0

0
0

文字

分享

0
0
0

證實物質波的凸槌實驗 │ 科學史上的今天:08/04

張瑞棋_96
・2015/08/04 ・947字 ・閱讀時間約 1 分鐘 ・SR值 550 ・八年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

 

Clinton Davisson
戴維森。圖片來源:Pantagraph

1927 年 8 月 4 日,貝爾實驗室的戴維森(Clinton Davisson)與助手革末(L. H. Germer)發現真空裝置的玻璃又破裂時,兩人先是一愣,接著互看一眼,露出會心一笑。一切的起點就是兩年半前的真空裝置玻璃破裂,如今以同樣的方式結束實驗,似乎也是天意。他們決定就此打住,整理數據,撰寫論文。

他們原本的實驗是要用電子束轟炸鎳,然後從電子的散射角度研判鎳的原子結構。1925 年 2 月 5 日這一天,他們才要開始實驗,不料玻璃竟因不耐高熱而破裂,空氣跑進真空設備中,導致高溫鎳靶嚴重氧化。戴維森不想就這樣丟棄鎳靶,決定透過加熱還原反應予以修復。沒想到重作實驗後,電子散射的分佈曲線竟變複雜了。他們檢查鎳靶,發現應該是鎳的部分表面形成排列整齊的晶體所致。

戴維森完全沒有聯想到電子繞射,因為繞射是波才有的特性,德布羅意才剛於 1924 年底提出物質波的假說,薛丁格也還沒提出波動方程式,除了少數幾位量子力學的先驅,根本沒有人認為電子具有波的性質。

1926 年,戴維森到英國參加一個研討會,才得知德布羅意與薛丁格的理論。他向玻恩等人提到自己的實驗,玻恩他們猜測,或許這就是電子繞射的結果,鼓勵他往這方向研究。返回美國後,戴維森與革末製備了單晶體的鎳,用低速電子束從各種不同角度打向鎳晶體,記錄反射結果,最後果然發現某個角度產生了明顯的繞射現象。

1927 年 4 月,他們在《自然》期刊發表實驗結果,比獨立發現電子繞射的 G. P. 湯姆森早了兩個月。但戴維森認為實驗數據與德布羅意的理論仍有些差距,因此又從 4 月開始重做實驗,直到 8 月 4 日這一天,因為真空裝置玻璃再度破裂才結束實驗。這一次的實驗數據與德布洛伊的「物質波」公式完全吻合,證實了物質就是波,也為剛萌芽的量子力學注入強心針。

德布羅意隨即於 1929 年獲頒諾貝爾物理獎,四年後,薛丁格也獲獎;而戴維森也與 G. P. 湯姆森共同獲得 1937 年的諾貝爾物理獎。

一個搞砸的實驗,最後竟然換到一座諾貝爾獎,所謂「塞翁失馬,焉知非福」大概就是這麼回事吧!

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
張瑞棋_96
423 篇文章 ・ 700 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

3
2

文字

分享

0
3
2
你能想像棒球穿牆嗎?突破物理世界的常識:量子穿隧——《阿宅聯盟:量子危機》
未來親子學習平台
・2023/01/20 ・1226字 ・閱讀時間約 2 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

想像一個全壘打王,面對前方的來球,大棒一揮,球越過了全壘打牆,到了牆的另外一邊。

Home~~~Run!圖/GIPHY

但假如,那個全壘打牆變成了兩層樓高呢?也許,他更大力地擊球(給球更多的能量),那顆球還是能夠飛越過全壘打牆,到牆的另外一邊。但如果,那全壘打牆變成了三十層樓高呢?我想會認為,除非靠機器,否則再厲害的全壘打王,不管用了多少力氣,他應該都無法讓球飛過三十層樓那麼高。

上述的例子,正顯示了我們日常生活中的物理原則:只要物體(球)的能量不足以跨越障礙物(牆),那麼它永遠不可能到達障礙物的另一側——但是,在量子的世界,卻不是這樣。

粒子是怎麼跨越各種障礙的?

