0

1
0

文字

分享

0
1
0

人造胰島素開啟生技產業——胰島素與生技產業的誕生(下)

賴昭正_96
・2017/02/24 ・4786字 ・閱讀時間約 9 分鐘 ・SR值 546 ・八年級

即將失業的麻省理工學院校友

1975 年的某個冬天,加州大學舊金山分校的生化教授博耶(Herbert Boyer)莫名其妙地接到一通自稱是在舊金山創投資公司 KPVC(Kleiner Perkins Venture Capital)工作之史旺森(Robert “Bob” Swanson)打來的電話,希望能與他會面談談;忙於工作的博耶,心不甘情不願地勉強答應在一個周五下午給史旺森 10 分鐘的時間。隔年元月 17 日,史旺森如約地拜訪博耶的實驗室,沒想到原本 10 分鐘的會談,從實驗室到酒吧,竟變成了三個小時;而在幾瓶啤酒下肚後,更沒想到一個革命性的生物科技產業就此誕生了!

  • 編按:KPVC 後加入了另外兩位合夥人,改稱為 KPCB(Kleiner Perkins Caufield & Byers),中文譯為「凱鵬華盈」。KPCB 位於矽谷,為一美國有名的大創投公司。。
史旺生。生化教授博耶在史旺生的說服下,一個革命性的生物科技產業就此誕生了!圖/By Chemical Heritage Foundation, CC BY-SA 3.0, wikimedia commons

史旺森 1947 年出生,1970 年在麻省理工學院同時取得化學學士及商業管理碩士學位。他畢業後即加入花旗銀行創投部門,卻經歷了一連串投資失敗。在他灰心想換工作時,曾與他合作過一次的克萊納(Eugene Kleiner)因他思想敏銳、做事效率高,而於 1974 年年底把他拉進 KPVC。

帕金斯(Thomas Perkins)回憶謂:史旺森雖然做了幾件案子,但均不是非常成功,因此連克萊納也漸漸對他不滿。是否因此之故,史旺森也不清楚,但克萊納及帕金斯在 1975 年年底告訴他説:「唉,我們很想只有我們兩人工作。……但在你知道要做什麼之前,你可以繼續保留辦公桌及電話。」這顯然暗示他明年就沒有工作了!

不過史旺森是個科普及科幻迷,當他看到重組 DNA(recombinant DNA)及基因工程等報導時,立即意識到了這將完全改變人們對基因與遺傳之思路。因此史旺森告訴 KPVC,他將看看生物科技方面有什麼可以做的……。

-----廣告,請繼續往下閱讀-----

青蛙王子

1972 年,史丹佛大學生化教授伯格(Paul Berg)成功將 λ 噬菌體(感染大腸菌)的一段 DNA,接連到 SV40 濾過性病毒(感染猴子)的 DNA 上,闡釋了「重組 DNA」的可行性(他因之獲得了 1980 年的諾貝爾醫學獎,分得一半的獎金)。

他原想讓這由兩種不同物種基因體組成的 SV40 去感染細胞,複製其混種 DNA 及蛋白質;但突然警覺到:雖然原來之 SV40 對人體無害,但改種過的過濾過性病毒,萬一變成無法控制、對人體有害的傳染病呢?他因此召集同行,於 1973 年元月及 1975 年二月在加州太平洋岸邊的 Asilomar,討論重組 DNA 可能引起的倫理道德及科學家責任等問題。

博耶就是在第二次的 Asilomar 會議裡,碰到了另一位由史丹佛大學來的生化教授科恩(Stanley Cohen);兩人在沙灘上的深夜長談後,發現他們的研究互補——博耶是基因限制酶(restriction enzyme)專家,而科恩則善長於細菌質體(plasmid ,註 5)的操作——因此兩人很自然地決定合作。

1974 年 5 月,他們成功地完成「青蛙王子」的實驗:將青蛙的部份基因導入大腸桿菌的質體內,讓它隨細菌大量繁殖(大腸桿菌每 20 分鐘複製一次)。當同事問科恩怎麼知道青蛙的基因被「表現」出來時,他總是開玩笑地説:與細菌親嘴,看它是否會變成王子就知道了!

