Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

魚會吵架嗎? 看嚴宏洋博士談「魚類溝通的多樣性」小感

活躍星系核_96
・2016/11/09 ・2595字 ・閱讀時間約 5 分鐘 ・SR值 539 ・八年級

文/周文豪|國立自然科學博物館副館長

先感謝嚴宏洋大師於 2016 年 11 月 4 日「週末 Let’s go! 分享大師視野」帶來的講題「魚類的溝通多樣性」。題目改成「嚴宏洋的溝通多樣性」也合適,他演講的肢體語言特多、表情豐富,又演又講的,堪稱「唱作俱佳」,儼然名嘴大師。

嚴宏洋老師演講畫面。圖/作者提供
嚴宏洋老師演講畫面。圖/作者提供

猶記得 E. O. Wilson 於 2007 年獲頒「TED Prize」時,頒獎後給了一個 24 分鐘的演講,我至今未忘他說了一段話:

「單單一克的泥土裏就有 6000 新種細菌,一百億個細菌;那麼一噸沃土就有近四百萬種的細菌。我們要問:那些傢伙到底在裡頭幹嘛?答案是:我們根本不知道。」

台灣海域有 3130 種魚類,約占世界總數的十分之一,物種多樣性奇高。我們同樣要問:「那……這些傢伙到底在海裡幹嘛?」

-----廣告,請繼續往下閱讀-----

那天,聽了一席「宏洋」之講,讓我們很輕快、可以不猶豫地回應:「我們知道,牠們一直在海裡『溝通』。」嚴大師真不是蓋的,這位老調皮有令人無法不愛他的特質,他用自己的研究鋪陳這次演講,原汁原味,最是了得。

說起「我們每個人體內都有一條魚!」還真有這麼一回事。魚,多樣的溝通方式有聽覺、視覺、嗅覺、味蕾、費洛蒙、側腺、放電等,除了側腺,我們人類也都有了。那您說:「放電呢?」「呵!不是說有的姑娘眼睛會放電嗎?」(hmmm……筆者只能說,千萬別跟我老婆說啊!)

整理一下演講中魚類的「眼、耳、鼻、舌、身」的溝通特性。

:不同深度的海域因能到達的光波長不同,生活其中的魚類能夠看到的光色也不相同。有些魚類小時候生活在淺水域,適應紅光環境,長大後移往深處,改適應藍或紫光環境。

-----廣告,請繼續往下閱讀-----

:內耳能感知水下的聲音與震動;有的魚能發音求偶、搶地盤。量音大、頻率低、能持久等要素,可做為求偶搶地盤的輸贏判斷。

:外鼻孔就只有嗅覺,並沒有呼吸功能。在迴游的過程中,嗅覺扮演重要的角色,能分辨原棲地的味道;在水產養殖上,可在飼料內加入小卷粉,那是魚類喜歡的味道,能引誘魚來吃,否則飼料白費、血本無歸。

:魚的舌是個閒差,因為魚的味蕾可分佈到口腔內壁、口的附近、或全身幾處,用來感知水中的化學訊號。

: 1.身上的色彩有偽裝、欺敵甚至有廣告彰顯的功能;2.有些魚種可分泌費洛蒙或警戒物質,行種間溝通,具交配或避敵作用。3.有些魚種會發出電流,或演化出接收生物電場的受器,進行種間、種內溝通或攻擊獵物。

-----廣告,請繼續往下閱讀-----

嚴大師習得一身武藝,念一口好魚經,曾被延聘到巴拿馬美洲熱帶鮪魚協會(IATTC)協助養殖上的問題,在那兒黃鰭鮪的幼魚死亡率居高不下。他重托,鉅金禮聘飛往解決,一到養殖場,右眼一瞄、左眼一掃,馬上洞悉癥結。他運用幼魚的視覺特性,只換了燈泡改變養殖場的照明波長,就把存活率提升超過八成,真嚴神也!

可是他也感嘆了,怨說:「我們成了成功的受難者。事情一次解決後,隔年就不再找我們去了,早知道就應該有些謀略,先留一手分幾年完成,可多賺一點……。」顯然他在基礎研究上成功得意,但在應用戰略上失算了,只能怪老頑童本性純真。欸……這也難能可貴啦。

筆者雞婆地問:「在許多生物族類中,可清理出許多演化適應的戰術(strategy)類型,但魚類有沒有戰略(tactics)?」大師的回應改日再來討論。

兩隻魚同時放電會怎樣?