量子力學裡,一個粒子具備的能量即使不足以跨越障礙,它仍然有小機率會出現在障礙的另一邊;而且,若粒子的能量跟跨越障礙所需要的能量愈接近、或是說只少一點,那麼這個粒子出現在障礙另一邊的機率就愈大。

這樣神奇的現象,彷彿就像是粒子挖了隧道穿過障礙一般(儘管並沒有真的隧道),所以稱為「量子穿隧」效應。

不過,在丟球的例子裡,我們可以想像,若是牆愈高或愈厚,那麼球就愈難飛過牆壁。同樣地,在量子力學的情形下,雖然粒子有可能在能量不足的狀況下穿過障礙,但要是障礙無限高或無限厚的話,那麼粒子就還是過不去的

儘管在量子力學的情況下,障礙無限高或無限厚,粒子還是過不去的。圖/Envato Elements

事實上,量子穿隧效應跟我們先前提到的「物質具有波的特性」非常有關係。想像水池中間有一顆大石頭,池中的水波在遇到石頭這個障礙物時,會從旁邊繞道而過;但如果是一般物質,一旦遇到障礙物就直接被擋住了,沒辦法繞道而行。

就是因為在量子世界,物質也具有波的特性,我們才會看到粒子的穿隧效應。儘管量子效應感覺很奇特,但它在很多方面都有實際的影響。

例如,我們知道太陽核心是依賴核融合反應來產生能量;在過程中,會將兩個氫原子核,融合成更重的原子核。但因為氫原子核都帶正電,要抵抗正電荷間的排斥力,將它們融合在一起,其實非常困難。也幸虧有量子穿隧效應,太陽內部的氫原子核才能克服電荷排斥力的阻礙,順利融合在一起,並製造能量。

所以,在地球的我們,能夠享受到太陽的光和熱,說起來也要感謝量子穿隧效應呢!

——本文摘自《阿宅聯盟:量子危機》,2022 年 11 月,未來出版,未經同意請勿轉載

未來親子學習平台
3 篇文章 ・ 2 位粉絲

1

1
2

文字

分享

1
1
2
「量子狀態」聽起來好難?其實就是機率與疊加——《阿宅聯盟:量子危機》
未來親子學習平台
・2023/01/19 ・1256字 ・閱讀時間約 2 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

想像我們往水池內丟兩顆石頭,以石頭的落點為中心,會個別產生漣漪,在水面上擴散開來。

而當兩個漣漪互相接觸時,交會之處的水面其實同時反應了兩個漣漪的影響;可以說,兩個漣漪疊加在一起了。漣漪是靠水傳遞的一種波,稱為水波;而「疊加」的現象,就是屬於波的一種特性

當兩個漣漪相互接觸時,會疊加在一起。圖/Envato Elements

物質的波,也就是物質波,同樣存在疊加的特性。只不過,物質波跟水波不同的地方在於,它不需要依賴「水」這種實際的東西來傳遞,而是一種「機率波」。機率波的數學形式長得像波,而它代表的,是量子系統處於不同狀態的機率分布

量子系統的狀態:機率波

當我們在描述量子系統的狀態時,就會用到「機率波」的概念。舉例來說,在電玩遊戲中要是打怪成功,死掉的怪物會留下寶物。怪物可能有 50% 的機率掉落寶物 A,也有 50% 的機率掉落寶物 B,但我們不會在事前就知道怪物會留下哪種寶物。

所以,怪物可以說是同時擁有「掉落寶物 A」和「掉落寶物 B」這兩種狀況,直到我們成功打完怪,才能確定牠究竟帶哪一種寶物。類似地,機率波告訴我們的,就是量子系統「有多少機率處於狀態 A、又有多少機率處於狀態 B」的資訊;如同兩個水波在水面上疊加,A 和 B 這兩個狀態同時存在這個量子系統上。所以,我們把量子系統「同時處於不同狀態疊加」的狀況,稱為「疊加態」