-----廣告,請繼續往下閱讀-----

基因泰克公司

如果放進質體的不是青蛙的基因,而是製造胰島素的基因呢?

史旺森似乎毫無困難地説服了博耶:兩人決定各出 500 美元,於 1976 年 4 月 7 月在舊金山正式登記成立 Genentech——由 Genetic Engineering Technology 縮寫而成,中文譯成「基因泰克」。史旺森回憶説:「我不支薪,靠每月 410 美元的失業保險金過日子;我與人同租一間 500 美元的公寓,月付 110 美元租一部 Datsun 240Z 的汽車;其它的就是花生醬三明治,以及偶爾看個電影。我當時雖有些存款,但不多。」

基因泰克公司。圖/By BrokenSphere – Own work, CC BY 3.0, wikimedia commons.

代表基因泰克的洛杉磯律師齊理(Thomas Kiley)——1980 年加入該公司,後來當了法律副總——到舊金山出差時,也只能睡在史旺森那「不起眼」公寓中的沙發。6 月,史旺森寫了一份 8 頁的計畫書,希望 KPVC 能投資 50 萬美元;KPVC 快速地審查後,認為「投機性太大」,因此只答應撥款 10 萬美元相助。1977 年 2 月第二次集資 85 萬美元時,KPVC又投入了 10 萬。

萬事俱備,只欠東風:那裡去找製造胰島素的基因呢?人類的胰島素基因在第 12 號的染色體上,可是要分離出來並不簡單,因此博耶決定自己合成。

-----廣告,請繼續往下閱讀-----
  • 哈佛大學的吉伯特(Walter Gilbert,註 6)及桑格(還記得他吧?)於 1977 年因發展出快速決定 DNA 核酸順序的方法,而合得 1980 年另一半的諾貝爾醫學獎

由於倫理道德的考量,將不同物種 DNA 重新組合的「重組 DNA」技術在兩次阿西洛馬會議(Asilomar conference)後,慢慢受到許多限制(例如政府補助)。因此博耶決定研發人工合成胰島素這「不經意」的決定,事實上可能「救」了基因泰克公司,使它能在「劇烈競爭」下脫穎而出:吉伯特及加州大學舊金山分校的另一團隊古徳曼(Howard Goodman)和盧特(William Rutter,註 7)也均在研究透過「重組 DNA」(使用「自然界基因」)來製造胰島素。

生長抑制素基因

博耶不是有機化學家,因此找了洛杉磯附近之「希望之城國家醫學中心」(City of Hope National Medical Center) 的兩位 DNA 合成專家板倉啓壹(Keiichi Itakura)及里格斯(Arthur Riggs)幫助。可是胰島素具有 51 個胺基酸,似乎太複雜了點;為了能快速確定他的想法是否行得通,博耶同意兩位專家的建議,並説服「要幹就幹實際的」的史旺森,決定先合成同樣也是胰臟分泌、卻只具 14 個胺基酸的生長抑制素(somatostatin)基因

在博耶著急地催促下,板倉啓壹及里格斯兩人果然不失眾望,在 1977 年 6 月邀博耶及史旺森南下一齊觀察最後的勝利產物:不幸地,他們並沒有偵測到大腸桿菌製造出來的生長抑制素!這對史旺森是個相當大的打擊,隔天早上他因急性消化不良,被送到急診室去。史旺森回憶説:「我看到我整個職業生涯付之流水。細菌(大腸桿菌)照理應製造出蛋白質,但我們一點都沒看到!」

