藥膏或燙傷藥膏治療及使用傷口敷料 12 週後,傷口癒合面積 < 50 %。
  2. 檢測糖化血色素 < 8.5 %、白蛋白 ≧ 3.0 g/dL。
  3. 治療前上下肢血壓比值ABI(Ankle Brachial Index)≧0.9。

「現在健保規定的使用條件比較嚴苛,清創後傷口面積要小於 5 平方公分,且需先治療 12 週,傷口癒合面積 < 50 %,還要搭配抽血檢查的數值。」由於目前現行健保給付條件下,患者要等候三個月進行傷口對照後,才能使用,對於是否可能影響患者截肢機率,劉明偉醫師分享,「如果能夠及早使用,對患者應該會有幫助。讓傷口早日癒合不但可以降低截肢風險、避免失能、維持生活品質,還可以節省後續回診、住院、手術的醫療花費。」

貼心小提醒

糖尿病足潰瘍問題很多,糖友們平時要穿著合腳的鞋襪,不可赤腳走路。劉明偉醫師說,請每天檢查雙腳,如果發現龜裂、擦傷、水泡、潰瘍等狀況,務必及早就醫,利用正確的方法照顧傷口。跨專科團隊會運用各種方法來穩定血糖、恢復血液循環、控制感染、促進傷口癒合,幫助患者維持生活品質,遠離截肢的威脅!

-----廣告,請繼續往下閱讀-----