直到我們打怪成功,才能確定究竟掉哪一種寶物。圖/GIPHY

另一方面,也跟打完怪物才知道掉什麼寶物類似,在我們實際觀測量子系統前,並無法知道會看到狀態 A 還是狀態 B,要觀測完才會知道。因為量子疊加的特殊性質,科學家想到,或許可以拿來做一些實際的運用。

例如,在現代的電腦運算中,「位元」是資訊的最小單位,可以用 0 或 1 這兩個數值來表示。那麼,我們也許能夠把「同時存在兩種不同狀態的量子系統」當作位元使用,讓它的兩種狀態分別代表 0 跟 1 來儲存資訊,而這就被稱為量子位元

由於物理性質的不同,量子位元在某些狀況下,可以運算得比傳統位元更有效率;利用量子位元建構的電腦,就稱為量子電腦。雖然目前已經有少數量子電腦問世,能以最多一百多個量子位元進行運算,但要能大規模運用在日常生活中,除了要再想辦法增加量子位元之外,還有許多難題要克服,所以,現在就先讓漫畫的想像來代替很可能成真的未來吧。

——本文摘自《阿宅聯盟:量子危機》,2022 年 11 月,未來出版,未經同意請勿轉載

所有討論 1
未來親子學習平台
3 篇文章 ・ 2 位粉絲

2

10
2

文字

分享

2
10
2
2021 諾貝爾物理獎得主真鍋淑郎——地表模型開山始祖,研究地表模式都要引用他的論文
Y.-S. Lu
・2021/10/14 ・2990字 ・閱讀時間約 6 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

  • 作者|盧彥森,目前任職於 德國于利希研究中心 能源與氣候研究所

第一個地表模型的開發者——真鍋淑郎

在大氣科學領域中,有一部份專業領域統稱為「氣象模擬」,其中,有一門名為「地表模式」的領域,是專門算地表上各種物理、化學、生物作用的行為。

在做這些模擬的研究者中,有個很有名的日本名字,叫做 Manabe,他的論文會一直出現在大家眼前,也就是(只有我們在乎的)《 Manabe 1969, CLIMATE AND THE OCEAN CIRCULATION I : THE ATMOSPHERIC CIRCULATION AND THE HYDROLOGY OF THE EARTH’S SURFACE 》[1]最近因為大量的報導,我才知道原來他名字的漢字是——真鍋淑郎,也就是第一個地表模型的開發者,而在 2021 年時,他拿下了諾貝爾獎。

真鍋淑郎,2021年諾貝爾物理學獎得主之一。圖/維基百科

地表模式(Land Surface Model)在大氣模擬中有舉足輕重的地位,可以算地面是怎麼跟大氣作反應的,像是降水是怎麼被樹冠層截流、土壤水是怎麼變成地表逕流跟地下水、水是怎麼靠蒸散發回到大氣中;還有太陽光怎麼被地面或葉面吸收、能量怎麼被蒸散發作用給吸收、地面上的溫度增加或減少了多少,還有太陽輻射是有多少返回大氣層。

而真鍋淑郎的地表模式,則涵蓋了一大部份的物理反應,供美國國家海洋暨大氣總署(NOAA)的 Geophysical Fluid Dynamics Laboratory 的全球大氣模型使用。

Geophysical Fluid Dynamics Laboratory 圖/Geophysical Fluid Dynamics Laboratory

不過學界是殘酷的。在那個電腦比房子貴的年代(房價在 1960 年的中位數約為$11,900,CNBC報導),真鍋順便背了個學界的鍋,像是:你的模型是不夠真實的、你的土壤濕度估算不夠物理……等因為電腦計算跟理論發展還不夠成熟,所以尚未發展的物理與計算方法。