為什麼失敗呢?與細菌為伍多年的博耶猜想:細菌可能以為生長抑制素是外來的入侵者而將它「吃掉」,因此他建議在生長抑制素基因上,加掛一些細菌本身的基因來誤導細菌,以爲它們在製造自己的蛋白質,然後將細菌的蛋白質部份切掉,即可得到生長抑制素。這一策略果然奏效,三個月後,在史旺森閉目不敢視的緊張局勢下,他們終於偵測到細菌製造出來的蛋白質,板倉啓壹轉身指著報表告訴史旺森說:「生長抑制素在此!」

-----廣告,請繼續往下閱讀-----

1977 年 12 月 2 日,各地新聞報導了類似《華爾街日報》所刊登之:

科學家首次透過基因操作製出了有用的蛋白質……這在醫藥研究上是一非常巨大的突破,它意味著科學家可能藉細菌製造出便宜的合成荷爾蒙。事實上正如美國科學促進學會(AAAS)所言,此一突破將導致「生物學上的革命」。

7 天後,以板倉啓壹為首的研究論文出現在 AAAS 所出版之 Science 期刊上。

南舊金山

這一令人鼓舞的結果讓史旺森決定基因泰克該有自己的實驗室了。在房地產朋友的推薦下,他終於決定在南舊金山的一片倉庫處定居下來。物以類聚,後來許多生化科技公司也相繼設廠於此城,使它意外地成為美國生化科技中心。如果讀者有機會拜訪該城(在舊金山機場附近),你將可在生化科技區的進口處看到「南舊金山/生化科技的誕生地」的標誌。

南舊金山,生化科技的誕生地!圖/By Coolcaesar, CC BY-SA 3.0, wikimedia commons

除此之外,史旺森也正式開始聘請一些自己的科學家:例如克萊德(Dennis Kleid)及他的博士後研究員哥德爾(David Goeddel)。在挖角克萊德時,克萊德謂如果不同時也雇用哥德爾的話,那他也不會離開史丹佛研究所(不屬於史丹佛大學的一個非營利研究中心)。克萊德果然慧眼識英雄:哥德爾於 1978 年 3 月加入基因泰克公司後,該公司所有的早期產品幾乎全是他(基因)「複製」出來的;他可以説是基因泰克公司之所以有今日之地位的最大功臣,為一生物科技及分子生物界的傳奇性人物。

-----廣告,請繼續往下閱讀-----

人造胰島素

成功製出生長抑制素蛋白質非但沒有讓他們慢下來,事實上反而讓他們更加快了腳步。

1978 年 5 月,他們成功地在細菌內「合成」胰島素的 A 及 B 鏈;7 月純化了那兩條蛋白質;8 月初去蕪存菁地將細菌的蛋白質剪掉;8 月 21 日的深夜,哥德爾——不錯,就是前面提到的那位傳奇性人物——成功地在試管內將 A、B 兩鏈連在一起,造出了第一個以生物科技「合成」的人造胰島素!由 12 人組成的全世界第一家生物技術公司,竟然以小搏大,贏了這場競賽。

克萊德回憶說:「我們到達終點時相當精疲力盡,過一段時間後我們才真正體會到贏了這場競賽。」

禮來製藥公司臨床試驗顯示了,這個人造胰島素不但同樣具人類胰島素的效果,且不會像動物胰島素一樣讓某些人過敏!四天後,禮來就先付 50 萬美元的(知識產權)授權費,與基因泰克公司簽定了 20 年的研發合約。這時間事實上來得正好:因為當克萊德加入基因泰克公司、去參觀禮來之一製造胰島素工廠時,他發現整列的火車載滿了冷凍的豬、牛胰臟,在那裡等著入庫。禮來每年需要五千萬頭的豬、牛才能勉強供應胃口越來越大的胰島素市場;因此如果基因泰克公司不能即時提供所需,禮來很可能去找其對手。

禮來每年須要五千萬頭的豬、牛才能勉強供應胃口越來越大的胰島素市場,對於胰島素的需求只會愈來愈大,因此人造胰島素也要想辦法大量生產。圖/By allyhook @ flickr, CC BY-NC-ND 2.0

但克萊德認為他們剛發展出來的效率太低,將不足應付需求。當他將此想法告訴史旺森時,史旺森回説:「我不想聽到『不可能』這個詞,告訴我你要怎麼樣才能做到。」1980 年,基因泰克公司的科學家們終於找到了一強大的控制基因,能在適當時刻「告訴」質體大量製造胰島素,使產能激增了 50 倍!

