Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

去去,臭味走! 空氣清淨機如何讓室內空氣更乾淨?

陳柏成 (Po Cheng Chen)
・2016/12/16 ・3209字 ・閱讀時間約 6 分鐘 ・SR值 570 ・九年級

你有聽過「病態建築物症候群」(Sick Building Syndrome)嗎?事實上,這是一個生活在現代你我,都可能會遇上的問題。

隨著當代社會變遷,如今有越來越多人的平日生活在室內度過,不論是工作或是許多休閒活動;而當我們身處於密閉的建築空間時,由於通氣量的不足,更容易使得污染物增加,進而導致空氣品質的惡化。這種因建築物內空氣污染導致人感到不適或身體出現異常症狀的狀況,在 1982 年被世界衛生組織(World Health Organization, WHO)定名為「病態建築物症候群」。

仔細想想,是否在我們平常環境中,曾不自覺出現類似的症狀呢?

sick-building-1
隨著現代社會變遷,病態建築物症候群更易出現在你我身上。圖 / @ epscoindia

面對這個問題,首先我們要先思考在平日生活環境中,可能帶有哪些影響空氣品質的污染物。一般來說,最常見的主要有四大類:分別為揮發性有機物粒狀污染物生物污染物及其他的氣狀污染物。而當我們面對不同的空氣污染物時,所需面對的解決方式也將有所不同。

-----廣告,請繼續往下閱讀-----

當然,不管面對哪一種空氣污染物,首先最簡單、也最重要的方法便是找到污染源頭,並且將之移除。然而在很多情形下,縱使我們找到污染源,卻往往不見得能有效控制,於是就要依賴某些淨化技術,來幫助我們在平日生活環境中,例如辦公室,能享有較佳的空氣品質。而這時對於多數人來說,如何達到「抑菌」、「去味」這兩件事就十分重要了。那麼該如何達到呢?

疾疾,護法現身:抑菌之術

在「抑菌」的部分,其實就是意味著如何處理生物污染源。所謂的生物污染物,主要為微生物,例如某些真菌、病毒、細菌甚至寄生蟲等,以不同的形態存在於我們生活之中,對於某些人來說,也可能會因為這些微生物而產生過敏或是感染等問題,因此空氣中的生物污染物該如何淨化,是一項十分重要的議題。

那麼如何抑制生長,甚至滅除牠們呢?舉例來說,我們可以利用光觸媒(photocatalyst)技術來操作。這項技術除了能讓某些帶有異味或有害的氣體被分解為無害無臭的產物外,同時也能對某些空氣中的微生物外膜進行破壞。那麼光觸媒是怎麼殺掉牠們的呢?事實上,在光觸媒的處理過程裡,當半導體材料受到光的照射後會產生電子電洞對〔註 1〕,其中電洞與水分子會形成氫氧自由基,電子則是和氧分子構成氧離子,而自由基因為具有強大的氧化還原能力,因此才能夠達到部分殺菌的效果。

除了光觸媒,透過紫外線光技術也是一項辦法,因為紫外線的波長介於 10 mn ~ 400 nm,代表相對的能量及穿透力都較高,所以在它的照射下,容易破壞微生物的核糖核酸(RNA)、脫氧核糖核酸(DNA)等,所以便能影響空氣中微生物的存在比例。

-----廣告,請繼續往下閱讀-----
p002
光觸媒(photocatalyst)示意圖。左邊為人造光觸媒簡示原理,右邊光合作用下的葉綠素也可視為天然的光觸媒。圖 / @ titanpe

止止,臭臭消:去味大法

而「去味」的部分,則是在於如何處理揮發性有機物,或是某些粒狀污染物

首先是粒狀污染物,通常我們能採用好幾種不同方式處理,例如負離子技術。這種技術主要不是用來除去空氣中的塵埃,而是藉由產生的帶電粒子,將它在空氣中所遇到的其他灰塵進行吸附,因此慢慢的,當凝聚的粒子越多,自然最後就會沈降下來,也就是降低飄浮在空氣中粒子的比例,而達到潔淨的效果。