演講途中,大師要二位學生上台演示,讓二人面對面相隔 3 公尺,一聲令下二人同時前進,當兩人要相碰時,兩人各向一邊閃開,並沒撞上。為什麼沒撞上?我們想像得到,當兩人越走越近時,二人都在注意對方往哪個方向閃,以至於在即將接觸那一刻驟下判斷閃過去了。

-----廣告,請繼續往下閱讀-----

大師用此演示來說明弱電魚平常以同一頻率放電,可是當兩魚相遇時,放電頻率竟然會錯開,形成一高一低的情形,稱為避免干擾反應(Jamming Avoidance Response)。過去我們稱此為性狀錯位(Characters displacement)的例子,發生在族群或相近物種間,演化導致性狀錯位利於資源區隔,但這兒是同種魚個體間的頻率錯位,可避免相互干擾。

曾閱讀一則科學報導,說:鳥為何在空中不會相撞?因為基因讓鳥在閃避時都向右,所以面對面而來的二隻鳥各自向右閃而避開了。可是,大師所提的是放電頻率相閃,由誰決定誰往高頻閃誰往低頻閃?如何決定?說實在,這和二人或二鳥「左右相閃」是不同的。大師答說,一開始,正面遭遇二魚所發出的頻率確實會上下震盪,不知如何是好,可是過一下子就頻率錯位了。總之,錯位之前會有一段過程,到底在這過程中發生什麼事?令人好奇。

魚有自由意志嗎?

有學生舉手發問:「請問魚有沒有『自由意志』。」又是一個大哉問。筆者大學時老師就提過,就我所知,「人有無自由意志」本身就是一個吵不完的大問題,更不用說「動物」了!

演講結束後我遇上該生,便問他為何有此一問,特別是他已是哲學系學生,課堂上應該會有相關討論。他說:「只想聽科學家親口說。」好樣的,這才是求知態度。

-----廣告,請繼續往下閱讀-----

當「自由」一詞定義多元時,辯論就沒有了結的一天。我用「simple and elegant」的思維,選用德國神經生物學家 Martin Heisenberg 的觀點來說明。Heisenberg 採用康德的說法:如果一個人出於自願,為其所欲為,就可以稱之「自由行事」。Heisenberg 主張只要人類的適應行為是自發性的,就可視為「自由」。看起來,Heisenberg 主張人有自由意志。

行動(action)和反應(reaction)是 M. Heisenberg 用來論述的兩個詞彙,其區別在於前者不依靠外界的刺激。動物有許多行為模組,根據大腦的反應與隨機變化而被激化。當動物在無心理準備、訊息不明、不及因應之際,就必須找到可供調適的模組。大腦會隨機、持續地被提前激化,或擱置另選模組,直到完成「反應」。

Heisenberg 強調:「有很多證據顯示,動物的行為不能化約為反應。」他的實驗顯示果蠅會主動產生避開危險的行為,並有穩定的方向感。

至於兩隻弱電魚相遇,各自調整脈衝頻率成一高一低,是「自由意志」嗎?恐怕有得聊了。

-----廣告,請繼續往下閱讀-----

為增進社會大眾對科學有更深入的瞭解,科技部結合國立自然科學博物館資源,共同規劃出一系列近週末的大眾科學教育專題演講,邀請不同科學領域的傑出專家學者,深入淺出地引領大眾窺探科學發現的趣味與甜苦,並融入人文、倫理、藝術與社會關懷的對話,以期兼顧科學普及與人文涵養的提升。

  • 演講直播網址1: http://ppt.cc/LmJQs
  • 備用直播網址2: https://www.youtube.com/watch?v=iY0eBh68c7E

(演講錄影近期可上科技部「科技大觀園」網站瀏覽。)

本文經作者授權刊登。

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

4
0

文字

分享

0
4
0
為什麼不要對重聽的阿嬤大叫──不只是沒禮貌的問題
雅文兒童聽語文教基金會_96
・2024/06/04 ・3173字 ・閱讀時間約 6 分鐘

  • 文/張逸屏|雅文基金會聽語科學研究中心 主任/研究員

端午節時,幼兒園大班的晴晴跟著爸爸媽媽回阿嬤家過節,晴晴興奮地跟阿嬤分享前幾天在學校聽的故事「紅盒子裡的祕密」,但是,最近開始出現重聽情況的阿嬤,常常聽不清楚或聽錯,不是說「啥?什麼?」,不然就是把「驢子爺爺」聽成「吳爺爺」。於是,晴晴不自覺地愈講愈大聲,希望能讓阿嬤聽清楚,當阿嬤還是聽得霧煞煞,晴晴只好更大聲!最後,大聲到爸爸從廚房跑出來罵晴晴:「怎麼可以對阿嬤講話這麼大聲、太沒禮貌了!」晴晴委屈地哭了起來……