-----廣告,請繼續往下閱讀-----

哥德爾成功地在試管內將 A、B 兩鏈連在一起的兩個禮拜後,1978 年 9 月, 基因泰克公司申請「以重組 DNA 讓微生物製造任何蛋白質」的專利。有觀察家認為這等於承認基因泰克公司發明了(所有)重組 DNA 的微生物!

可是生命是自然界的現象,能專利嗎?1980 年奇異公司(General Electric Company, GE)的科學家查克拉巴蒂(Ananda Chakrabarty)發展出一種可以分解原油的細菌,申請專利時卻被美國專利局以「就一般所瞭解,生物不是可專利的題材」駁回;經上訴(基因泰克的齊理也曾出庭為奇異公司辯護),美國最高法院最後以 5 比 4 裁決奇異公司獲勝。

最後美國專利局於 1981 年 3 月 31 日正式核准了該項專利,為基因泰克公司預舖了通往康富的大道。1982 年 10 月 26 日美國專利局批准了基因泰克公司的第一個(也是科技歷史上最賺錢的)專利。1983 年美國藥物管理局批准了禮來用重組 DNA 所製造出來的胰島素(第一個基因工程藥物)上市。雖然從動物胰臟中提煉的舊法成本較低,但因各種(包括心理在內之)因素,用重組 DNA 所製造出來的胰島素現今幾乎已全取代了所有的動物胰島素。據估計,全世界胰島素的市場將從 2015 年的 270 億美元增加到 2021 年的 436 億美元。

生物科技產業

基因泰克公司於 1980 年 10 月 4 日上市,為全世界第一個上市的生物科技公司,在一小時內從開價每股 35 元,跳到 88 元,最後以 71.25 元收盤,共集資 3500 萬元,為最成功的「首次公開募股」(華爾街日報謂「最令人注目之一的首次市場亮相」)。2009 年瑞士羅氏大藥廠(Roche)以 468 億美元收購所有它未擁有的基因泰克公司股票(意即基因泰克公司已不再是一獨立的上市公司)。

-----廣告,請繼續往下閱讀-----

史旺森於 1999 年 12 月因腦癌而英年(52 歲)早逝。他被認為是生物科技革命的先知與先鋒;在 1998 年 12 月出版之《千年千人:影響千年的男性、女性排行榜》(1,000 Years, 1,000 People: Ranking the Men and Women Who Shaped the Millennium)一書內,以他是「生物科技革命的先鋒」排名第 612 位。

麻省理工學院校長魏司特(Charles Vest)説:「麻省理工學院很榮幸有史旺森這樣的校友。……他是典型的美國企業家,不只創辦了一個公司,而是整個產業——一個創造財富及工作、但更重要地改進了健康和生活品質的產業。」

註解

  • 5. Plasmid 中文譯成「質體」,實讓人不知所云。它是細菌染色體之外的小圈形雙螺旋 DNA 分子,可像染色體一樣自行複製,也帶基因(大部份是為了生存),很容易取得、注入、或在(不同)細菌間互換,因此成了生物科技的「寵物」:做為其它基因的攜帶體。
  • 6. 1978 年合創 Biogen,最成功的藥物是基因改蛋白質 α 干擾素(α‑interfero)。
  • 7. 1981 年合創 Chiron,發展第一個透過酵母菌重組 DNA 製出之疫苗(B 型肝炎)。
文章難易度
賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
喝糖比吃糖更肥?飲料慢慢喝比較不會胖!——《大自然就是要你胖!》
天下文化_96
・2024/06/25 ・1953字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

飲料中的添加糖和食物中的添加糖,造成的影響有所不同嗎?