除此之外,較常見的還有靜電集塵纖維過濾法。前者對於更細微的粒子較有效,原理主要為透過電場來捕獲帶電的粒子,而作法通常為將空氣中的微粒離子化(也就是讓它攜帶電荷),如此就能提高捕獲率;後者纖維過濾法簡單來說,即為過濾網。過濾網的處理方式就是透過各種交錯的纖維來阻擋粒狀污染物,而目前比較常見的為高效率濾網(High Efficiency Particle Arrest, HEPA),這種技術在達到淨化的目的上,又可再分擴散(Diffusion)、撞擊(Impaction)及攔截(Interception)三種原理。舉例來說,攔截的方式就會利用空氣中微粒與過濾網纖維之間的結合力而達到效果,而這種力則包含透過氣流流經纖維所產生的靜電、又或是依據分子間的凡得瓦力(van der Waals’ force)來作用。

HEPA_Filter_diagram_en
高效率濾網(High Efficiency Particle Arrest, HEPA)簡示圖。圖 / By LadyofHats, Public Domain, wikimedia commons

而在處理「揮發性有機物」方面,更是能夠有效達到去味的效果。通常這些來源可能包含工作環境中的印表機、文具,或是一些建築材料、油漆等所釋放出來。面對這些污染物,我們可以透過吸附(adsorption)原理解決,而活性碳(Active Carbon)就是一個不錯的幫手。

-----廣告,請繼續往下閱讀-----

利用活性碳的吸附性質,我們又可以再將之初分為物理及化學兩種機制。物理機制的部分,其實就如同前述處理粒狀污染物時所利用的濾網概念類似,主要在於利用分子之間的凡得瓦力(van der Waals’ force),又或是靜電力,來達到捕捉空氣中氣體分子的效果。而化學機制的部分,則是想辦法與污染物進行反應,也就是說,透過一連串作用,將污染物進行催化、中和、或是氧化掉來使之變成無污染的狀態,這樣的好處在於通常反應快速,而且容易選擇要處理的污染物,也就是具備高選擇性。

640px-activated_carbon
活性碳原貌。圖 / By Ravedave, CC BY 2.5, wikimedia commons

上述我們提到了好幾種空氣淨化方式,其實大部份仍還有它的局限性

以濾網來說,雖然它可以幫助我們降低空氣中的污染物,但當濾網所承載的灰塵量達到一定程度,那麼它就會失去原本的效用,而若長時間下來未進行更替,更有可能造成二次汙染;另外關於活性碳,前述提到,這種材質雖然可以達到「去味」的效果,然而假如選擇的是粒狀活性碳,那麼比表面積相對就會比其他活性碳來的小,因此飽和吸附量就會較低;又或是我們選擇纖維狀活性碳,雖然比表面績變大,但是相對價格也較貴。

也有另外一種不同於上述的新型有效的空氣進化技術:光水離子化(Photo-Hydro-Ionization, PHI),其原理為藉由特定波長的紫外線照射至金屬催化劑表面,使其產生正負電荷,並各自結合空氣中的分子(如負電荷與空氣臭氧結合形成O3,而位於金屬表面的水分子則形成帶正電的H2O+),帶正電的H2O+接著奪取臭氧中的氧原子,使之形成O2、H2O2+及H2O2,而這些物質便進而在空中飄散,最後消除空氣中的污染物。這個技術的細節原理,下一篇文章會有更詳細的介紹。

-----廣告,請繼續往下閱讀-----

綜觀市面上的空氣清淨機,最常見的是「過濾網」,也就是藉由過濾空氣中的污染源來達到清淨的效果,但如前面所述,就是要常常更換,否則清潔效果將大打折扣,還可能造成二次汙染。此外,如果他有強調抑菌效果的話,很有可能是利用「光觸媒」或是「紫外線」等技術。當然除了淨化空氣還標榜除臭、抑菌等其他功能的空氣清淨機,自然價格也有可能會比較高。

從以上簡單例子我們可以理解到,其實青菜蘿蔔各有所好,沒有哪一種方法佔有絕對優勢,或是全然缺點,主要還是在於我們想達到什麼功效多一些,是「去味」,還是「抑菌」,願意承受的成本又落在哪個門檻,透過這些考量,就能幫助我們找到最適合的凈化方式。當然啦,除了添購一台適合的淨化機器,並多方汲取空氣淨化的知識及應用方法外,利用空閒時多出去走走,避免長期待在室內,也可助於我們在平日生活環境中,更有效的提升生活品質!