大家應該都有碰過被身旁的人提醒跟這位長者說話要大聲一點的經驗吧?根據世界衛生組織的數據[1],60 歲以上高齡人口中,約有 1/4 的人患有足以造成生活障礙的聽力損失(disabling hearing loss)。然而,說話大聲一點,真的可以讓重聽的年長者聽得比較清楚嗎?一般來說,嗓門特別小的人,或是原本用悄悄話的方式在說話,這時提高到一般音量應該會有用。然而,若是一般音量的情況下,大聲說話、甚至大吼大叫,其實是不怎麼管用,更可能會有反效果的[2]。這樣違反直覺的情況,是什麼緣故造成的呢?

圖一/大吼大叫往往不會讓重聽的人聽得更清楚(圖片來源:Pixabay)

大聲不是比較聽得清楚嗎?

一般直覺上會認為,既然重聽或有聽力損失,就是講大聲一點應該就能聽得到了,不是嗎?事實上,由於「語音組成」及「聽力損失特性」這兩大因素,會使得加大音量卻反而有聽不「清楚」語音的問題。

然而,在解釋上述兩大因素之前,必須先釐清聽得「到」不一定聽得「清楚」。大家應該都有這樣的經驗,在有噪音或距離較遠的情境下,例如在廚房洗碗時,家人在客廳說話,我們會聽「到」家人在說話的聲音、也可能聽到大致的內容或是部份內容,但卻沒辦法聽「清楚」完整的內容、或是有聽錯的情況。而重聽或聽力損失的情況也很類似,因為聽力損失有不同的程度,一般年長者的重聽不會是完全聽不到的情形,因此老人家常會說「我都有聽到啊!是你講話不清楚。」

語音組成:聲母和韻母

那麼,當音量變大、卻反而「聽不清楚」,到底是什麼原因造成的呢?一般來說,聽不清楚的通常是指語音當中的聲母(子音)無法被完整地傳遞與接收。回想一下,小時候在學注音符號時,拼音時寫在上面的就是聲母(子音)、下面的則是韻母(母音)。圖二以「沙」(/ㄕㄚ/)為例,可以看出子音/sh/(聲母/ㄕ/,但只有氣音的部份)的部份音量小,且集中在高頻帶,而母音/a/(韻母/ㄚ/)的部份則是音量大,且相對集中在較低頻的區塊。然而,當我們試著說大聲一點,也就是把音量放大時,無論我們怎麼嘗試,都只能放大母音部份的音量[3],子音部份的音量都還是很小。甚至,我們可以試試看只針對子音的部份(如/sh/, /s/, /t/等音)「大叫」,會發現根本沒有辦法做到。

-----廣告,請繼續往下閱讀-----
圖二/語音的組成分為聲母(子音)和韻母(母音)。以「ㄕㄚ」(/sha/)音為例,從上半部的聲音波形可看出,子音(/sh/)的音量(振幅)比母音(/a/)要小得多;下半部則是聲譜圖(spectrogram),縱軸代表頻率,子音(/sh/)的頻率成份集中在高頻帶(黑色集中在較上方),母音(/a/)則是低頻相對較多。

然而,在語音中音量較小的子音才是主要提供清晰度的來源[3,4],曾有研究發現,若將語音中子音主要所在的高頻帶(1000 Hz 以上)去除掉之後,語音清晰度只剩不到 40%;反之,若將母音主要所在的低頻帶(500 Hz 以下)去除,語音清晰度仍有 95%[4]。試試看,若將一句話當中的子音都省略掉,那麼「他今天去上班」就會變成「阿因煙玉ㄤˋ安」,會變得非常非常難以理解。