如果生存開關的啟動只與熱量有關,無論是吃軟糖,還是喝汽水,高果糖玉米糖漿所產生的作用理當一樣。但事實並非如此,喝糖通常比吃糖更糟得多。為什麼會這樣?生存開關是由於肝臟中的 ATP 濃度下降所觸發,因此關鍵在於有多少果糖到達肝臟。如果肝臟接收到大量果糖,則 ATP 會大幅下降,刺激生存開關強烈反應。倘若只有少量果糖到達肝臟,果糖代謝效應會比較溫和。這意味著,儘管我們在談論生存開關時,一直將它簡化為一種按鈕,可控制為開或關,但實際狀況比較像是可調整強度的旋轉鈕,會根據狀況產生強弱不同的反應。

換句話說,肝臟的反應是依據接收到的果糖濃度,而不是果糖量。比起果糖一次全部進入的狀況,當果糖緩慢進入時,肝臟接觸到的果糖濃度會比較低。也因為如此,軟性飲料比固體糖類更容易啟動生存開關。軟性飲料含有大量的糖分(以 600 毫升的汽水為例,當中含有約 17 茶匙的高果糖玉米糖漿,其中約 9 茶匙是果糖),通常幾分鐘即可喝完,而且由於是液體,不需要消化,這會讓肝臟中迅速充滿果糖和葡萄糖。相較之下,固體食物必須經過消化,需要更長的時間才能到達肝臟。(這也是完整水果較不易啟動生存開關的原因,因為水果纖維有助於減緩吸收。)因此,固體食物中的果糖到達肝臟的速度較慢,不會讓生存開關一下子轉到最強狀態。

營養學家兼遺傳學家斯皮克曼(John Speakman)進行的實驗證實了這一點,他發現餵食液體糖的小鼠,比餵食固體糖的更肥胖。人體臨床研究也比較食用液體糖(來自軟性飲料或其他飲料)和固體糖(來自糖果和甜點)的差別,所有證據都指向同一個結果:液體糖導致肥胖和(或)糖尿病前期的可能性,比固體糖更高。在一項研究中,將年輕受試者隨機分成兩組,一組每天喝一杯 240 毫升的軟性飲料,一組吃下含糖量相等的軟糖,持續四週,然後恢復正常飲食,也持續四週,並在這段「淨化」期之後,讓兩組受試者交換,原本喝軟性飲料的改吃軟糖,反之亦然,再持續四週。試驗結束時,研究人員發現,受試者在「喝糖」期間攝取的總熱量,比「吃糖」期間多了約 17%。在喝了四週的軟性飲料後,受試者的體重增加,脂肪也增加。相較之下,吃軟糖的四週內,他們的體重並未增加。

液體糖導致肥胖和(或)糖尿病前期的可能性,比固體糖更高。圖/envato

液體糖比固體糖更容易導致肥胖,而且喝液體糖的速度也會造成影響。為了證明這一點,我們在伊斯坦堡科曲大學的合作夥伴坎貝,提供蘋果汁給志願的受試者,這些蘋果汁內的果糖含量與軟性飲料相似。坎貝讓一半的人在 5 分鐘內喝下 500 毫升果汁,另一半則是每隔 15 分鐘喝下 125 毫升,用一小時喝完 500 毫升的果汁。一小時結束時,雖然兩組人喝下的蘋果汁分量一樣,但兩組間的差異卻非常驚人。5 分鐘內喝完蘋果汁的人,體內的尿酸和血管加壓素(肥胖荷爾蒙)快速增加。相較之下,花一小時喝完蘋果汁的受試者,尿酸和血管加壓素的變化比較緩和。由於尿酸和血管加壓素升高相當於生存開關活化的證據,這表示如果一定要喝軟性飲料,慢慢享用會比大口豪飲來得安全。