.註 1:電洞(Electron hole)指的是在共價鍵上流失一個電子,最後在共價鍵上留下空位的現象。

本文由 O.verna 委託,泛科學規劃執行

-----廣告,請繼續往下閱讀-----

參考資料:

-----廣告,請繼續往下閱讀-----
文章難易度
陳柏成 (Po Cheng Chen)
12 篇文章 ・ 5 位粉絲
熱愛自然科學,曾擔任PanSci實習編輯,現於美國夏威夷大學就讀博士班。如有任何問題,歡迎來信:consciencecpc@gmail.com

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
雀斑為何只在陽光下現形?揭開「太陽之吻」的秘密
F 編_96
・2024/12/23 ・2340字 ・閱讀時間約 4 分鐘

F 編按:本文編譯自 Live Science

在夏日豔陽下,許多人臉上、肩膀上,甚至手臂上,會冒出一點點咖啡色小斑點,人們常親切地稱它們為「太陽之吻」。這些雀斑(freckles)在日光充足的季節裡愈顯活躍,等到秋冬時節太陽不再那麼刺眼時,顏色又逐漸淡去,甚至幾乎消失不見。

為什麼雀斑會選擇在陽光猛烈時現形?其實,雀斑的成因不僅與紫外線(UV)有關,也與我們皮膚深層的色素細胞、基因遺傳以及日常防曬觀念息息相關。

雀斑是什麼?

所謂「雀斑」,在皮膚科領域中比較常被稱為「日曬斑」或「褐斑」的一種,但嚴格來說,依據皮膚科專家的分類,可將「雀斑」區分為兩大類:

  1. 小雀斑(Ephelides):一般人在談論「雀斑」時,多半指的就是這類。它們常呈現為細小且淺棕色,通常散落於臉部、肩膀、手臂等長期曝曬陽光的部位,夏天時較為明顯,冬天會逐漸淡化。
  2. 曬斑型老人斑(Solar Lentigines):又稱「日光性黑斑」或「年齡斑」,形狀可能較大,顏色較深,常分布於長時間曝曬的肌膚區域,如臉部、手背等。它們不會像小雀斑那樣隨季節改變顏色或變淡,而是隨著年齡與累積日曬逐漸加深。

紫外線如何誘發雀斑?

皮膚中的色素,主要由名為「黑色素細胞」(melanocytes)的細胞製造,這些細胞負責產生「黑色素」(melanin)。在平時的皮膚狀態下,黑色素會平均分布在表皮中,讓每個人擁有自己獨特的膚色。當皮膚受到紫外線刺激時,為了保護深層細胞免於 UV 傷害,黑色素細胞會增加黑色素的產量,試圖將危險的 UV 射線「散射」出去,避免它穿透至更深層皮膚,造成 DNA 損傷。

-----廣告,請繼續往下閱讀-----

雀斑之所以出現,便是由於某些區域的黑色素細胞比其他區域更為活躍,在相同的日曬條件下產生了相對大量的黑色素,並集中在特定區塊,於是就形成我們肉眼可見的「小斑點」。

雀斑由黑色素細胞局部活躍產生,黑色素集中形成肉眼可見的小斑點。圖/envato

為什麼夏天雀斑特別明顯?