聽力損失的特性:高頻通常較嚴重

大多數老年性的聽力損失是屬於高頻聽損[5],也就是在較高頻率的部份比較聽不清楚。這個類型的聽損者,就常會有前面所提到的感受:「我都有聽到,但我就是聽不清楚、沒有辦法理解內容!」而如果本文一開始提到的晴晴,因為阿嬤聽不清楚而愈說愈大聲時,卻如同前述,語音當中只有阿嬤原本就聽得到的母音部份變大聲了,但應該是要帶來語音清晰度的子音卻沒有辦法同樣變大聲。即使說話者不斷把音量加大,原本是希望能讓對方聽清楚,豈料適得其反,讓子音和母音之間的音量差距更大,更加劇了不清晰的問題,造成了愈大聲反而愈聽不清楚的矛盾現象。

助聽器科技來幫忙:音量壓縮

那麼,要如何才能讓重聽的長輩,或是聽力損失者能夠聽得清楚呢?如果對生活溝通已經造成困擾,應該要尋求專業耳科醫師和聽力師的協助,嘗試配戴設定適當的助聽器。助聽器的功能不只是放大聲音,還具備了「音量壓縮」的科技[6],讓小聲的聲音放大較多、大聲音量的聲音放大少一些。若套上前述子音和母音相對音量的概念,那就是能讓較小聲、原本聽不清楚的子音變得清楚,提高語音的清晰度。不過,配戴助聽器會需要一段時間的適應,同時也需要和聽力師討論生活上聆聽的需求,才能找到最適合自己的設定。並不是到藥局隨意買一副助聽器,以為戴上就能解決聆聽的所有困難喔!

和聽損者談話的小撇步:正常音量、稍慢語速、發音清楚

除了配戴助聽器之外,溝通策略[1,7]的運用也很有幫助註1。從前面的解釋已經了解到,大吼大叫對聽損者理解語音不但沒有幫助,甚至會有反效果。所以在語音本身上面,可以調整的部份不在音量,而是速度和發音清楚。因此,用一般的音量、語速稍微放慢、發音清楚一點但保持自然,這幾個小撇步可以幫助聽損者聽清楚。同時也可試著換句話說,或是搭配手勢動作來幫助理解。

-----廣告,請繼續往下閱讀-----

其他還有一些策略,包括先取得聽損者的注意力,讓他知道您在跟他說話,避免環境噪音或多人同時說話,這些方法可讓聽損者專注在要聽取的語音訊息上,並減少干擾。此外,建議環境的光線要充足,並可稍微靠近聽損者、讓他能看清楚您的臉部,這麼做可讓聽損者獲取臉部表情和口形等線索,幫助解讀語音訊息的內容,即便聽損者不一定有練過讀唇,但口形線索確實會有幫助,您可以留意看看在很吵雜時,若能看到說話者的臉及口形(當對方沒有戴口罩)時,會比較容易聽清楚。

相信若是晴晴運用了上面所提到的這些溝通策略,不但可以快樂地跟阿嬤分享在學校發生的事,享受愉快的祖孫親情時光,也不會被爸爸罵對阿嬤沒禮貌了喔!

圖三/與聽損者談話時,除了正常音量、稍慢語速、發音清楚等小撇步以外,在光線充足的地方談話,讓聽損者能看到說話者的臉部表情和口型輔助語音接收,也是很好的策略。(圖片來源:Pixabay)

註1 :欲了解更多溝通策略,可參考雅文基金會「聽損溝通小學堂」和「微聽損網站-聽說策略」

  1. World Health Organization. (2024/02/02). Deafness and hearing loss. Retrieved from https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
  2. Painter, K. (2013/03/10). How to talk to a hearing impaired person? Don’t shout. USA TODAY. Retrieved from https://www.usatoday.com/story/news/nation/2013/03/10/talking-hearing-impaired/1965127/
  3. DPA Microphones. (2021/03/04). How to improve speech intelligibility when amplifying the voice. Retrieved from https://www.dpamicrophones.com/mic-university/how-to-improve-speech-intelligibility-when-amplifying-the-voice
  4. DPA Microphones. (2021/03/03). Facts about speech intelligibility. Retrieved from https://www.dpamicrophones.com/mic-university/facts-about-speech-intelligibility
  5. Victory, J. (2024/02/21). Understanding high-frequency hearing loss: This kind of hearing loss affects speech clarity. Retrieved from https://www.healthyhearing.com/report/52448-Understanding-high-frequency-hearing-loss
  6. 張逸屏(2022/01/07)。長輩常抱怨助聽器噪音大?——孝子們該認識的「音量壓縮」科技。泛科學。取自https://pansci.asia/archives/339307
  7. UCSF Health. (n.d.). Communicating with people with hearing loss. Retrieved from https://www.ucsfhealth.org/education/communicating-with-people-with-hearing-loss
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