-----廣告,請繼續往下閱讀-----
含糖飲料慢慢喝會比大口豪飲來得安全。圖/envato

幾年前,曾有人基於軟性飲料含糖量高,提議紐約市政府對軟性飲料課稅。軟性飲料業者指出其他食品也含有大量的糖,專挑軟性飲料課稅並不公平。基於這項爭議,再加上其他因素,飲料稅法案最後沒有通過。但根據前面提到的研究,軟性飲料業界的論點其實有誤。

根據液體糖和固體糖的研究,還可以得到一個結論:「魚與熊掌或許可以兼得」。也就是說,享用富含糖類的甜點時,如果吃得夠慢,或許可能避免觸發生存開關。這時蛋糕就只是熱量而已。問題是,要慢慢的吃甜點幾乎是不可能的事!

喝軟性飲料時不能大口暢飲,而得用一小時的時間慢慢啜飲完畢,也同樣不容易。另外,與其單獨飲用軟性飲料,不如在用餐之間慢慢喝,畢竟邊吃邊喝,讓液體中的糖與食物混合,可減慢吸收速度。

重點

液體糖比固體糖更有害,大口喝下軟性飲料是啟動生存開關最有效的方法。含糖軟性飲料、能量飲料、果汁、含糖的茶和咖啡,全都應該避免。如果偶爾想放縱一下,請放慢飲用速度,並一定要與食物搭配。

-----廣告,請繼續往下閱讀-----

——本文摘自《大自然就是要你胖!》,2024 年 06 月,天下文化出版,未經同意請勿轉載。

討論功能關閉中。

天下文化_96
139 篇文章 ・ 621 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

1

0
0

文字

分享

1
0
0
縮短發炎期、促進癒合?健保給付糖尿病足潰瘍新式乳膏,遠離截肢風險!
careonline_96
・2024/05/31 ・2446字 ・閱讀時間約 5 分鐘

糖尿病足潰瘍治療對於經濟負擔極大,若患者未能及早發現、儘速治療將一步步走向截肢的結局。

「那是一位 50 多歲的糖尿病患者,走進診間一跛一跛地,相當吃力。」衛生福利部臺北醫院整形外科主任劉明偉醫師表示,「根據患者的描述,一開始是大腳趾頭上出現小傷口,但遲遲沒有癒合。由於缺乏良好的傷口照護,患者的腳便逐漸紅腫,傷口流出滲液,連走路都不方便。」

後續由於感染很嚴重,患者只好接受手術清創,並截掉兩根腳趾。劉明偉醫師表示:「其實,如果患者在發現傷口時便立刻就醫,好好接受治療,應該有機會讓傷口早點癒合,不用面臨截肢的狀況。」但因為患者是弱勢群體,加上步行不便,每一次的回診對於沒有家庭支持的患者來說真的是舉步艱難,後續即使有社工的介入,該名患者依舊未能有效控制傷口潰瘍的進程,往後更可能面臨再次截肢的命運。

在台灣,糖尿病是相當普遍的問題,劉明偉醫師說,糖尿病會造成血管病變與神經病變,而漸漸演變為糖尿病足,約有 25% 的糖尿病患者會有足部潰瘍問題。血管病變會使血管狹窄、阻塞,而影響足部血液循環,可能產生潰瘍、壞疽;神經病變會讓患者感覺遲鈍,容易在無意間受傷、燙傷,因為不覺得疼痛,患者常常會輕忽傷口,容易遭到感染,進展為蜂窩性組織炎、壞死性筋膜炎,而需要動手術清創,甚至截肢。

-----廣告,請繼續往下閱讀-----

「糖尿病足潰瘍患者常常會因為感染而反覆住院、接受清創手術,甚至截肢。」劉明偉醫師說,「研究指出,糖尿病足患者因為感染而再次住院的比例高達 40%,其中每 6 名患者就有 1 人在感染 1 年後死亡。若是不幸截肢,更有高達 5 成患者會在截肢後 5 年內死亡。」