夏天日照時間長、紫外線指數通常也偏高,使黑色素細胞生產更多色素,故那些先天對紫外線較敏感、或具遺傳傾向產生雀斑的人,臉上就更容易冒出小斑點。等到秋冬日照減少、紫外線較弱時,這些黑色素細胞的活躍度也會跟著下降,皮膚的代謝作用會逐漸將多餘色素淡化,於是原本在夏天特別明顯的雀斑又慢慢變得不顯眼,甚至接近消失。

然而,並不是所有雀斑都會隨季節消長。同樣受到紫外線影響的「日曬型老人斑(Solar Lentigines)」,就不會像小雀斑那樣在冬天退色,因為它是長期日曬累積造成的色素沉澱,隨著年紀增長與皮膚細胞多次受紫外線傷害,這些斑點往往會持續存在或顏色更加深。

遺傳與膚質的影響

事實上,並非每個人都會長雀斑。它在一定程度上和基因有關。膚色白皙且天然黑色素較少的人,更容易受到紫外線的影響,而產生或加深雀斑。尤其歐美血統者,其遺傳基因裡常見 MC1R 基因變異,導致毛髮顏色較淺、膚色偏白,也就更容易「曬出」雀斑。而亞洲人中,若父母一方有雀斑基因,也可能遺傳給下一代。

-----廣告,請繼續往下閱讀-----

「太陽之吻」與健康有關嗎?

雀斑本身是無害的,不會直接演變成皮膚癌。然而,它們的出現代表皮膚曾經受到過紫外線的刺激,若人們在相同條件下沒有做好防曬,長期累積的 UV 傷害可能導致細胞 DNA 損傷,讓皮膚老化、皺紋提早出現,甚至提高罹患皮膚癌的風險。因此,有雀斑的人不必過度擔心,但是也應該將之視為一種提醒,提醒自己需要加強日常的防曬措施。

雀斑無害,但還是要注意紫外線帶來的傷害。圖/envato

如何區分「日曬斑」與「老人斑」?

  • 日曬斑(ephelides):經常出現在皮膚較薄或常曬太陽的部位,如臉頰、鼻梁,夏天加深、冬天減淡。
  • 老人斑或曬斑(solar lentigines):較大、顏色較深,容易出現在手背、臉部。隨年齡增長、不會隨季節變淡。

如果皮膚上出現斑點且有快速變化,或顏色、形狀突變的情況,最好就醫檢查,以排除皮膚癌等風險。因為某些黑色素瘤或癌前病變,在早期也可能長得類似咖啡色斑點,必須由專業醫師進行鑑別診斷。

想要保護皮膚?防曬是關鍵

想要減少雀斑的生成或避免它們顏色變深,防曬是最有效的手段之一。無論是否有雀斑,紫外線皆會加速皮膚老化和傷害,因此建議做好以下幾點:

  1. 使用防曬產品:選擇符合自身膚質且 SPF 值足夠的防曬乳,並在外出前 15 至 20 分鐘均勻塗抹,並於戶外活動每 2 小時補塗一次。
  2. 配戴帽子與太陽眼鏡:多重物理隔離,可以更有效地保護臉部與眼周脆弱的肌膚。
  3. 善用遮陽工具:如陽傘、遮陽布等,減少直接曝曬在刺眼陽光下的時間。
  4. 避開強烈日曬時段:若時間允許,儘量在上午 10 點以前或下午 4 點以後再從事戶外活動,降低紫外線的曝曬量。

雀斑之所以容易在夏日高調現身,歸根究柢都是皮膚為了抵禦紫外線所做的「自衛行動」。面對這些「太陽之吻」,我們無需過度恐慌,因為它們本身無害;但也不該放鬆警惕,畢竟皮膚細胞受到紫外線傷害的警訊往往比想像中更容易被忽視。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

5
1

文字

分享

0
5
1
為什麼會被陽光曬傷?光有能量的話,為什麼照日光燈沒事?
PanSci_96
・2024/05/05 ・3185字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

唉!好曬呀!前兩集,一些觀眾發現我曬黑了。

在臺灣,一向不缺陽光。市面上,美白、防曬廣告亦隨處可見,不過,為什麼我們會被陽光曬傷呢?卻又好像沒聽過被日光燈曬傷的事情?