雅文兒童聽語文教基金會_96
61 篇文章 ・ 223 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

4
1

文字

分享

0
4
1
為什麼會被陽光曬傷?光有能量的話,為什麼照日光燈沒事?
PanSci_96
・2024/05/05 ・3185字 ・閱讀時間約 6 分鐘

唉!好曬呀!前兩集,一些觀眾發現我曬黑了。

在臺灣,一向不缺陽光。市面上,美白、防曬廣告亦隨處可見,不過,為什麼我們會被陽光曬傷呢?卻又好像沒聽過被日光燈曬傷的事情?

事實上,這也跟量子力學有關,而且和我們今天的主題密切連結。

之前我們討論到量子概念在歷史上的起點,接下來,我們會進一步說明,量子概念是如何被發揚光大,以及那個男人的故事。

-----廣告,請繼續往下閱讀-----

光電效應

在量子力學發展過程中,光電效應的研究是非常重要的轉捩點。

光電效應指的是,當一定頻率以上的光或電磁波照射在特定材料上,會使得材料發射出電子的現象。

在 19 世紀後期,科學家就已經發現某個奇特的現象:使用光(尤其是紫外線)照射帶負電的金屬板,會使金屬板的負電消失。但當時他們並不清楚背後原理,只猜測周遭氣體可能在紫外線的照射下,輔助帶負電的粒子從金屬板離開。

光電效應示意圖。圖/wikimedia

於是 1899 年,知名的英國物理學家 J. J. 湯姆森將鋅板放置在低壓汞氣之中,並照射紫外線,來研究汞氣如何幫助鋅板釋放負電荷,卻察覺這些電荷的性質,跟他在兩年前(1897 年)從放射線研究中發現的粒子很像。

-----廣告,請繼續往下閱讀-----

它們是比氫原子要輕約一千倍、帶負電的微小粒子,也就是我們現在稱呼的電子。

1902 年,德國物理學家萊納德發現,即使是在抽真空的玻璃管內,只要照射一定頻率以上的光,兩極之間便會有電流通過,電流大小跟光的強度成正比,而將光線移除之後,電流也瞬間消失。

到此,我們所熟知的光電效應概念才算完整成型。

這邊聽起來好像沒什麼問題?然而,若不用現在的量子理論,只依靠當時的物理知識,很難完美解釋光電效應。因為根據傳統理論,光的能量多寡應該和光的強度有關,而不是光的頻率。

-----廣告,請繼續往下閱讀-----

如果是光線把能量傳給電子,讓電子脫離金屬板,那為什麼需要一定頻率以上的光線才有用呢?比如我們拿同樣強度的紫外線跟紅外線去照射,會發現只有照射紫外線的金屬板才會產生電流。而且,當紫外線的頻率越高,電子的能量就越大。

另一方面,若我們拿很高強度的紅外線去照射金屬板,會發現無論如何都不會產生電流。但如果是紫外線的話,就算強度很低,還是會瞬間就產生電流。

這樣難以理解的光電效應,使得愛因斯坦於 1905 年一舉顛覆了整個物理學界,並建立了量子力學的基礎。

光電效應的解釋

為了解釋光電效應,愛因斯坦假設,電磁波攜帶的能量是以一個個帶有能量的「光量子」的形式輻射出去。並參考先前普朗克的研究成果,認為光量子的能量 E 和該電磁波的頻率 ν 成正比,寫成 E=hν,h 是比例常數,也是我們介紹過的普朗克常數。

-----廣告,請繼續往下閱讀-----

在愛因斯坦的詮釋下,電磁波的頻率越高,光子能量就越大,所以只要頻率高到一定程度,就能讓電子獲得足以逃脫金屬板的能量,形成電流;反過來說,如果電磁波的頻率不夠高,電子無法獲得足夠能量,就無法離開金屬板。

這就像是巨石強森一拳 punch 能把我打昏,但如果有個弱雞用巨石強森百分之一的力道打我一百拳,就算加起來總力道一樣,我是不會被打昏,大概也綿綿癢癢的,不覺得受到什麼傷害一樣。

而當電磁波的強度越強,代表光子的數目越多,於是脫離金屬板的電子自然變多,電流就越大。就如同我們挨了巨石強森很多拳,受傷自然比只挨一拳要來得重。

雖然愛因斯坦對光電效應的解釋看似完美,但是光量子的觀點實在太過激進,難以被當時的科學家接受,就連普朗克本人對此都不太高興。

-----廣告,請繼續往下閱讀-----

對普朗克來說,基本單位能量 hν,是由虛擬的「振子」發出的;但就愛因斯坦而言,電磁波本身的能量就是一個個光量子,或現在所謂的「光子」。

然而,電磁波屬於波動,直觀來說,波是綿延不絕地擴散到空間中,怎麼會是一個個攜帶最小基本單位能量的能量包呢?