後來的論文也會稱真鍋的地表模式是水桶模型(因為其計算土壤濕度的方法宛如水桶一樣,滿了就去除,而非經土壤中水流方法流走的)。但無論如何,第一個地表模型,基本上就是真鍋與他在普林斯頓的好夥伴們發展出來的。因此,真鍋的地表模型也在後來的論文中,尊稱為第一代的地表模式,建立起祖師爺等級的封號(Sellers et al., 1997)。

水桶模型後,百家爭鳴的地表模式大戰

雖然第一代的地表模式,土壤當做水桶,地上也沒有植物,更不要說可以進行光合作用或是碳排放來研究二氧化碳是怎麼搞壞我們的人生,但也讓後續的第二代地表模型有了出發點。

1980年後,在個人電腦逐漸普及後,地表模式也開始百家爭鳴,其中真鍋的身影也就只存在各家論文的引用中了。後來再出現時,則是在地表模式大戰——PILPS(Project for the Intercomparison of Land-surface Parametrization Schemes)[2]。這個計畫中,以水桶模型這個稱號出現。基本上始於 1995 年的 PILPS 計畫,就是利用荷蘭的 Cabauw 量測站測到的氣象狀況,來驗證各家第二代的地表模式中,誰才是最強的。

荷蘭 Cabauw 村莊。圖/維基百科

當然結果就是,沒有誰家最強。

更重要的是,雖然地表模式都比真鍋的模型更複雜了一點,但是有個東西是沒有人考慮到的:光合作用

當時各家的蒸散發公式,主要都是用Jarvis的葉面氣孔參數化公式做考量[3],所以也沒有真的考慮到二氧化碳、水、太陽之間的直接關聯。而做出這個關連性主要公式——Farquhar等人[4] 的二氧化碳同化作用公式,才在 1980 年時正式發表,離他同事 Berry 拿去演化成植物氣孔跟光合作用的連動公式[5],還有七年。而在地表模型大戰中發表的模型,其實都長得 87% 像。

在 1997 年時,NASA 的 Sellers等人[6],與多位同樣是地表模式的作者與植物氣孔模擬專家,在《Science》期刊中,登高一呼:我們要有能夠計算生態跟複雜物理的模型!畢竟在 PILPS 的大戰中,沒有真正的勝者,也沒有真正的輸家,甚至我們的真鍋大哥在水文計算上也沒有輸[2]

所以在 2003 年,集合了 PILPS 大戰中和解的部份朋友們,第一支集眾人之力誕生的通用地表模式(Common Land Model)上線了[7],這支從 1998 年開始寫的程式,過了近五年後才發表,算是第三代地表模式的代表作

而這個第三代中,植物終於開始有了它的意義,這植物的葉子終於可以隨四季生長了,也會行光合作用了,土壤也增厚到兩公尺多了,土壤也會依不飽和水流公式往下滲流,也可以計算堆雪了。其中最重要的,就是那光合作用公式的應用。

持續再精進與貢獻

之後的地表模式,就一直著重在地面植物的改良,讓植物越來越真,從一開始的沒有植物,到會蒸發水,再到會跟二氧化碳互動,以及跟氮交互作用,計算植物的農作產出,一步步朝著更精細的方向前進。

當然地表模式也有很多需要改良的地方,首先是地表模型是假設地表跟大氣是一維方向的互動,而土壤中水流也是只會向下滲流,如果要計算真正的水流,就必須要進行三維的地下水流動,這就是另外一個耗資源的計算。另外植物也不是真的植物,植物被假設只有四片葉子,還只有一層。

英國的「JULES」模型曾報告說他們做了個多層葉冠層的模型,最後只能淡淡的說因為計算資源耗太兇,所以沒算完 [8]。更甚者,地底下的根是「死」的,一年四季,不生不滅、不垢不淨,持續地在只有兩公尺厚的土裡,把水吸到植物中行光合作用(Pitman, 2003)[9]