導致糖尿病足患者面臨截肢的原因很多,劉明偉醫師說,常見原因包括傷口照護不良、誤信偏方、使用不明藥膏塗抹傷口,這些藥膏非但沒有治療效果,還可能加速傷口感染、惡化;患者可能完全不曉得足部有傷口,等到足部腫脹、滲液、化膿、發臭才發現;即使知道足部有傷口、潰瘍,患者可能因為不覺得疼痛,而延誤就醫。血糖控制不佳對糖尿病足潰瘍也有負面影響,除了讓足部血液循環惡化、傷口難以癒合、也會增加傷口感染的機會。

糖尿病的併發症相當多,倘若糖尿病足潰瘍惡化、截肢,可能導致行動不便,又會衍生出更多棘手的問題。劉明偉醫師說,糖尿病友平時要儘量避免足部出現潰瘍,而在出現潰瘍之後,一定要及早就醫,接受正確的治療,讓潰瘍儘快癒合。

清創後糖尿病足傷口新式乳膏助糖尿病足傷口早日癒合

在過去,糖尿病足潰瘍的照護大多使用抗生素藥膏。劉明偉醫師說,使用抗生素藥膏的主要目的是預防感染,避免進展為蜂窩性組織炎、骨髓炎等狀況。

-----廣告,請繼續往下閱讀-----

根據中華民國心臟學會與台灣整形外科醫學會於 2024 年公布的「糖尿病足潰瘍治療共識」中建議,若患者周邊血管變病與阻塞已處理完成、傷口也完成清創後,建議下一步可以使用糖尿病足傷口新式乳膏治療,可以幫助傷口快速癒合,降低截肢風險。劉明偉醫師補充,糖尿病足傷口新式乳膏的作用是調控影響傷口癒合的微環境,抑制傷口中會增加發炎的 M1 巨噬細胞,增加促進癒合的 M2 巨噬細胞,促使血管新生、傷口修復。幫助縮短傷口發炎期,進入增生期,促進傷口癒合。

糖尿病足傷口新式乳膏是照護患者傷口的利器,根據臨床使用經驗,確實有助於縮短傷口癒合的時間。劉明偉醫師補充,有些情況患者可能還會搭配高壓氧治療、手術,並利用各種醫材來幫助傷口癒合。

目前糖尿病足傷口新式乳膏已納入健保給付,只要符合條件,醫師便會協助申請使用,健保給付條件如下:

糖尿病足部潰瘍常見分級(Wagner System)為 2 級,清創後最大傷口面積 ≦ 5 平方公分,且符合以下所有條件:

-----廣告,請繼續往下閱讀-----
  1. 傷口深及肌肉層且經抗生素藥膏或燙傷藥膏治療及使用傷口敷料 12 週後,傷口癒合面積 < 50 %。
  2. 檢測糖化血色素 < 8.5 %、白蛋白 ≧ 3.0 g/dL。
  3. 治療前上下肢血壓比值ABI(Ankle Brachial Index)≧0.9。

「現在健保規定的使用條件比較嚴苛,清創後傷口面積要小於 5 平方公分,且需先治療 12 週,傷口癒合面積 < 50 %,還要搭配抽血檢查的數值。」由於目前現行健保給付條件下,患者要等候三個月進行傷口對照後,才能使用,對於是否可能影響患者截肢機率,劉明偉醫師分享,「如果能夠及早使用,對患者應該會有幫助。讓傷口早日癒合不但可以降低截肢風險、避免失能、維持生活品質,還可以節省後續回診、住院、手術的醫療花費。」

貼心小提醒

糖尿病足潰瘍問題很多,糖友們平時要穿著合腳的鞋襪,不可赤腳走路。劉明偉醫師說,請每天檢查雙腳,如果發現龜裂、擦傷、水泡、潰瘍等狀況,務必及早就醫,利用正確的方法照顧傷口。跨專科團隊會運用各種方法來穩定血糖、恢復血液循環、控制感染、促進傷口癒合,幫助患者維持生活品質,遠離截肢的威脅!

所有討論 1