美國物理學家密立根就堅信愛因斯坦的理論是錯的,並花費多年時間進行光電效應的實驗研究。

到了 1914 年,密立根發表了世界首次的普朗克常數實驗值,跟現在公認的標準數值 h=6.626×10-34 Js(焦耳乘秒)相距不遠。

-----廣告,請繼續往下閱讀-----

在論文中,密立根更捶心肝(tuî-sim-kuann)表示,實驗結果令人驚訝地與愛因斯坦那九年前早就被人拋棄的量子理論吻合得相當好。

這下子,就算學界不願相信愛因斯坦也不行了。愛因斯坦也因為在光電效應的貢獻,獲得 1921 年的諾貝爾物理獎。

1921 年,愛因斯坦獲得諾貝爾物理學獎之後的官方肖像。圖/wikimedia

光電效應的應用

在現代,光電效應的用途廣泛。我們日常生活中常見的太陽能發電板,利用的就是光電效應的一種,稱為光生伏打效應,材料內部的電子在吸收了光子的能量後,不是放射到周遭空間,而是在材料內部移動,形成正負兩極,產生電流。

而會不會曬傷也跟光子的能量有關。

-----廣告,請繼續往下閱讀-----

曬傷是皮膚受到頻率夠高的太陽光,也就是紫外線裡的 UVB 輻射造成的損傷。這些光子打到皮膚,會讓 DNA 分子裡構成鍵結的電子逃逸,引起皮膚細胞中 DNA 的異常變化,導致細胞損傷和免疫反應,這就是為什麼曬傷後皮膚會出現紅腫、疼痛和發炎的原因。

而頻率較低的光線,因為光子能量偏低,所以就不太會造成傷害,這也是為什麼我們沒聽過被日光燈曬傷這種事。

結語

從 17 世紀後半,惠更斯和牛頓各自提出光的波動說和微粒說開始,人們就聚焦於光到底是波動還是粒子的大哉問;19 世紀初,湯瑪士.楊用雙狹縫干涉實驗顯示了光的波動性,而到 19 世紀中後期,光屬於電磁波的結論終於被馬克士威和赫茲分別從理論和實驗兩方面確立。

經過約莫兩百年的研究發展,世人才明白,光是一種波動。

怎知,沒過幾年,愛因斯坦就跳出來主張光的能量由一個個的光量子攜帶,還通過實驗的檢驗——光又成為粒子了。

物理學家不得不承認,光具有波動和粒子兩種性質,而會呈現哪一種特性則依情況而定,稱為光的波粒二象性。

愛因斯坦於 1905 年提出的光量子概念,顛覆了傳統認為波動和粒子截然二分的觀點,將光能量量子化的詮釋也被實驗印證,在那之後,除了光的能量之外,還有其他物理量被發現是「量子化」的,像是電荷。

我們現在知道,電荷也有個基本單位,就是單一電子攜帶的電荷大小。

儘管之後又發現組成原子核的夸克,具有 -1/3 和 +2/3 單位的基本電荷,但並沒有改變電荷大小是不連續的這件事,並不是要多少的電量都可以。

如果你覺得很奇怪,不妨想想,我們用肉眼看會覺得身體的每一個部位都是連續的,但其實在微觀尺度,身體也是由一個個很小的原子和分子組成,只是我們根本看不出來,才覺得是連續的。

光子的能量和電荷的大小,其實也是像這樣子,細分下去就會發現具有最基本的單位,不是連續的。

事實上,量子力學在誕生之後,一直不斷地為人們帶來驚喜,簡直就是物理學界突然闖進一隻捉摸不定的貓。我們下一個故事,就要來聊量子力學發展過程中,打破世間常識的某個破天荒假說,而假說的提出者,是大學原本主修歷史和法律,擁有歷史學士學位,但後來改念物理,並憑藉博士論文用 5 年時間就拿到諾貝爾物理學獎的德布羅意。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。