所以無論如何,地表模型不僅不死,其勢更烈,因為有太多的東西可以靠地表模式來計算,像是人類對地球表面的影響、化合物排放,也都可以靠地表模式計算其對大氣的影響,就連地下水模型也都要拜託地表模式處理複雜的地表水文狀況[10]

從 1969 年到 2021 年,無數的改良與改版,還有兩次的超級地表模式大戰(第二次利用 Rhône 流域量測結果[11]),都增加了人們對大氣系統的了解,並且一步步改善天氣預報的準確度,而其中的功臣之一,當然是真鍋博士在 1969 年,比 Unix 更早發表的地式模型,所以的確功不可沒,而現在地球科學的眾多估算中,地表模式解決了很多的水文與能量問題,更遑論對氣候變遷的計算,才能在1975年提出二氧化碳加劇溫度上升的研究[12]。拿下諾貝爾獎,不僅僅是贊同真鍋博士的功勞,更是對大氣模擬界的慰勞吧。

參考資料

  1. Manabe S. (1969). CLIMATE AND THE OCEAN CIRCULATION 1: I. THE ATMOSPHERIC CIRCULATION AND THE HYDROLOGY OF THE EARTH’S SURFACE. Mon. Weather Rev. 97:739–774.
  2. Pitman, A. J., Henderson-Sellers, A., Desborough, C. E., Yang, Z. L., Abramopoulos, F., Boone, A., … & Xue, Y. (1999). Key results and implications from phase 1 (c) of the Project for Intercomparison of Land-surface Parametrization Schemes. Climate Dynamics, 15(9), 673-684.
  3. Jarvis PG. (1976). The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field. Philos. Trans. R. Soc. Lond. B Biol. Sci. 273:593–610.
  4. Farquhar, G. D., von Caemmerer, S. V., & Berry, J. A. (1980). A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species. Planta, 149(1), 78-90.
  5. Ball JT., Woodrow IE., Berry JA. (1987). A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Progress in photosynthesis research. Springer, 221–224.
  6. Sellers PJ., Dickinson RE., Randall DA., Betts AK., Hall FG., Berry JA., Collatz GJ., Denning AS., Mooney HA., Nobre CA., Sato N., Field CB., Henderson-Sellers A. (1997). Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere. Science 275:502–509
  7. Dai Y., Zeng X., Dickinson RE., Baker I., Bonan GB., Bosilovich MG., Denning AS., Dirmeyer PA., Houser PR., Niu G. (2003). The common land model. Bull. Am. Meteorol. Soc. 84.
  8. Best MJ., Pryor M., Clark DB., Rooney GG., Essery RLH., Ménard CB., Edwards JM., Hendry MA., Porson A., Gedney N., Mercado LM., Sitch S., Blyth E., Boucher O., Cox PM., Grimmond CSB., Harding RJ. (2011). The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes. Geosci Model Dev 4:677–699
  9. Pitman AJ. (2003). The evolution of, and revolution in, land surface schemes designed for climate models. Int J Clim. 23:479–510.
  10. Kollet SJ., Maxwell RM. (2006). Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. 29:945–958.
  11. Boone A., Habets F., Noilhan J., Clark D., Dirmeyer P., Fox S., Gusev Y., Haddeland I., Koster R., Lohmann D. 2004. The Rhone-Aggregation land surface scheme intercomparison project: An overview. J. Clim. 17:187–208.
  12. Manabe, S., & Wetherald, R. T. (1975). The effects of doubling the CO2 concentration on the climate of a general circulation model. Journal of Atmospheric Sciences, 32(1), 3-15.


所有討論 2
Y.-S. Lu
4 篇文章 ・ 6 位粉絲
自從來到學界後,便展開了一段從土木人到氣象人的水文之旅。主要專業是地球系統數值模擬,地下水與地表模式的耦合系統,以及大氣氣象模擬。目前是于利希研究中心(Forschungszentrum Jülich GmbH)超級電腦中心的博士後研究員。