事實上,這也跟量子力學有關,而且和我們今天的主題密切連結。

之前我們討論到量子概念在歷史上的起點,接下來,我們會進一步說明,量子概念是如何被發揚光大,以及那個男人的故事。

-----廣告,請繼續往下閱讀-----

光電效應

在量子力學發展過程中,光電效應的研究是非常重要的轉捩點。

光電效應指的是,當一定頻率以上的光或電磁波照射在特定材料上,會使得材料發射出電子的現象。

在 19 世紀後期,科學家就已經發現某個奇特的現象:使用光(尤其是紫外線)照射帶負電的金屬板,會使金屬板的負電消失。但當時他們並不清楚背後原理,只猜測周遭氣體可能在紫外線的照射下,輔助帶負電的粒子從金屬板離開。

光電效應示意圖。圖/wikimedia

於是 1899 年,知名的英國物理學家 J. J. 湯姆森將鋅板放置在低壓汞氣之中,並照射紫外線,來研究汞氣如何幫助鋅板釋放負電荷,卻察覺這些電荷的性質,跟他在兩年前(1897 年)從放射線研究中發現的粒子很像。

-----廣告,請繼續往下閱讀-----

它們是比氫原子要輕約一千倍、帶負電的微小粒子,也就是我們現在稱呼的電子。

1902 年,德國物理學家萊納德發現,即使是在抽真空的玻璃管內,只要照射一定頻率以上的光,兩極之間便會有電流通過,電流大小跟光的強度成正比,而將光線移除之後,電流也瞬間消失。

到此,我們所熟知的光電效應概念才算完整成型。

這邊聽起來好像沒什麼問題?然而,若不用現在的量子理論,只依靠當時的物理知識,很難完美解釋光電效應。因為根據傳統理論,光的能量多寡應該和光的強度有關,而不是光的頻率。

-----廣告,請繼續往下閱讀-----

如果是光線把能量傳給電子,讓電子脫離金屬板,那為什麼需要一定頻率以上的光線才有用呢?比如我們拿同樣強度的紫外線跟紅外線去照射,會發現只有照射紫外線的金屬板才會產生電流。而且,當紫外線的頻率越高,電子的能量就越大。

另一方面,若我們拿很高強度的紅外線去照射金屬板,會發現無論如何都不會產生電流。但如果是紫外線的話,就算強度很低,還是會瞬間就產生電流。

這樣難以理解的光電效應,使得愛因斯坦於 1905 年一舉顛覆了整個物理學界,並建立了量子力學的基礎。

光電效應的解釋

為了解釋光電效應,愛因斯坦假設,電磁波攜帶的能量是以一個個帶有能量的「光量子」的形式輻射出去。並參考先前普朗克的研究成果,認為光量子的能量 E 和該電磁波的頻率 ν 成正比,寫成 E=hν,h 是比例常數,也是我們介紹過的普朗克常數。

-----廣告,請繼續往下閱讀-----

在愛因斯坦的詮釋下,電磁波的頻率越高,光子能量就越大,所以只要頻率高到一定程度,就能讓電子獲得足以逃脫金屬板的能量,形成電流;反過來說,如果電磁波的頻率不夠高,電子無法獲得足夠能量,就無法離開金屬板。

這就像是巨石強森一拳 punch 能把我打昏,但如果有個弱雞用巨石強森百分之一的力道打我一百拳,就算加起來總力道一樣,我是不會被打昏,大概也綿綿癢癢的,不覺得受到什麼傷害一樣。

而當電磁波的強度越強,代表光子的數目越多,於是脫離金屬板的電子自然變多,電流就越大。就如同我們挨了巨石強森很多拳,受傷自然比只挨一拳要來得重。

雖然愛因斯坦對光電效應的解釋看似完美,但是光量子的觀點實在太過激進,難以被當時的科學家接受,就連普朗克本人對此都不太高興。

-----廣告,請繼續往下閱讀-----

對普朗克來說,基本單位能量 hν,是由虛擬的「振子」發出的;但就愛因斯坦而言,電磁波本身的能量就是一個個光量子,或現在所謂的「光子」。

然而,電磁波屬於波動,直觀來說,波是綿延不絕地擴散到空間中,怎麼會是一個個攜帶最小基本單位能量的能量包呢?

美國物理學家密立根就堅信愛因斯坦的理論是錯的,並花費多年時間進行光電效應的實驗研究。

到了 1914 年,密立根發表了世界首次的普朗克常數實驗值,跟現在公認的標準數值 h=6.626×10-34 Js(焦耳乘秒)相距不遠。

-----廣告,請繼續往下閱讀-----

在論文中,密立根更捶心肝(tuî-sim-kuann)表示,實驗結果令人驚訝地與愛因斯坦那九年前早就被人拋棄的量子理論吻合得相當好。

這下子,就算學界不願相信愛因斯坦也不行了。愛因斯坦也因為在光電效應的貢獻,獲得 1921 年的諾貝爾物理獎。

1921 年,愛因斯坦獲得諾貝爾物理學獎之後的官方肖像。圖/wikimedia

光電效應的應用

在現代,光電效應的用途廣泛。我們日常生活中常見的太陽能發電板,利用的就是光電效應的一種,稱為光生伏打效應,材料內部的電子在吸收了光子的能量後,不是放射到周遭空間,而是在材料內部移動,形成正負兩極,產生電流。

而會不會曬傷也跟光子的能量有關。

-----廣告,請繼續往下閱讀-----

曬傷是皮膚受到頻率夠高的太陽光,也就是紫外線裡的 UVB 輻射造成的損傷。這些光子打到皮膚,會讓 DNA 分子裡構成鍵結的電子逃逸,引起皮膚細胞中 DNA 的異常變化,導致細胞損傷和免疫反應,這就是為什麼曬傷後皮膚會出現紅腫、疼痛和發炎的原因。

而頻率較低的光線,因為光子能量偏低,所以就不太會造成傷害,這也是為什麼我們沒聽過被日光燈曬傷這種事。

結語

從 17 世紀後半,惠更斯和牛頓各自提出光的波動說和微粒說開始,人們就聚焦於光到底是波動還是粒子的大哉問;19 世紀初,湯瑪士.楊用雙狹縫干涉實驗顯示了光的波動性,而到 19 世紀中後期,光屬於電磁波的結論終於被馬克士威和赫茲分別從理論和實驗兩方面確立。

經過約莫兩百年的研究發展,世人才明白,光是一種波動。

怎知,沒過幾年,愛因斯坦就跳出來主張光的能量由一個個的光量子攜帶,還通過實驗的檢驗——光又成為粒子了。

物理學家不得不承認,光具有波動和粒子兩種性質,而會呈現哪一種特性則依情況而定,稱為光的波粒二象性。

愛因斯坦於 1905 年提出的光量子概念,顛覆了傳統認為波動和粒子截然二分的觀點,將光能量量子化的詮釋也被實驗印證,在那之後,除了光的能量之外,還有其他物理量被發現是「量子化」的,像是電荷。

我們現在知道,電荷也有個基本單位,就是單一電子攜帶的電荷大小。

儘管之後又發現組成原子核的夸克,具有 -1/3 和 +2/3 單位的基本電荷,但並沒有改變電荷大小是不連續的這件事,並不是要多少的電量都可以。

如果你覺得很奇怪,不妨想想,我們用肉眼看會覺得身體的每一個部位都是連續的,但其實在微觀尺度,身體也是由一個個很小的原子和分子組成,只是我們根本看不出來,才覺得是連續的。

光子的能量和電荷的大小,其實也是像這樣子,細分下去就會發現具有最基本的單位,不是連續的。

事實上,量子力學在誕生之後,一直不斷地為人們帶來驚喜,簡直就是物理學界突然闖進一隻捉摸不定的貓。我們下一個故事,就要來聊量子力學發展過程中,打破世間常識的某個破天荒假說,而假說的提出者,是大學原本主修歷史和法律,擁有歷史學士學位,但後來改念物理,並憑藉博士論文用 5 年時間就拿到諾貝爾物理學獎的德布羅意。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。